共查询到20条相似文献,搜索用时 15 毫秒
1.
Landslide hazards triggered by the 2008 Wenchuan earthquake, Sichuan, China 总被引:19,自引:16,他引:19
The 2008 Wenchuan earthquake (M
s = 8.0; epicenter located at 31.0° N, 103.4° E), with a focal depth of 19.0 km was triggered by the reactivation of the Longmenshan
fault in Wenchuan County, Sichuan Province, China on 12 May 2008. This earthquake directly caused more than 15,000 geohazards
in the form of landslides, rockfalls, and debris flows which resulted in about 20,000 deaths. It also caused more than 10,000
potential geohazard sites, especially for rockfalls, reflecting the susceptibility of high and steep slopes in mountainous
areas affected by the earthquake. Landslide occurrence on mountain ridges and peaks indicated that seismic shaking was amplified
by mountainous topography. Thirty-three of the high-risk landslide lakes with landslide dam heights greater than 10 m were
classified into four levels: extremely high risk, high risk, medium risk, and low risk. The levels were created by comprehensively
analyzing the capacity of landslide lakes, the height of landslide dams, and the composition and structure of materials that
blocked rivers. In the epicenter area which was 300 km long and 10 km wide along the main seismic fault, there were lots of
landslides triggered by the earthquake, and these landslides have a common characteristic of a discontinuous but flat sliding
surface. The failure surfaces can be classified into the following three types based on their overall shape: concave, convex,
and terraced. Field evidences illustrated that the vertical component of ground shaking had a significant effect on both building
collapse and landslide generation. The ground motion records show that the vertical acceleration is greater than the horizontal,
and the acceleration must be larger than 1.0 g in some parts along the main seismic fault. Two landslides are discussed as
high speed and long runout cases. One is the Chengxi landslide in Beichuan County, and the other is the Donghekou landslide
in Qingchuan County. In each case, the runout process and its impact on people and property were analyzed. The Chengxi landslide
killed 1,600 people and destroyed numerous houses. The Donghekou landslide is a complex landslide–debris flow with a long
runout. The debris flow scoured the bank of the Qingjiang River for a length of 2,400 m and subsequently formed a landslide
dam. This landslide buried seven villages and killed more than 400 people. 相似文献
2.
The Ms 8.0 Wenchuan earthquake of May 12, 2008 is one of the most disastrous earthquakes in China. The earthquake triggered tens of thousands of landslides over a broad area, including shallow, disrupted landslides, rock falls, deep-seated landslides, and rock avalanches, some of which buried large sections of some towns and dammed the rivers. The purpose of this study is to investigate correlations between the occurrence of landslides with geologic and geomorphologic conditions, and seismic parameters. Over 56,000 earthquake-triggered landslides, with a total area of 811 km2, are interpreted using aerial photographs and remote sensing images taken following the earthquake. The spatial distribution of these landslides is analyzed statistically using both landslide-point density (LPD), defined as the number of landslides per square kilometer, and landslide-area density (LAD), the percentage of the area affected by landslides, to determine how the occurrence of landslides correlates with distance from the epicenter, distance from the major surface rupture, seismic intensity and peak ground acceleration (PGA), slope angle, slope aspect, elevation, and lithology. It is found that both LAD and LPD have strong positive correlations with slope steepness, distance from the major surface rupture and seismic intensity, and that Pre-Sinian schist, and Cambrian sandstone and siltstone intercalated with slate have the most concentrated landslide activities, followed by the Permian limestone intercalated with shale, and Devonian limestone. Statistical analyses also indicate that the major surface rupture has influence on the spatial distribution of landslides, because LAD and LPD are relatively higher on the hanging wall than on the footwall. However, the correlation between the occurrence of landslides with distance from the epicenter of the earthquake is complicated, rather than a relatively simple negative correlation as found from other reported cases of earthquakes. This is possibly due to complicated rupture processes of the earthquake. 相似文献
3.
4.
