首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We derive accretion rate functions (ARFs) and kinetic luminosity functions (KLFs) for jet-launching supermassive black holes. The accretion rate as well as the kinetic power of an active galaxy is estimated from the radio emission of the jet. For compact low-power jets, we use the core radio emission while the jet power of high-power radio-loud quasars is estimated using the extended low-frequency emission to avoid beaming effects. We find that at low luminosities the ARF derived from the radio emission is in agreement with the measured bolometric luminosity function (BLF) of active galactic nucleus (AGN), i.e. all low-luminosity AGN launch strong jets. We present a simple model, inspired by the analogy between X-ray binaries (XRBs) and AGN, that can reproduce both the measured ARF of jet-emitting sources as well as the BLF. The model suggests that the break in power-law slope of the BLF is due to the inefficient accretion of strongly sub-Eddington sources. As our accretion measure is based on the jet power it also allows us to calculate the KLF and therefore the total kinetic power injected by jets into the ambient medium. We compare this with the kinetic power output from supernova remnants (SNRs) and XRBs, and determine its cosmological evolution.  相似文献   

2.
The low-frequency radio luminosity is believed to be an indicator of jet power, while the optical/ultraviolet (UV) emission is probably from accretion discs in the nuclei of steep-spectrum radio quasars. We present a correlation between the ratio of radio-to-optical luminosities and the continuum spectral index in blue/UV bands, which might indicate that the continuum shape in blue/UV bands is related to the ratio of jet to accretion power. The results may imply that the spectra and structure of accretion discs are probably affected by the interactions between jets and discs.  相似文献   

3.
We explore the relation between the linear length of radio core and the central black hole mass for a sample of radio-loud active galactic nuclei (AGNs). An empirical relation between the size of the broad line region (BLR) and optical luminosity is used to estimate the size of the BLR. The black hole mass is derived from H β linewidth and the radius of the BLR on the assumption that the clouds in BLRs are orbiting with Keplerian velocities. A significant intrinsic correlation is found between the linear length of the core and the black hole mass, which implies that the jet formation is closely related with the central black hole. We also find a strong correlation between the black hole mass and the core luminosity.  相似文献   

4.
The multi-wavelength quasi-simultaneous data of 55 Fermi blazars are fitted by using the conical jet model, and the physical properties of blazar jets are also investigated. Through the X2-minimization fitting procedure, the best-fit parameters of the conical jet model are obtained. Combined with the other parameters we collected, a statistical analysis is performed. The results of statistical analysis are summarized as follows: (1) The jet power obtained by the spectral energy distribution (SED) fitting is larger than the jet power calculated by using the extended radio luminosity; (2) There is no correlation between the Doppler factor 5 and the magnetic field strength B; (3) There is a correlation between the jet power and the accretion disk luminosity, and the Blandford-Znajek (BZ) mechanism can well explain the energy source of BL Lac jets rather than Flat Spectrum Radio Quasars (FSRQs); (4) The jet power is significantly correlated with the black hole mass.  相似文献   

5.
6.
Based on measured broad line region sizes in the reverberation-mapping AGN sample, two new empirical relations are introduced to estimate the central black hole masses of radio-loud high-redshift (z > 0.5) AGNs. First, using the archival IUE/HST spectroscopy data at UV band for the reverberation-mapping objects, we obtained two new empirical relations between the BLR size and Mg II/C IV emission line luminosity. Secondly, using the newly determined black hole masses of the reverberation-mapping sample as calibration, we found two new relationships for determining the black hole mass with the full width at half maximum and the luminosity of Mg II/C IV line. We then apply the relations to estimate the black hole masses of the AGNs in the Large Bright Quasar Survey and a sample of radio-loud quasars. For the objects with small radio-loudness, the black hole mass estimated using the RBLR-LMgII/C IV relation is consistent with that from the RBLR-L3000 (?)/1350(?) relation. For radio-loud AGNs, however, the mass estimated from the RBLR-LMgII/CIV relation is sys- tematically lower than that from the continuum luminosity L3000(?)/1350(?). Because jets could have significant contributions to the UV/optical continuum luminosity of radio-loud AGNs, we emphasize once again that for radio-loud AGNs, the emission line luminosity may be a better tracer of the ionizing luminosity than the continuum luminosity, so that the relations between the BLR size and UV emission line luminosities should be used to estimate the black hole masses of high redshift radio-loud AGNs.  相似文献   

