首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Time-changes in the terminus positions of Patagonian grounded calving glaciers are studied. The framework for the study is a model of terminus retreat based on observations of Columbia Glacier, Alaska. The interpretation favored in this work is that rapid retreat is caused by the terminus thinning to near flotation and weakening of the ice by bottom crevasses. Both thinning and bottom crevasse formation are caused by the increase in near-terminus stretching during rapid retreat. The model is consistent with the behavior of calving Patagonian glaciers regardless of the salinity of the water body calved into. Continuity calculations on Glaciar San Rafael, Chile indicate internal voids, possibly in the form of bottom crevasses, as on Columbia Glacier.  相似文献   

2.
Teleconnections between Andean and New Zealand glaciers   总被引:1,自引:1,他引:0  
Retreat and advance of glaciers in the Southern Alps of New Zealand have occurred over two distinct 20-yr climate periods (1954–1974) and (1974–1994). Changes in tropical and southern Andean glaciers are compared over these same periods. Behaviour of glaciers in the tropical Andes are out of phase with the Southern Alps glaciers, but some glaciers in Patagonia appear to be in phase. Southern Hemisphere atmospheric circulation using 700 hPa geopotential height anomalies and sea surface temperature patterns are examined for these periods. Glacier response on inter-decadal timescales is linked with distinctive shifts in atmospheric circulation patterns around the Southern Hemisphere. Retreat (advance) of glaciers in the Southern Alps and southern Andean glacier and advance (retreat) of glaciers in the tropical Andes are all associated with weaker (stronger) westerlies, blocking events in the South-east Pacific, negative (positive) geopotential height anomalies over Southern Africa and higher latitudes of the Southern Hemisphere. These glacier changes are also linked with the negative (positive) phase of the Inter-decadal Pacific Oscillation, a higher frequency of La Niña (El Niño) events, and warm (cool) sea surface temperatures in the New Zealand region and cool (warm) sea surface temperatures in the equatorial eastern region of the Pacific Ocean off the coast of Peru.  相似文献   

3.
The energy balance and ablation of Glaciar Lengua were investigated during the austral summer of 1999/2000. Glaciar Lengua is located in Patagonia, in the southernmost Andes of Chile (53°S), within an extremely maritime climate. The aim of this study was to gain insight into current energy fluxes at this location and to evaluate how the energy fluxes depend on meteorological variables. From February to April 2000 an automated weather station was operated on Glaciar Lengua. Ablation was measured repeatedly at stakes during the same period. The point energy balance was calculated using the bulk approach formulation. The effective roughness length was adjusted in order to calibrate the model to the measured ablation. It was revealed that sensible heat transfer is the major contribution to the energy balance adding 54% of the energy available for melt. Net radiation contributes only 35% to the overall energy balance. Minor contributors are the latent heat flux (7%) and the heat flux by precipitation (4%). The net radiation shows little variance from day to day. Cross-correlations of the daily mean values of the energy fluxes derived from the energy balance model and meteorological variables reveal that air temperature and wind speed are the key factors controlling the summer energy balance in the ablation area. Melt derived from a multiple regression model based on these two variables correlates with computed melt with a correlation coefficient of 0.92. From the measured ablation, a summer-time degree-day factor of 7.6 mm·°C− 1 was derived for the ablation area.  相似文献   