Shengwen Qi Qiang Xu Bing Zhang Yuande Zhou Hengxing Lan Lihui Li 《Journal of Asian Earth Sciences》2011,40(4):896-906
The May 12, 2008 Wenchuan, China Earthquake which measured Mw = 8.3 according to Chinese Earthquake Administration – CEA (Mw = 7.9 according to the USGS) directly triggered many landslides, which caused about 20,000 deaths, a quarter of the total. Rock avalanches were among the most destructive landslides triggered by this seismic event, and have killed more people than any other type of landslide in this earthquake. The Donghekou rock avalanche, one example of a catastrophic avalanche triggered by the Wenchuan earthquake, occurred in Qingchuan and buried one primary school and 184 houses, resulting in more than 780 deaths, and in addition, caused the formation of two landslide dams, which formed barrier lakes.Combining aerial images (resolution of 0.5 m) with field investigations, this paper lists some parameters of 66 cases in one table, and details source characteristics of six typical cases. It has been found that most of the long runout rock avalanches have source areas with high relief and steep inclination, causing the debris in the travel courses to accelerate. There was also a large amount of saturated Holocene-age loose deposits formed by a river or gully that existed in the travel courses. Comparison studies indicate that saturated Holocene loose deposits in the travel courses could be the most important factor for the causes of the long runout characteristic of the rock avalanches especially when they traveled over gentle or even flat ground surfaces.Furthermore, the relationships among the relief slope gradient, runout and covered area are investigated, and a threshold line for predicting the maximum horizontal runout distance under certain change in elevation is presented. 相似文献
5.
本文在地震滑坡规模(体积)类型5级划分法的基础上,采用数学方法对汶川地震灾区的2个宏观震中(映秀、北川)烈度I0≥XI极震区(10个县市)的地震滑坡震中距进行了讨论。其中地震滑坡随震中距分布基本符合正弦、高斯和指数衰减规律。极震区最大滑坡震中距可达120km,最小滑坡震中距可达0.25km。结果表明,地震诱发滑坡的规模(体积)和分布范围都与震中距具有相关性。 相似文献
6.
Analysis of an anti-dip landslide triggered by the 2008 Wenchuan earthquake in China 总被引:2,自引:0,他引:2
Runqiu Huang Jianjun Zhao Nengpan Ju Guo Li Min Lee Lee Yanrong Li 《Natural Hazards》2013,68(2):1021-1039
The Guantan landslide, with a total displaced mass of about 468 × 104 m3, was triggered by the 2008 Wenchuan earthquake and succeeding rainfall in Jushui Town, Sichuan Province, China. The landslide occurred on an anti-dip hard rock slope with a weak rock founding stratum of 200 m in thickness. To investigate the failure mechanism of the Guantan landslide, dynamic behaviors of hard and soft rock slopes were investigated by means of large scale shaking table tests. The laboratory models attempted to simulate the field geological conditions of the Guantan landslide. Sinusoidal waves and actual seismic waves measured from the Wenchuan Earthquake were applied on the slope models under 37 loading configurations. The experimental results indicated that deformation mainly developed at a shallow depth in the upper part of the hard rock slope and in the upper (near the crest) and lower (near the toe) parts of the soft rock slope. An equation for predicting the depth of sliding plane was proposed based on the location of the maximum horizontal acceleration. Finally, it was concluded that the failure process of the Guantan landslide occurred in three stages: (1) toppling failure caused by compression of the underlying soft rock strata, (2) formation of crushed hard rock and sliding surface in soft rock as the result of seismic shocks, particularly in the horizontal direction, and (3) aftershock rainfall accelerates the process of mass movement along the sliding plane. 相似文献
7.
