首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 Four different implementations of Stokes' formula are employed for the estimation of geoid heights over Sweden: the Vincent and Marsh (1974) model with the high-degree reference gravity field but no kernel modifications; modified Wong and Gore (1969) and Molodenskii et al. (1962) models, which use a high-degree reference gravity field and modification of Stokes' kernel; and a least-squares (LS) spectral weighting proposed by Sj?berg (1991). Classical topographic correction formulae are improved to consider long-wavelength contributions. The effect of a Bouguer shell is also included in the formulae, which is neglected in classical formulae due to planar approximation. The gravimetric geoid is compared with global positioning system (GPS)-levelling-derived geoid heights at 23 Swedish Permanent GPS Network SWEPOS stations distributed over Sweden. The LS method is in best agreement, with a 10.1-cm mean and ±5.5-cm standard deviation in the differences between gravimetric and GPS geoid heights. The gravimetric geoid was also fitted to the GPS-levelling-derived geoid using a four-parameter transformation model. The results after fitting also show the best consistency for the LS method, with the standard deviation of differences reduced to ±1.1 cm. For comparison, the NKG96 geoid yields a 17-cm mean and ±8-cm standard deviation of agreement with the same SWEPOS stations. After four-parameter fitting to the GPS stations, the standard deviation reduces to ±6.1 cm for the NKG96 geoid. It is concluded that the new corrections in this study improve the accuracy of the geoid. The final geoid heights range from 17.22 to 43.62 m with a mean value of 29.01 m. The standard errors of the computed geoid heights, through a simple error propagation of standard errors of mean anomalies, are also computed. They range from ±7.02 to ±13.05 cm. The global root-mean-square error of the LS model is the other estimation of the accuracy of the final geoid, and is computed to be ±28.6 cm. Received: 15 September 1999 / Accepted: 6 November 2000  相似文献   

2.
Apropos laser tracking to GPS satellites   总被引:3,自引:0,他引:3  
. Laser tracking to GPS satellites (PRN5 and 6) provides an opportunity to compare GPS and laser systems directly and to combine data of both in a single solution. A few examples of this are given in this study. The most important results of the analysis are that (1) daily SLR station coordinate solutions could be generated with a few cm accuracy; (2) coordinates of nine stations were determined in a 2.3-year-long arc solution; (3) the contribution of laser data on the `SLR-GPS' combined orbit, resulting from the simultaneous processing of SLR and GPS data, is significant and (4) laser-only orbits have an accuracy of 10–20 cm, 1-day predictions of SLR orbits differ from IGS orbits by about 20–40 cm, 2-day predictions by 50–60 cm. Received: 1 October 1996 / Accepted: 14 February 1997  相似文献   

3.
The GEOID96 high-resolution geoid height model for the United States   总被引:4,自引:0,他引:4  
The 2 arc-minute × 2 arc-minute geoid model (GEOID96) for the United States supports the conversion between North American Datum 1983 (NAD 83) ellipsoid heights and North American Vertical Datum 1988 (NAVD 88) Helmert heights. GEOID96 includes information from global positioning system (GPS) height measurements at optically leveled benchmarks. A separate geocentric gravimetric geoid, G96SSS, was first calculated, then datum transformations and least-squares collocation were used to convert from G96SSS to GEOID96. Fits of 2951 GPS/level (ITRF94/NAVD 88) benchmarks to G96SSS show a 15.1-cm root mean square (RMS) around a tilted plane (0.06 ppm, 178 azimuth), with a mean value of −31.4 cm (15.6-cm RMS without plane). This mean represents a bias in NAVD 88 from global mean sea level, remaining nearly constant when computed from subsets of benchmarks. Fits of 2951 GPS/level (NAD 83/NAVD 88) benchmarks to GEOID96 show a 5.5-cm RMS (no tilts, zero average), due primarily to GPS error. The correlated error was 2.5 cm, decorrelating at 40 km, and is due to gravity, geoid and GPS errors. Differences between GEOID96 and GEOID93 range from −122 to +374 cm due primarily to the non-geocentricity of NAD 83. Received: 28 July 1997 / Accepted: 2 September 1998  相似文献   