4.
Airborne laser altimetry survey of Glaciar Tyndall, Patagonia   总被引:1,自引:1,他引:0  
The first airborne laser altimetry measurements of a glacier in South America are presented. Data were collected in November of 2001 over Glaciar Tyndall, Torres del Paine National Park, Chilean Patagonia, onboard a Twin Otter airplane of the Chilean Air Force. A laser scanner with a rotating polygon-mirror system together with an Inertial Navigation System (INS) were fixed to the floor of the aircraft, and used in combination with two dual-frequency GPS receivers. Together, the laser–INS–GPS system had a nominal accuracy of 30 cm after data processing. On November 23rd, a total of 235 km were flown over the ablation area of Glaciar Tyndall, with 5 longitudinal tracks with a mean swath width of 300 m, which results in a point spacing of approximately 2 m both along and across track. A digital elevation model (DEM) generated using the laser altimetry data was compared with a DEM produced from a 1975 map (1:50,000 scale — Instituto Geográfico Militar (IGM), Chile). A mean thinning of − 3.1 ± 1.0 m a− 1 was calculated for the ablation area of Glaciar Tyndall, with a maximum value of − 7.7 ± 1.0 m a− 1 at the calving front at 50 m a.s.l. and minimum values of between − 1.0 and − 2.0 ± 1.0 m a− 1 at altitudes close to the equilibrium line altitude (900 m a.s.l.). The thinning rates derived from the airborne survey were similar to the results obtained by means of ground survey carried out at  600 m of altitude on Glaciar Tyndall between 1975 and 2002, yielding a mean thinning of − 3.2 m a− 1 [Raymond, C., Neumann, T.A., Rignot, E., Echelmeyer, K.A., Rivera, A., Casassa, G., 2005. Retreat of Tyndall Glacier, Patagonia, over the last half century. Journal of Glaciology 173 (51), 239–247.]. A good agreement was also found between ice elevation changes measured with laser data and previous results obtained with Shuttle Radar Topography Mission (SRTM) data. We conclude that airborne laser altimetry is an effective means for accurately detecting glacier elevation changes in Patagonia, where an ice thinning acceleration trend has been observed during recent years, presumably in response to warming and possibly also drier conditions.  相似文献   

5.
Climatic changes of the 20th century have altered the water cycle in the Andean basins of central Argentina. The most visible change is seen in the mountain glaciers, with loss of part of their mass due to decreasing thickness and a substantial recession in the last 100 years. This paper briefly describes the results of glacier mass balance research since 1979 in the Piloto Glacier at the Cajón del Rubio, in the headwaters of Las Cuevas River, presenting new results for the period 1997–2003. Very large interannual variability of net annual specific balance is evident, due largely to variations in winter snow accumulation, with a maximum net annual value of + 151 cm w.e. and a minimum value of - 230 cm w.e. Wet El Niño years are normally associated with positive net annual balances, while dry La Niña years generally result in negative balances. Within the 24-year period, 67% of the years show negative net annual specific balances, with a cumulative mass balance loss of - 10.50 m water equivalent (w.e.). Except for exceptions normally related to El Niño events, a general decreasing trend of winter snow accumulation is evident in the record, particularly after 1992, which has a strong effect in the overall negative mass balance values. The glacier contribution to Las Cuevas River runoff is analysed based on the Punta de Vacas River gauge station for a hypothetical year without snow precipitation (YWSP), when the snowmelt component is zero. Extremely dry years similar to a YWSP have occurred in 1968–1969, 1969–1970 and 1996–1997. The Punta de Vacas gauge station is located 62 km downstream from Piloto Glacier, and the basin contains 3.0% of uncovered glacier ice and 3.7% of debris-covered ice. The total glacier contribution to Las Cuevas River discharge is calculated as 82 ± 8% during extremely dry years. If glacier wastage continues at the present trend as observed during the last 2 decades, it will severely affect the water resources in the arid central Andes of Argentina.  相似文献   

6.
The energy components of sixteen Soil-Vegetation Atmospheric Transfer (SVAT) schemes were analyzed and intercompared using 10 years of surface meteorological and radiative forcing data from the Red-Arkansas River basin in the Southern Great Plains of the United States. Comparisons of simulated surface energy fluxes among models showed that the net radiation and surface temperature generally had the best agreement among the schemes. On an average (annual and monthly) basis, the estimated latent heat fluxes agreed (to within approximate estimation errors) with the latent heat fluxes derived from a radiosonde-based atmospheric budget method for slightly more than half of the schemes. The sensible heat fluxes had larger differences among the schemes than did the latent heat fluxes, and the model-simulated ground heat fluxes had large variations among the schemes. The spatial patterns of the model-computed net radiation and surface temperature were generally similar among the schemes, and appear reasonable and consistent with observations of related variables, such as surface air temperature. The spatial mean patterns of latent and sensible heat fluxes were less similar than for net radiation, and the spatial patterns of the ground heat flux vary greatly among the 16 schemes. Generally, there is less similarity among the models in the temporal (interannual) variability of surface fluxes and temperature than there is in the mean fields, even for schemes with similar mean fields.  相似文献   