四川汶川Ms 8 级地震触发的典型滑坡的风险指标反演 总被引:2,自引:0,他引:2
2008年汶川大地震触发了数以万计的崩塌和滑坡,特别是沿发震断裂分布一系列大型的高速远程滑坡。为了探索地震诱发大型高速远程滑坡运动速度的反演方法,以汶川大地震典型高速远程滑坡为例,在野外调查和室内分析的基础上,结合前人的研究成果,对沿映秀-北川断裂展布的5个典型滑坡的速度进行了反演和计算。结果表明,5个滑坡的最大速度均大于50m/s,其中大光包滑坡速度最大,其下部滑体的最大速度约为300m/s,上部滑体凌空飞行的初速度高达165.6 m/s。同时,对上述滑坡的视摩擦系数进行了计算,4个滑坡的视摩擦系数介于0.16~0.4之间。这一研究的目的在于为类似地区地震滑坡的速度、最大位移量的预测和风险评估提供基础数据,对于类似地区的防灾减灾具有一定的参考价值。 相似文献
8.
Preliminary investigation of some large landslides triggered by the 2008 Wenchuan earthquake, Sichuan Province, China 总被引:9,自引:5,他引:9
Fawu Wang Qiangong Cheng Lynn Highland Masakatsu Miyajima Huabin Wang Changgen Yan 《Landslides》2009,6(1):47-54
The M
s 8.0 Wenchuan earthquake or “Great Sichuan Earthquake” occurred at 14:28 p.m. local time on 12 May 2008 in Sichuan Province, China. Damage by earthquake-induced landslides was an important part of the
total earthquake damage. This report presents preliminary observations on the Hongyan Resort slide located southwest of the
main epicenter, shallow mountain surface failures in Xuankou village of Yingxiu Town, the Jiufengchun slide near Longmenshan
Town, the Hongsong Hydro-power Station slide near Hongbai Town, the Xiaojiaqiao slide in Chaping Town, two landslides in Beichuan
County-town which destroyed a large part of the town, and the Donghekou and Shibangou slides in Qingchuan County which formed
the second biggest landslide lake formed in this earthquake. The influences of seismic, topographic, geologic, and hydro-geologic
conditions are discussed. 相似文献
9.
2008年汶川大地震触发了数以万计的崩塌和滑坡,特别是沿发震断裂分布一系列大型的高速远程滑坡。为了探索地震诱发大型高速远程滑坡运动速度的反演方法,以汶川大地震典型高速远程滑坡为例,在野外调查和室内分析的基础上,结合前人的研究成果,对沿映秀-北川断裂展布的5个典型滑坡的速度进行了反演和计算。结果表明,5个滑坡的最大速度均大于50m/s,其中大光包滑坡速度最大,其下部滑体的最大速度约为300m/s,上部滑体凌空飞行的初速度高达165.6 m/s。同时,对上述滑坡的视摩擦系数进行了计算,4个滑坡的视摩擦系数介于0.16~0.4之间。这一研究的目的在于为类似地区地震滑坡的速度、最大位移量的预测和风险评估提供基础数据,对于类似地区的防灾减灾具有一定的参考价值。 相似文献
10.
Dynamic process analysis for the formation of Yangjiagou landslide-dammed lake triggered by the Wenchuan earthquake, China 总被引:2,自引:0,他引:2
The damming of rivers by landslides resulting in the formation of a lake was one of the typical secondary geological hazards triggered by the Wenchuan earthquake which occurred on May 12, 2008. Some landslide-dammed lakes were at a high risk of causing further damage since the rainstorm season was expected soon after the earthquake. Understanding the dynamic processes in the formation of landslide-dammed lakes is helpful in planning the mitigation measures. The Yangjiagou landslide-dammed lake was selected as a case study to investigate the typical processes of dam formation. The dynamic simulation of the formation of the Yangjiagou landslide-dammed lake was divided into two steps: the landslide step and the overflow/overtopping step. Two-dimensional discrete element method (DEM) was adopted to investigate the mechanics of the Yangjiagou landslide. The landslide process was found to be controlled by the bond strength and residual friction coefficient of the DEM models. Computational results show that the formation of the landslide dam took approximately 35 s. The maximum velocity of a typical particle was approximately 26.8 m/s. The shallow-water equation and finite difference method were used to analyze the hydrodynamic mechanisms of the overflow process of the landslide-dammed lake. Computational results show that overflow would have occurred 15.1 h after the river was blocked, and overtopping failure occurs for the landslide dam in the rainstorm season when the water flow is large enough, causing a major disaster. 相似文献
11.