4.
Based upon a data set of 25 points of the Baltic Sea Level Project, second campaign 1993.4, which are close to mareographic stations, described by (1) GPS derived Cartesian coordinates in the World Geodetic Reference System 1984 and (2) orthometric heights in the Finnish Height Datum N60, epoch 1993.4, we have computed the primary geodetic parameter W 0(1993.4) for the epoch 1993.4 according to the following model. The Cartesian coordinates of the GPS stations have been converted into spheroidal coordinates. The gravity potential as the additive decomposition of the gravitational potential and the centrifugal potential has been computed for any GPS station in spheroidal coordinates, namely for a global spheroidal model of the gravitational potential field. For a global set of spheroidal harmonic coefficients a transformation of spherical harmonic coefficients into spheroidal harmonic coefficients has been implemented and applied to the global spherical model OSU 91A up to degree/order 360/360. The gravity potential with respect to a global spheroidal model of degree/order 360/360 has been finally transformed by means of the orthometric heights of the GPS stations with respect to the Finnish Height Datum N60, epoch 1993.4, in terms of the spheroidal “free-air” potential reduction in order to produce the spheroidal W 0(1993.4) value. As a mean of those 25 W 0(1993.4) data as well as a root mean square error estimation we computed W 0(1993.4)=(6 263 685.58 ± 0.36) kgal × m. Finally a comparison of different W 0 data with respect to a spherical harmonic global model and spheroidal harmonic global model of Somigliana-Pizetti type (level ellipsoid as a reference, degree/order 2/0) according to The Geodesist's Handbook 1992 has been made. Received: 7 November 1996 / Accepted: 27 March 1997  相似文献   

5.
Determination of Geopotential of Local Vertical Datum Surface   总被引:1,自引:0,他引:1  
1 IntroductionEachcountryoreachgroupofcountriesselectsmeansealev elatadefinedtidegaugeoratagroupofgaugesforitsverti caldatumsurface .Itisrealized ,however,thatthelocalmeansealevelisusuallydepartedfromthegeoid ,whichshouldbetheidealdatumsurfaceforheight,ow…  相似文献   

6.
Fast and accurate relative positioning for baselines less than 20 km in length is possible using dual-frequency Global Positioning System (GPS) receivers. By measuring orthometric heights of a few GPS stations by differential levelling techniques, the geoid undulation can be modelled, which enables GPS to be used for orthometric height determination in a much faster and more economical way than terrestrial methods. The geoid undulation anomaly can be very useful for studying tectonic structure. GPS, levelling and gravity measurements were carried out along a 200-km-long highly undulating profile, at an average elevation of 4000 m, in the Ladak region of NW Himalaya, India. The geoid undulation and gravity anomaly were measured at 28 common GPS-levelling and 67 GPS-gravity stations. A regional geoid low of nearly −4 m coincident with a steep negative gravity gradient is compatible with very recent findings from other geophysical studies of a low-velocity layer 20–30 km thick to the north of the India–Tibet plate boundary, within the Tibetan plate. Topographic, gravity and geoid data possibly indicate that the actual plate boundary is situated further north of what is geologically known as the Indus Tsangpo Suture Zone, the traditionally supposed location of the plate boundary. Comparison of the measured geoid with that computed from OSU91 and EGM96 gravity models indicates that GPS alone can be used for orthometric height determination over the Higher Himalaya with 1–2 m accuracy. Received: 10 April 1997 / Accepted: 9 October 1998  相似文献   

7.
In October 1987 a four day satellite GPS campaign was performed over the Åland archipelago to test the possibility of connecting the Swedish and Finnish national height systems. This paper summarizes the gained experiences using 5 WM 101 GPS receivers and the PoPS software.The computing results for the connection between the two height systems are considerably dependent on the choice of geoidal undulation model and systematic error parameter model. Using the NKG Scandinavian geoid 1989, which is probably the most accurate geoid available for the region, and a bias and tilt parameter model the difference between the Swedish RH70 system and the Finnish N60 system is estimated to 11.4 ± 4.0 cm. An independent check is provided by two connecting border bench marks in northern Scandinavia yielding the difference 19.2 ± 4.2 cm. In view of that merely single frequency GPS receivers were used together with the PoPS software, we consider this result most satisfactory.  相似文献   