7.
Fluctuations of glaciers during the 20th century in Garibaldi Provincial Park, in the southern Coast Mountains of British Columbia, were reconstructed from historical documents, aerial photographs, and fieldwork. Over 505 km2, or 26%, of the park, was covered by glacier ice at the beginning of the 18th century. Ice cover decreased to 297 km2 by 1987–1988 and to 245 km2 (49% of the early 18th century value) by 2005. Glacier recession was greatest between the 1920s and 1950s, with typical frontal retreat rates of 30 m/a. Many glaciers advanced between the 1960s and 1970s, but all glaciers retreated over the last 20 years. Times of glacier recession coincide with warm and relatively dry periods, whereas advances occurred during relatively cold periods. Rapid recession between 1925 and 1946, and since 1977, coincided with the positive phase of the Pacific Decadal Oscillation (PDO), whereas glaciers advanced during its negative phase (1890–1924 and 1947–1976). The record of 20th century glacier fluctuations in Garibaldi Park is similar to that in southern Europe, South America, and New Zealand, suggesting a common, global climatic cause. We conclude that global temperature change in the 20th century explains much of the behaviour of glaciers in Garibaldi Park and elsewhere.  相似文献   

8.
Snow algae in a 45.97-m-long ice core from the Tyndall Glacier (50°59′05″S, 73°31′12″W, 1756 m a.s.l.) in the Southern Patagonian Icefield were examined for potential use in ice core dating and estimation of the net accumulation rate. The core was subjected to visual stratigraphic observation and bulk density measurements in the field, and later to analyses of snow algal biomass, water isotopes (18O, D), and major dissolved ions. The ice core contained many algal cells that belonged to two species of snow algae growing in the snow near the surface: Chloromonas sp. and an unknown green algal species. Algal biomass and major dissolved ions (Na+, K+, Mg2+, Ca2+, Cl, SO42−) exhibited rapid decreases in the upper 3 m, probably owing to melt water elution and/or decomposition of algal cells. However, seasonal cycles were still found for the snow algal biomass, 18O, D-excess, and major ions, although the amplitudes of the cycles decreased with depth. Supposing that the layers with almost no snow algae were the winter layers without the melt water essential to algal growth, we estimated that the net accumulation rate at this location was 12.9 m a− 1 from winter 1998 to winter 1999, and 5.1 m from the beginning of winter to December 1999. These estimates are similar to the values estimated from the peaks of 18O (17.8 m a− 1 from summer 1998 to summer 1999 and 11.0 m from summer to December 1999) and those of D-excess (14.7 m a− 1 from fall 1998 to fall 1999 and 8.6 m a− 1 from fall to December 1999). These values are much higher than those obtained by past ice core studies in Patagonia, but are of the same order of magnitude as those predicted from various observations at ablation areas of Patagonian glaciers.  相似文献   