Dynamics of the Niumiangou Creek rock avalanche triggered by 2008 Ms 8.0 Wenchuan earthquake, Sichuan, China 总被引:1,自引:2,他引:1
The Niumiangou Creek rock avalanche was triggered by an Ms 8.0 earthquake that happened on 12 May 2008 in the Sichuan Province, China. The rock avalanche traveled a horizontal distance
of 3.0 km over a vertical elevation difference of 0.89 km, equivalent to a coefficient of friction of only 0.29. The travel
path of the rock avalanche can be divided into three segments: (1) failing and disintegrating, (2) flying, (3) flowing. In
the failing and disintegrating segment, the rock slope failed because of the coupled action of horizontal and vertical force
of the earthquake, then smashed into the opposite mountain and disintegrated. In the flying segment, the disintegrating rock
mass changed direction and flew into the Lianhuaxin Creek, which was different from the previous research results that concluded
rock debris flowed in Lianhuaxin Creek. A great amount of air trapped and compressed under the rock debris acted as air cushion
and supported the rock debris to fly a further distance. In the flowing segment, the rock debris flowed on the ground surface
in Niumiangou Creek. The flowing velocity has been estimated from the maximum elevation and runup according to the damaged
trimlines of the debris. The saturated fine material in Niumiangou Creek entrained by the failed debris mass is thought to
have contributed to the long runout of the debris. The Niumiangou Creek rock avalanche is one of the three longest rock avalanches
triggered by Wenchuan earthquake. The conclusions of the paper have implications for hazard assessment of potential rock avalanches
in the earthquake area and the other similar mountainous area in west China. 相似文献
12.
Yang Fan Fan Xuanmei Siva Subramanian Srikrishnan Dou Xiangyang Xiong Junlin Xia Bing Yu Zongyang Xu Qiang 《Landslides》2021,18(9):3197-3212
Landslides - Enhanced debris flow activity observed after the 2008 Wenchuan earthquake, Sichuan Province, SW China, is still intense more than a decade since the earthquake. A heavy rainstorm on 20... 相似文献
13.
A digital landslide database has been created for Sichuan province, where a magnitude 8.0 earthquake at 2:28 p.m. on May 12, 2008, to provide the authorities and scientific communities with a tool for landslide risk assessment, emergency management, land-use planning, development of early warning system and enhancement of public awareness of natural hazards. Landslide data have been obtained from a variety of sources including technical reports and landslide inventory maps, and most of which were based on fieldwork and interpretation of aerial photographs. This paper presents the sources of landslide information, database design and the webGIS-based information management system. The database currently contains spatial information for about 9,000 landslides that were mostly triggered by the earthquake. Slide is the most common type of landslide in the database, but other types including rockfall and debris flow have also been identified. The website is an online GIS, providing access to comprehensive landslide information via the Internet. The development of the website allowed us to define the state of knowledge on landslide processes in Sichuan and to provide a preliminary identification of areas affected by landslides. 相似文献
14.