8.
Accurate absolute GPS positioning through satellite clock error estimation   总被引:11,自引:0,他引:11  
 An algorithm for very accurate absolute positioning through Global Positioning System (GPS) satellite clock estimation has been developed. Using International GPS Service (IGS) precise orbits and measurements, GPS clock errors were estimated at 30-s intervals. Compared to values determined by the Jet Propulsion Laboratory, the agreement was at the level of about 0.1 ns (3 cm). The clock error estimates were then applied to an absolute positioning algorithm in both static and kinematic modes. For the static case, an IGS station was selected and the coordinates were estimated every 30 s. The estimated absolute position coordinates and the known values had a mean difference of up to 18 cm with standard deviation less than 2 cm. For the kinematic case, data obtained every second from a GPS buoy were tested and the result from the absolute positioning was compared to a differential GPS (DGPS) solution. The mean differences between the coordinates estimated by the two methods are less than 40 cm and the standard deviations are less than 25 cm. It was verified that this poorer standard deviation on 1-s position results is due to the clock error interpolation from 30-s estimates with Selective Availability (SA). After SA was turned off, higher-rate clock error estimates (such as 1 s) could be obtained by a simple interpolation with negligible corruption. Therefore, the proposed absolute positioning technique can be used to within a few centimeters' precision at any rate by estimating 30-s satellite clock errors and interpolating them. Received: 16 May 2000 / Accepted: 23 October 2000  相似文献   

9.
In order to study the Baltic Sea Level change and to unify national height systems a two week GPS campaign was performed in the region in Autumn 1990. Parties from Denmark, Finland, Germany, Poland and Sweden carried out GPS measurements at 26 tide gauges along the Baltic sea and 8 VLBI and SLR fiducial stations with baseline lengths ranging from 230 km to 1600 km. The observations were processed in the network mode with the Bernese version 3.3 software using orbit improvement techniques. To get rid of the scale error introduced by the ionospheric refraction from single-frequency data, the local models of the ionosphere were estimated using L4 observations. The tropospheric zenith corrections were also considered. The preliminary results show average root mean square (RMS) errors of about ±3 cm in the horizontal position and ±7 cm in the vertical position relative to the Potsdam SLR station in ITRF89 system. After transformation of the GPS results to geoid heights using the levelled heights, an absolute comparison with gravimetric geoid heights using the least squares modification of Stokes' formula (LSMS), the modified Molodensky and the NKG Scandinavian geoid 1989 (NGK-89) models gives a standard deviation of the difference of ±7cm to ±9cm for the NKG-89 model and of ±9cm to ±30cm for the LSMS and the modified Molodensky model. The Swedish height system is found to be about 8-37cm higher than those of the other Baltic countries for NKG-89 model.  相似文献   

10.
 Ten days of GPS data from 1998 were processed to determine how the accuracy of a derived three-dimensional relative position vector between GPS antennas depends on the chord distance (denoted L) between these antennas and on the duration of the GPS observing session (denoted T). It was found that the dependence of accuracy on L is negligibly small when (a) using the `final' GPS satellite orbits disseminated by the International GPS Service, (b) fixing integer ambiguities, (c) estimating appropriate neutral-atmosphere-delay parameters, (d) 26 km ≤ L ≤ 300 km, and (e) 4 h ≤T ≤ 24 h. Under these same conditions, the standard error for the relative position in the north–south dimension (denoted S n and expressed in mm) is adequately approximated by the equation S n =k n /T  0.5 with k n =9.5 ± 2.1 mm · h0.5 and T expressed in hours. Similarly, the standard errors for the relative position in the east–west and in the up-down dimensions are adequately approximated by the equations S e =k e /T  0.5 and S u =k u /T  0.5, respectively, with k e =9.9 ± 3.1 mm · h0.5 and k u =36.5 ± 9.1 mm · h0.5. Received: 5 February 2001 / Accepted: 14 May 2001  相似文献   