9.
Recent observations showing substantial diurnal changes in velocities of glaciers flowing into the ocean, measured at locations far inland of glacier grounding lines, add fuel to the ongoing debate concerning the ability of glaciers to transmit longitudinal-stress perturbations over large distances. Resolution of this debate has major implications for the prediction of glacier mass balance, because it determines how rapidly a glacier can respond dynamically to changes such as weakening or removal of an ice shelf. Current IPCC assessment of sea-level rise takes little account of such changes, on the assumption that dynamic responses would be too slow to have any appreciable effect on ice discharge fluxes. However, this assumption must be questioned in view of observations showing massive increases in glacier velocities following removal of parts of the Larsen Ice Shelf, Antarctica, and of others showing diurnal velocity changes apparently linked to the tides.Here, I use a simple force-perturbation model to calculate the response of glacier strain rates to tidal rise and fall, assuming associated longitudinal-force perturbations are transmitted swiftly far inland of the glacier grounding line. Results show reasonable agreement with observations from an Alaskan glacier, where the velocity changes extended only a short distance up-glacier. However, for larger Antarctic glaciers, big velocity changes extending far upstream cannot be explained by this mechanism, unless ice-shelf “back forces” change substantially with the tides.Additional insight will require continuous measurement of velocity and strain-rate profiles along flow lines of glaciers and ice shelves. An example is suggested, involving continuous GPS measurements at a series of locations along the centre line of Glaciar San Rafael, Chile, extending from near the calving front to perhaps 20 km inland. Tidal range here is about ± 0.8 m, which should be sufficient to cause a variation in ice-front velocity of ± 2 cm h− 1 about its average value of 75 cm h− 1, assuming local seawater depth of 150 m and glacier thickness of 200–400 m.  相似文献   

10.
The periodic damming of Lake Argentino by the Perito Moreno Glacier (50°30′S, 73° 00′W) in Argentina's southern Patagonian Andes has been recorded seventeen times since the beginning of this century. Such events are significant factors controlling discharge anomalies (seasonal component removed) of the Santa Cruz River, the sole outlet of Lake Argentino. Power spectrum analysis of the deseasonalized discharge revealed significant period peaks in the 33- to 36-month range and in the 42- to 58-month range. The first frequency is probably determined by the anomalous position of the subtropical anticyclones in the Pacific (with 2–5 years recurrence intervals), whereas the remaining frequencies are coincidental with the multivariate ENSO index (MEI) frequency spectrum. Significant squared coherency (>0.78) between the Santa Cruz River discharge anomalies and the MEI suggests that there is a significant teleconnection between ENSO occurrences in the Pacific and the Perito Moreno Glacier dynamics. El Niño events, for example, appear to have fostered the advancement of the glacier's snout and influenced the recorded damming–rupture sequence.  相似文献   

11.
Starting with analysis on the evolving course of oasis and the characteristics and evolution of transitional zone between oasis and desert, in consideration of ecological elements including plant stomata resistance, area covered by vegetation, and physical elements including albedo of vegetation and bare soil, atmosphere temperature, and humidity, under the condition of the balance among net radiation flux, latent heat flux, and sensible heat flux, the following are calculated: temperatures of vegetation and bare soil in different conditions, as well as the evapotranspiration rate of ecosystem. Analysis on evapotranspiration rate indicates that it depends on both the climate of environment and the physiological and ecological conditions of plants. On certain conditions, the evapotranspiration rate of transitional zone between oasis and desert (i.e. area covered by vegetation less than 20%), in some parameter domains, appears in bifurcation or multiequilibrium state. Meanwhile, in such area, ecosystem is extremely unstable. Any minor change to the balance will cause either increase or reduction of area covered by vegetation in ecosystem, on the basis of discussion on the emergency of these phenomena. This paper is attempting to propose an effective way of destruction and rebuilt ecosystem in transitional zone. The way is to control the evaporation of plant through selecting anti-drought country plant with big stomata resistance, and modify the roughness of the underlying surface in ecosystem by establishing rational interspace structure of plant community, so as to put the degenerative ecosystem into the natural succession track. This primary theory is being verified through observation and analysis on historical data.  相似文献   