The characteristics and failure mechanism of the largest landslide triggered by the Wenchuan earthquake, May 12, 2008, China 总被引:2,自引:7,他引:2
Runqiu Huang Xiangjun Pei Xuanmei Fan Weifeng Zhang Shigui Li Biliang Li 《Landslides》2012,9(1):131-142
Strong earthquakes are among the prime triggering factors of landslides. The 2008 Wenchuan earthquake (M
w = 7.9) triggered tens of thousands of landslides. Among them, the Daguangbao landslide is the largest one, which covered
an area of 7.8 km2 with a maximum width of 2.2 km and an estimated volume of 7.5 × 108 m3. The landslide is located on the hanging wall of the seismogenic fault, the Yingxiu–Beichuan fault in Anxian town, Sichuan
Province. The sliding mass travelled about 4.5 km and blocked the Huangdongzi valley, forming a landslide dam nearly 600 m
high. Compared to other coseismic landslides in the study area, the Daguangbao landslide attained phenomenal kinetic energy,
intense cracking, and deformation, exposing a 1-km long head scarp in the rear of the landslide. Based on the field investigation,
we conclude that the occurrence of the landslide is controlled mainly by the seismic, terrain, and geological factors. The
special location of the landslide and the possible topographic amplification of ground motions due to the terrain features
governed the landslide failure. The effects of earthquakes on the stability of slopes were considered in two aspects: First,
the ground shaking may reduce the frictional strength of the substrate by shattering of rock mass. Second, the seismic acceleration
may result in short-lived and episodic changes of the normal (tensile) and shear stresses in the hillshopes during earthquakes.
According to the failure mechanism, the dynamic process of the landslide might contain four stages: (a) the cracking of rock
mass in the rear of the slope mainly due to the tensile stress generated by the ground shaking; (b) the shattering of the
substrate due to the ground shaking, which reduced the frictional strength of the substrate; (c) the shearing failure of the
toe of the landslide due to the large shear stress caused by the landslide gravity; and (d) the deposition stage. 相似文献
15.
四川汶川Ms 8 级地震引发的滑坡与地层岩性、坡度的相关性 总被引:10,自引:0,他引:10
震后遥感影像解译与调查结果表明,在大约48678km2的区域内,汶川Ms 8.0级地震诱发了不低于48000处滑坡灾害。基于GIS的空间分析方法,使用滑坡面积百分比(LAR)与滑坡密度(LC)2个参数,对地震滑坡的空间分布与地层岩性、坡度之间的关系进行统计分析。在整个研究区范围内,滑坡面积百分比约为1.4622%,滑坡密度约为0.9862个/km2。结果表明,滑坡多发生在坡度25~50°的区域内,滑坡易发性随着坡度的增加而升高。寒武纪地层中滑坡易发性最大,LAR约10%,LC约6.5个/km2,震旦系、奥陶系和侵入岩次之,这些地层和岩石对地震滑坡的发生均是敏感的。综合分析坡度、地层岩性与滑坡空间分布的关系,结果表明,在以较破碎岩石为主的地层中,滑坡多发生在坡度小于30°的部位;在以较坚硬岩石为主的地层中,滑坡多发生在坡度大于40°的部位。 相似文献
16.
震后遥感影像解译与调查结果表明,在大约48678km2的区域内,汶川Ms 8.0级地震诱发了不低于48000处滑坡灾害。基于GIS的空间分析方法,使用滑坡面积百分比(LAR)与滑坡密度(LC)2个参数,对地震滑坡的空间分布与地层岩性、坡度之间的关系进行统计分析。在整个研究区范围内,滑坡面积百分比约为1.4622%,滑坡密度约为0.9862个/km2。结果表明,滑坡多发生在坡度25~50°的区域内,滑坡易发性随着坡度的增加而升高。寒武纪地层中滑坡易发性最大,LAR约10%,LC约6.5个/km2,震旦系、奥陶系和侵入岩次之,这些地层和岩石对地震滑坡的发生均是敏感的。综合分析坡度、地层岩性与滑坡空间分布的关系,结果表明,在以较破碎岩石为主的地层中,滑坡多发生在坡度小于30°的部位;在以较坚硬岩石为主的地层中,滑坡多发生在坡度大于40°的部位。 相似文献
17.
平溪村滑坡是汶川地震触发的高速岩质滑坡,面积为3.7×104m2,体积约65×104m3。滑坡距离映秀—北川发震断裂带中的石坎断层不足500m,在强大地震力作用下,滑坡滑动面陡峭、粗糙,与重力作用下呈圆弧、平滑的滑面迥异。地震触发的滑坡可分为三个阶段:①震动拉裂阶段;②摩擦阻力降低、"锁固段"剪断阶段;③滑体溃滑,高速流动堆积阶段。然后结合结构面的力学分析,通过数值模拟对地震作用下的应力变化和震裂机制进行了初步分析。 相似文献
18.