11.
 Considering a GPS satellite and two terrestrial stations, two types of equations are derived relating the heights of the two stations to the measured data (frequency ratio or clock rate differences) and the coordinates and velocity components of all three participating objects. The potential possibilities of using such relations for the determination of heights (in terms of geopotential numbers or orthometric heights) are discussed. Received: 6 December 2000 / Accepted: 9 July 2001  相似文献   

12.
 A methodology for precise determination of the fundamental geodetic parameter w 0, the potential value of the Gauss–Listing geoid, as well as its time derivative 0, is presented. The method is based on: (1) ellipsoidal harmonic expansion of the external gravitational field of the Earth to degree/order 360/360 (130 321 coefficients; http://www.uni-stuttgard.de/gi/research/ index.html projects) with respect to the International Reference Ellipsoid WGD2000, at the GPS positioned stations; and (2) ellipsoidal free-air gravity reduction of degree/order 360/360, based on orthometric heights of the GPS-positioned stations. The method has been numerically tested for the data of three GPS campaigns of the Baltic Sea Level project (epochs 1990.8,1993.4 and 1997.4). New w 0 and 0 values (w 0=62 636 855.75 ± 0.21 m2/s2, 0=−0.0099±0.00079 m2/s2 per year, w 0/&γmacr;=6 379 781.502 m,0/&γmacr;=1.0 mm/year, and &γmacr;= −9.81802523 m2/s2) for the test region (Baltic Sea) were obtained. As by-products of the main study, the following were also determined: (1) the high-resolution sea surface topography map for the Baltic Sea; (2) the most accurate regional geoid amongst four different regional Gauss–Listing geoids currently proposed for the Baltic Sea; and (3) the difference between the national height datums of countries around the Baltic Sea. Received: 14 August 2000 / Accepted: 19 June 2001  相似文献   

13.
l lntroductionIn the winter Of l989 Wuhan Technical Universi-ty of Surveying and Mapping COntracted withTrimble Navigation Ltd. to purchase fOur TrimbIe4000SST receivers. They were required tO suit theaeriaI phWetric work without intreducing avelocity limitation. In February, l993 twO of thereceivers were uPgraded to provide two eventrnarker plugfords and one pulse Per second(lPPS) output axkets. The uPgradd receivers canincormrate external event markers, e. g. the shutter.oPening …  相似文献   

14.
 Horizontal displacements, and gravity and tilt changes induced by filling the Three Gorges Reservoir are modeled using elastic loading Green functions. When the water surface reaches its highest level, the effects become maximum on the reservoir banks. The longitudinal and latitudinal components of the horizontal displacements reach −8.2 and 7.7 mm respectively, gravity is increased by up to 3.4 mGal, and the prime vertical and meridian components of the tilt changes are −7.8 and −17.5 arcseconds respectively. Accordingly, the filling of the reservoir will influence values observed from global positioning system (GPS), gravimetry and tilt measurements in the area. The results given can be used to provide important corrections for extracting earthquake-related signals from observed data. Received: 19 January 2001 / Accepted: 3 September 2001  相似文献   

15.
 Two long time series were analysed: the C01 series of the International Earth Rotation Service and the pole series obtained by re-analysis of the classical astronomical observations using the HIPPARCOS reference frame. The linear drift of the pole was determined to be 3.31 ± 0.05 milliarcseconds/year towards 76.1 ± 0.80° west longitude. For the least-squares fit the a priori correlations between simultaneous pole coordinates x p , y p were taken into account, and the weighting function was calculated by estimating empirical variance components. The decadal variations of the pole path were investigated by Fourier and wavelet analysis. Using sliding windows, the periods and amplitudes of the Chandler wobble and annual wobble were determined. Typical periods in the variable Chandler wobble and annual wobble parameters were obtained from wavelet analyses. Received: 21 January 2000 / Accepted: 28 August 2000  相似文献   