12.
Past and present glacier changes have been studied at Cordón Martial, Cordillera Fueguina Oriental, Tierra del Fuego, providing novel data for the Holocene deglaciation history of southern South America and extrapolating as well its future behavior based on predicted climatic changes. Regional geomorphologic and stratigraphic correlations indicate that the last glacier advance deposited the ice-proximal (“internal”) moraines of Cordón Martial, around 330 14C yr BP, during the Late Little Ice Age (LLIA). Since then glaciers have receded slowly, until 60 years ago, when major glacier retreat started. There is a good correspondence for the past 100 years between the surface area variation of four small cirque glaciers at Cordón Martial and the annual temperature and precipitation data of Ushuaia. Between 1984 and 1998, Martial Este Glacier lost 0.64 ± 0.02 × 106 m3 of ice mass (0.59 ± 0.02 × 106 m3 w.e.), corresponding to an average ice thinning of 7.0 ± 0.2 m (6.4 ± 0.2 m w.e), according to repeated topographic mapping. More detailed climatic data have been obtained since 1998 at the Martial Este Glacier, including air temperature, humidity and solar radiation. These records, together with the monthly mass balance measured since March 2000, document the annual response of the Martial Este Glacier to the climate variation. Mass balances during hydrological years were positive in 2000, negative in 2001 and near equilibrium in 2002. Finally, using these data and the regional temperature trend projections, modeled for different future scenarios by the Atmosphere-Ocean Model (GISS-NASA/GSFC), potential climatic-change effects on this mountain glacier were extrapolated. The analysis shows that only the Martial Este Glacier may survive this century.  相似文献   

13.
A review of remote sensing methods for glacier mass balance determination   总被引:3,自引:2,他引:1  
Airborne and satellite remote sensing is the only practical approach for deriving a wide area, regional assessment of glacier mass balance. A number of remote sensing approaches are possible for inferring the mass balance from some sort of proxy estimate. Here, we review the key methods relevant, in particular to Andean glaciers, discussing their strengths and weaknesses, and data sets that could be more fully exploited. We also consider future satellite missions that will provide advances in our observational capabilities. The methods discussed include observation of elevation changes, estimation of ice flux, repeat measurement of changes in spatial extent, snowline elevation and accumulation–ablation area ratio estimation. The methods are illustrated utilising a comprehensive review of results obtained from a number of studies of South American glaciers, focusing specifically on the Patagonian Icefields. In particular, we present some new results from Glaciar Chico, Southern Patagonian Icefield, Chile, where a variety of different satellite and in-situ data have been combined to estimate mass balance using a geodetic or elevation change approach over about a 25 yr period.  相似文献   

14.
The Gran Campo Nevado (GCN) forms an isolated ice cap on the Península Muñoz Gamero (PMG) located 200 km to the south of the Southern Patagonia Icefield (SPI). We present a glacier inventory of the GCN made up by 27 drainage basins (in total 199.5 km2) and other small cirque and valley glaciers of the southern part of PMG (in total 53 km2). The glacier inventory is based on a digital elevation model (DEM) and ortho-photos. Contour lines from maps, relief information derived from Landsat TM satellite imagery from 1986 and 2002 and stereoscopic data from aerial photos were combined in a knowledge-based scheme to obtain a DEM of the area. A digital ortho-photo map based on aerial photos from 1998 and several ortho-photos based on aerial photos from 1942 and 1984 could be produced from the initial DEM. A geographical information system (GIS) served to outline the extent of the present glaciation. All major glaciers of the GCN show a significant glacier retreat during the last 60 yr. Some of the outlet glaciers lost more than 20% of their total area during this period. Overall glacier retreat amounts to 2.8% of glacier length per decade and the glacier area loss is 2.4% per decade in the period from 1942 to 2002. We hypothesise that GCN glaciers may have reacted faster and more synchronously with the observed warming trend during recent decades when compared with the SPI.  相似文献   