During the 2008 Wenchuan earthquake, the river valley from Yingxiu to Wenchuan experienced numerous landslides and became a prominent area of landslide complexes. The present large landslide complex near the earthquake epicenter consisted of Laohuzui slide 1, Laohuzui slide 2 and Douyaping slide. The scale, geology, morphology, sliding process, and failure mechanism of the landslide complex are analyzed by means of field investigation, aerial photograph and stereographic projection technique. Characteristics of these three slides including seismic response of slope, landslide debris, damage and potential failure are discussed: the convex slope and the upslope of fractured granitic rock at high altitude are highly prone to landsliding under earthquake; the high source altitude and long travel path determine grain sizes and the deposit angle of the slide debris; the landslide complex completely buries the G213 roadway and dams up the Minjiang River in these sections; after the earthquake, rainfall, aftershocks and river erosion may retrigger new failures, such as retrogressive slide of weathered fractured rock, colluvial landslide, debris flow, embankment failure and rockfall. The following are presented as suggested remedial measures to protect the roadway and stabilize the slope: the removing and trenching, protective concrete/rock blocks against erosion, retaining structure, rockfall stopping wall, rockfall restraining net, rock bolt, and the planting of vegetation. 相似文献
19.
通过遥感解译和实地考察,获取了2008年汶川地震触发崩滑的空间分布,利用GIS空间分析和Lo-gistic回归,分析崩滑的空间分布特征及其影响因素,建立了地震触发崩滑与其影响因素之间的回归方程。结果表明,(1)研究区共有5 154个崩滑群,覆盖总面积1 139 km2;(2)崩滑沿北川—映秀发震断层的两侧(断层上盘区占90%),呈北东向宽度不一的条带状分布;(3)Ⅺ和Ⅹ烈度区崩滑面积占区域面积的73.2%,Ⅷ度及以下烈度区崩滑面积比例较小;(4)崩滑发育及空间分布不仅受控于发震断层的活动,断层上下盘效应、地形放大效应等也是其重要影响因素。崩滑与其影响因子的回归方程表明:(1)到北川—映秀发震断层距离因子和到震中距离因子的偏回归系数远大于其他因子的偏回归系数,北川—映秀断层发震活动是控制崩滑空间分布的主导因子;(2)岩性软硬程度对崩滑空间分布的影响不显著;(3)地形坡度、高程、坡度变率、多年累积降雨、人工修路及植被覆盖对崩滑的发育产生影响。地形高程因子对崩滑空间分布的影响大于坡度、坡度变率因子的影响。人工道路、多年降雨及植被覆盖对地震崩滑的影响程度依次降低。 相似文献
20.
The 2008 Wenchuan earthquake triggered more than 100 rock avalanches with volumes greater than 10 million cubic metres. The rock avalanche with the longest runout amongst these destructive landslides occurred in the Wenjia valley, Mianzhu, Sichuan, China. The landslide involved the failure of about 27.5 million cubic metres of sandstone from the source area. The displaced material travelled about 4,170 m with an elevation descent of about 1,360 m, equivalent to a fahrböschung of 16.9° and covered an area of 1.5 million square metres, with the final deposited volume of approximately 49 million cubic metres. The catastrophic event destroyed the village of Yanjing, killed 48 people and buried some houses at the mouth of the Wenjia valley. On the basis of a detailed field investigation, we introduce basic characteristics of the rock avalanche and find that the rock avalanche resulted in two run-ups and a superelevation along the runout path, and downslope enlargement due to the entrainment of path materials. A numerical model (DAN3D) is used to simulate the post-failure behaviour of the rock avalanche. By means of trial and error, a combination of the frictional model and Voellmy model is found to provide the best performance in simulating this rock avalanche. The simulation results reveal that the rock avalanche had a duration of about 240 s and an average velocity of 17.4 m/s. 相似文献