16.
World Geodetic Datum 2000   总被引:7,自引:1,他引:6  
 Based on the current best estimates of fundamental geodetic parameters {W 0,GM,J 2,Ω} the form parameters of a Somigliana-Pizzetti level ellipsoid, namely the semi-major axis a and semi-minor axis b (or equivalently the linear eccentricity ) are computed and proposed as a new World Geodetic Datum 2000. There are six parameters namely the four fundamental geodetic parameters {W 0,GM,J 2,Ω} and the two form parameters {a,b} or {a,ɛ}, which determine the ellipsoidal reference gravity field of Somigliana-Pizzetti type constraint to two nonlinear condition equations. Their iterative solution leads to best estimates a=(6 378 136.572±0.053)m, b=(6 356 751.920 ± 0.052)m, ɛ=(521 853.580±0.013)m for the tide-free geoide of reference and a=(6 378 136.602±0.053)m, b=(6 356 751.860±0.052)m, ɛ=(521 854.674 ± 0.015)m for the zero-frequency tide geoid of reference. The best estimates of the form parameters of a Somigliana-Pizzetti level ellipsoid, {a,b}, differ significantly by −0.39 m, −0.454 m, respectively, from the data of the Geodetic Reference System 1980. Received: 1 February 1999 / Accepted: 31 August 1999  相似文献   

17.
上海天文台的VLBI、SLR、GPS站的空间归心测量   总被引:1,自引:0,他引:1  
上海天文台的余山VLBI、SLR和GPS站是国际上用以建立和维持地球参考系进行全球动力学研究的基准台站之一。联合应用这些空间测量,需要知道这三个站心间的三维相对位置。本文采用GPS技术及常规的方向、距离和精密水准测量对三个站进行了空间归心测量。介绍了布网、观测和计算方法,得到的归心结果在坐标分量上能达到2cm的外附精度。  相似文献   

18.
为充分发挥GPS基准站的作用,使之灵活适应GPS差分和大地测量、地球动力学等多种需要,本文采用正交函数基底实时合成了所需指定采样率下的等效观测值,算法稳定可靠,可扩大GPS基准站的应用范围。  相似文献   

19.
 The New Hebrides experiment consisted of setting up a pair of DORIS beacons in remote tropical islands in the southwestern Pacific, between 1993 and 1997. Because of orbitography requirements on TOPEX/Poséidon, the beacons were only transmitting to SPOT satellites. Root-mean-square (RMS) scatters at the centimeter level on the latitude and vertical components were achieved, but 2-cm RMS scatters affected the longitude component. Nevertheless, results of relative velocity (123 mm/year N250°) are very consistent with those obtained using the global positioning system (GPS) (126 mm/yr N246°). The co-seismic step (12 mm N60°) related to the Walpole event (M W = 7.7) is consistent with that derived from GPS (10 mm N30°) or from the centroid moment tensor (CMT) of the quake (12 mm N000°). Received: 19 November 1999 / Accepted: 17 May 2000  相似文献   

20.
P. Moore 《Journal of Geodesy》2001,75(5-6):241-254
 Dual satellite crossovers (DXO) between the two European Remote Sensing satellites ERS-1 and ERS-2 and TOPEX/Poseidon are used to (1) refine the Earth's gravity field and (2) extend the study of the ERS-2 altimetric range stability to cover the first four years of its operation. The enhanced gravity field model, AGM-98, is validated by several methodologies and will be shown to provide, in particular, low geographically correlated orbital error for ERS-2. For the ERS-2 altimetric range study, TOPEX/Poseidon is first calibrated through comparison against in situ tide gauge data. A time series of the ERS-2 altimeter bias has been recovered along with other geophysical correction terms using tables for bias jumps in the range measurements at the single point target response (SPTR) events. On utilising the original version of the SPTR tables the overall bias drift is seen to be 2.6±1.0 mm/yr with an RMS of fit of 12.2 mm but with discontinuities at the centimetre level at the SPTR events. On utilising the recently released revised tables, SPTR2000, the drift is better defined at 2.4±0.6 mm/yr with the RMS of fit reduced to 3.7 mm. Investigations identify the sea-state bias as a source of error with corrections affecting the overall drift by close to 1.2 mm/yr. Received: 25 May 2000 / Accepted: 24 January 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号