7.
We explore the relationship between the extended radio and line emission for a radio-loud quasar sample including both core-dominated and lobe-dominated quasars. A strong correlation is present between the extended radio and broad-line emission. The core emission is also correlated with the broad-line emission for core-dominated quasars in the sample. The statistical behaviour of the core emission of lobe-dominated quasars is rather different from that of core-dominated quasars. The extended radio luminosity is a good tracer for jet power, while the core luminosity can only be a jet power tracer for core-dominated quasars.  相似文献   

8.
We estimate the power of relativistic, extragalactic jets by modelling the spectral energy distribution of a large number of blazars. We adopt a simple one-zone, homogeneous, leptonic synchrotron and inverse Compton model, taking into account seed photons originating both locally in the jet and externally. The blazars under study have an often dominant high-energy component which, if interpreted as due to inverse Compton radiation, limits the value of the magnetic field within the emission region. As a consequence, the corresponding Poynting flux cannot be energetically dominant. Also the bulk kinetic power in relativistic leptons is often smaller than the dissipated luminosity. This suggests that the typical jet should comprise an energetically dominant proton component. If there is one proton per relativistic electrons, jets radiate around 2–10 per cent of their power in high-power blazars and 3–30 per cent in less powerful BL Lacs.  相似文献   

9.
光学波段的“变脸”AGN (changing-look Active Galactic Nucleus, CL AGN)是光谱类型发生变化AGN的统称.近年来,越来越多观测证据表明这类现象与中央超大质量黑洞吸积活动有关.而黑洞吸积率的变化可能会引起喷流的增强或者减弱,进而导致射电波段观测性质的变化.在已发表的文献中,收集了74个光学波段证认的“变脸”AGN、90个“变脸”AGN的候选体.基于这个目前最大并且选源方式多样化的非完备样本,探讨了“变脸”AGN在射电波段的观测性质.从澳大利亚平方公里阵先导设备(Australian Square Kilometre Array (SKA) Pathfinder, ASKAP)和美国甚大阵甚大阵(Very Large Array, VLA)的4大射电巡天观测中,发现了51个“变脸”AGN (含21个候选体)在0.9–3 GHz存在射电波段的对应体,样本的射电探测率约为41%,与一般AGN的射电探测率无显著区别.此外,分析了这些源的射电谱指数,发现在1.4 GHz和3 GHz频段“变脸”AGN相对于一般射电源有较平的射电谱.该统计结果或可解释为“...  相似文献   

10.
Two rival hypotheses have been proposed for the origin of the compact radio flux observed in radio-quiet quasars (RQQs). It has been suggested that the radio emission in these objects, typically some two or three orders of magnitude less powerful than in radio-loud quasars (RLQs), either represents emission from a circumnuclear starburst or is produced by radio jets with bulk kinetic powers ∼ 103 times lower than those of RLQs with similar luminosity ratios in other wavebands. We describe the results of high-resolution (∼pc-scale) radio-imaging observations of a sample of 12 RQQs using the Very Long Baseline Array (VLBA). We find strong evidence for jet-producing central engines in eight members of our sample.  相似文献   

11.
We present results for the first three low-power radio galaxies from the B2 bright sample to have been observed with Chandra . Two have kiloparsec-scale radio jets, and in both Chandra resolves jet X-ray emission, and detects soft X-ray core emission and an X-ray-emitting galaxy-scale atmosphere of luminosity a few ×1041 erg s−1. These are the first detections of X-ray jets in low-power radio galaxies more distant than Centaurus A and M87. The cooling time of the galaxy-scale gas implies mass infall rates of the order of 1 M yr−1. The gas pressure near the jets is comparable to the minimum pressure in the jets, implying that the X-ray-emitting gas may play an important role in jet dynamics. The third B2 radio galaxy has no kiloparsec-scale radio jet, and here only soft X-ray emission from the core is detected. The ratio of X-ray to radio flux is similar for the jets and cores, and the results favour a synchrotron origin for the emission. Kiloparsec-scale radio jets are detected in the X-ray in ∼7-ks exposures with Chandra more readily than in the optical via Hubble Space Telescope snapshot surveys.  相似文献   

12.
Chandra ACIS observations of PKS 0521−365 find that the X-ray emission of this BL Lac object consists of emission from an unresolved core, a diffuse halo and a 2-arcsec jet feature coincident with the inner radio/optical jet. A comparison with a new ATCA 8.6-GHz map also finds X-ray emission from the bright hotspot south-east of the nucleus. The jet spectrum, from radio to X-ray, is probably synchrotron emission from an electron population with a broken power-law energy distribution, and resembles the spectra seen from the jets of low-power (FR I) radio galaxies. The hotspot X-ray flux is consistent with the expectations of synchrotron self-Compton emission from a plasma close to equipartition, as seen in studies of high-power (FR II) radio galaxies. While the angular structure of the halo is similar to that found by an analysis of the ROSAT High Resolution Imager image, its brightness is seen to be lower with Chandra , and the halo is best interpreted as thermal emission from an atmosphere of similar luminosity to the haloes around FR I radio galaxies. The X-ray properties of PKS 0521−365 are consistent with it being a foreshortened, beamed, radio galaxy.  相似文献   

13.
The Konigl inhomogeneous jet model can successfully reproduce most observa-tional features of jets in active galactic nuclei (AGN), when suitable physical parameters are adopted. We improve Konigl's calculations on the core emission from the jet with a small viewing angle θ0~ψ (ψ is half opening angle of the conical jet). The proper motion of the jet component provides a constraint on the jet kinematics. Based on the inhomogeneous jet model, we use the proper motion data of the jet component to calculate the minimal kinetic luminosity of the jet required to reproduce the core emission measured by the very-long-baseline intefferometry (VLBI) for a sample of BL Lac objects. Our results show that the minimal kinetic luminosity is slightly higher than the bolometric luminosity for most sources in the sample, which implies that radiatively inefficient accretion flows (RIAFs) may be in those BL Lac objects, or/and the properties of their broad-line regions (BLRs) are signifi-cantly different from flat-spectrum radio-loud quasars.  相似文献   

14.
We report on our results of X-ray spectral analysis for a sample of radio-loud quasars covering a wide range of the radio core-dominance parameter, R, from core-dominated to lobe-dominated objects, using data obtained mostly with the XMM-Newton Observatory. We find that the spectral shape of the underlying power-law continuum is flat even for the lobe-dominated objects (average photon index ~ 1.5), indistinguishable from that of core-dominated quasars. For lobe-dominated objects, contribution of X-rays from the jets is expected to be very small based on previous unification schemes, more than one order of magnitude lower than the observed X-ray luminosities. Assuming that radio-loud quasars follow the same X-ray-UV/optical luminosity relation for the disk-corona emission as found for radio-quiet quasars, we estimate the X-ray flux contributed by the disk-corona component from the optical/UV continuum. We find that neither the luminosity, nor the spectral shape, of the disk-corona X-ray emission can account for the bulk of the observed X-ray properties. Thus in lobe-dominated quasars, either the disk-corona X-ray emission is much enhanced in strength and flatter in spectral shape (photon index~1.5) compared to normal radio-quiet quasars, or their jet X-ray emission is much enhanced compared to their weak radio core-jet emission. If the latter is the case, our result may imply that the jet emission in X-rays is less Doppler beamed than that in the radio. As a demonstrating example, we test this hypothesis by using a specific model in which the X-ray jet has a larger opening angle than the radio jet.  相似文献   

15.
Using complete samples of steep-spectrum quasars, we present evidence for a correlation between radio and optical luminosity which is not caused by selection effects, nor caused by an orientation dependence (such as relativistic beaming), nor a by-product of cosmic evolution. We argue that this rules out models of jet formation in which there are no parameters in common with the production of the optical continuum. This is arguably the most direct evidence to date for a close link between accretion on to a black hole and the fuelling of relativistic jets. The correlation also provides a natural explanation for the presence of aligned optical/radio structures in only the most radio-luminous high-redshift galaxies.  相似文献   

16.
We present an analytical model for jets in Fanaroff & Riley Class I (FR I) radio galaxies, in which an initially laminar, relativistic flow is surrounded by a shear layer. We apply the appropriate conservation laws to constrain the jet parameters, starting the model where the radio emission is observed to brighten abruptly. We assume that the laminar flow fills the jet there and that pressure balance with the surroundings is maintained from that point outwards. Entrainment continuously injects new material into the jet and forms a shear layer, which contains material from both the environment and the laminar core. The shear layer expands rapidly with distance until finally the core disappears, and all of the material is mixed into the shear layer. Beyond this point, the shear layer expands in a cone and decelerates smoothly. We apply our model to the well-observed FR I source 3C 31 and show that there is a self-consistent solution. We derive the jet power, together with the variations of mass flux and entrainment rate with distance from the nucleus. The predicted variation of bulk velocity with distance in the outer parts of the jets is in good agreement with model fits to Very Large Array observations. Our prediction for the shape of the laminar core can be tested with higher-resolution imaging.  相似文献   

17.
We present RIJHK imaging of seven radio galaxies from the 7C Redshift Survey (7CRS) which lack strong emission lines and we use these data to investigate their spectral energy distributions (SEDs) with models that constrain their redshifts. Six of these seven galaxies have extremely red colours ( R − K >5.5) and we find that almost all of them lie in the redshift range 1< z <2. We also present near-infrared spectroscopy of these galaxies which demonstrate that their SEDs are not dominated by emission lines, although tentative lines, consistent with H α at z =1.45 and z =1.61, are found in two objects. Although the red colours of the 7CRS galaxies can formally be explained by stellar populations that are either very old or young and heavily reddened, independent evidence favours the former hypothesis. At z ∼1.5 at least 1/4 of powerful radio jets are triggered in massive (> L *) galaxies, which formed the bulk of their stars several Gyr earlier, that is at epochs corresponding to redshifts z ≳5. If a similar fraction of all z ∼1.5 radio galaxies are old, then extrapolation of the radio luminosity function shows that, depending on the radio source lifetimes, between 10 and 100 per cent of the near-IR selected extremely red object (ERO) population undergo a radio outburst at epochs corresponding to 1< z <2. An ERO found serendipitously in the field of one of the 7CRS radio sources appears to be a radio-quiet analogue of the 7CRS EROs with an emission line likely to be [O  ii ] at z =1.20. The implication is that some of the most massive elliptical galaxies formed the bulk of their stars at z ≳5 and these objects probably undergo at least two periods of active galactic nucleus activity: one at high redshift during which the black hole forms and another one at an epoch corresponding to z ∼1.5.  相似文献   

18.
We use the observed polarization properties of a sample of 26 powerful radio galaxies and radio-loud quasars to constrain the conditions in the Faraday screens local to the sources. We adopt the cosmological redshift, low-frequency radio luminosity and physical size of the large-scale radio structures as our 'fundamental' parameters. We find no correlation of the radio spectral index with any of the fundamental parameters. The observed rotation measure is also independent of these parameters, suggesting that most of the Faraday rotation occurs in the Galactic foreground. The difference between the rotation measures of the two lobes of an individual source, as well as the dispersion of the rotation measure, shows significant correlations with the source redshift, but not with the radio luminosity or source size. This is evidence that the small-scale structure observed in the rotation measure is caused by a Faraday screen local to the sources. The observed asymmetries between the lobes of our sources show no significant trends with each other or other source properties. Finally, we show that the commonly used model for the depolarization of synchrotron radio emission by foreground Faraday screens is inconsistent with our observations. We apply alternative models to our data and show that they require a strong increase of the dispersion of the rotation measure inside the Faraday screens with cosmological redshift. Correcting our observations with these models for redshift effects, we find a strong correlation of the depolarization measure with redshift and a significantly weaker correlation with radio luminosity. We do not find any (anti-)correlation of depolarization measure with source size. All our results are consistent with a decrease in the order of the magnetic field structure of the Faraday screen local to the sources for increasing cosmological redshift.  相似文献   

19.
20.
The recent discovery, by the Chandra satellite, that jets of blazars are strong X-ray emitters at large scales     , lends support to the hypothesis that emitting plasma is still moving at highly relativistic speeds on these scales. In this case in fact the emission via inverse Compton scattering off cosmic background photons is enhanced and the resulting predicted X-ray spectrum accounts well for the otherwise puzzling observations. Here we point out another reason to favour relativistic large-scale jets, based on a minimum power argument: by estimating the Poynting flux and bulk kinetic powers corresponding to, at least, the relativistic particles and magnetic field responsible for the emission, one can derive the value of the bulk Lorentz factor for which the total power is minimized. It is found that both the inner and extended parts of the jet of PKS     satisfy such a condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号