15.
High thinning rates (up to − 4.0 ± 0.97 m a− 1) have been measured at Campo de Hielo Patagónico Norte (CHN) or Northern Patagonia Icefield, Chile between 1975 and 2001. Results have been obtained by comparing a Digital Elevation Model (DEM) derived from regular cartography compiled by Instituto Geográfico Militar of Chile (IGM) based upon 1974/1975 aerial photographs and a DEM generated from Advanced Space-borne Thermal Emission and Reflection Radiometer (ASTER) satellite images acquired in September 2001. A complete cloud-free Landsat ETM+ satellite image mosaic acquired in March 2001 was used to update the available glacier inventory of the CHN, including all glaciers larger than 0.5 km2 (48 new glaciers). A new delineation of ice divides was also performed over the accumulation areas of glaciers sharing the high plateau where the existing regular cartography exhibits poor coverage of topographic information. This updated glacier inventory produced a total ice area for 2001 of 3953 km2, which represents a decrease of 3.4 ± 1.5% (140 ± 61 km2 of ice) with respect to the total ice area of the CHN in 1979 calculated from a Landsat MSS satellite image. Almost 62% of the total area change between 1979 and 2001 took place in glaciers located at the western margin of the CHN, where the maximum area loss was experienced by Glaciar San Quintín with 33 km2. At the southern margin, Glaciar Steffen underwent the largest ice-area loss (12 km2 or 2.6% of the 1979 area), whilst at the eastern margin the greatest area loss took place in Glaciares Nef (7.9 km2, 5.7% of the 1979 area) and Colonia (9.1 km2, 2.7% of the 1979 area). At the northern margin of the CHN the lower debris-covered ablation area of Glaciar Grosse collapsed into a new freshwater lake formed during the late 1990s. The areal changes measured at the CHN are much larger than previously estimated due to the inclusion of changes experienced in the accumulation areas. The CHN as a whole is contributing melt water to global sea level rise at rates  25% higher than previous estimates.  相似文献   

16.
The problem of radiation transfer in a cylinder with diffuse reflectivity and containing an energy source is connected with the source-free radiation transfer problem with isotropic boundary condition. Equation for the radiation heat flux is obtained for a polynomial source. In the special case of isotropic scattering, the radiation heat flux is given in terms of the albedo of the second problem. An expression is also given for the net radiation heat flux.  相似文献   

17.
New Zealand glacier response to climate change of the past 2 decades   总被引:1,自引:0,他引:1  
Oblique aerial photography of 111 glaciers during the past 2 decades has recorded a reversal of the past century glacier-recession trend. Cirque glaciers show little response to the recent mass balance increase; mountain glaciers show visible advances. Some valley glaciers have advanced, some have thickened in the upper trunk, and the larger ones and those with proglacial lakes continue to recede. The shift to advance is driven by an average lowering of snowlines of 67 m, equivalent to a cooling of 0.47°C if other factors are held constant.  相似文献   

18.
The land-surface flux model (PROGSURF) designed jointly at the Universities of Vienna and Budapest is reviewed; it belongs to the broad spectrum of PILPS1 models. PROGSURF comprises one vegetation layer and three soil layers. Temperature prediction is made by the heat conduction equation in conjunction with the force-restore method. Turbulent heat fluxes are parameterized by gradient laws using the resistance concept. The formula for the canopy surface resistance involves both a parameter describing atmospheric demand and one describing moisture availability. Soil moisture prediction is made with Richards' equation. PROGSURF is tested in off-line mode for the Cabauw data set. The observed annual mean values of the state and flux quantities at the earth's surface are well reproduced. For example, the model yields latent and sensible heat fluxes of −35.3 and −2.4 W/m2, respectively; evapotranspiration and runoff is −449 and 326 mm/yr; and root zone soil moisture content is 0.344 m3/m3. Further, the seasonal changes of water and energy balance components are well simulated. The sensitivity of PROGSURF to the canopy resistance formulation is analysed. We find that the atmospheric demand is largely represented by the saturation value of the evapotranspiration/soil moisture curve with maximum summer impact upon the annual value and further that the moisture availability is represented by the slope of the evapotranspiration curve. Both saturation value and slope control the amplitude of the seasonal fluctuation of the water balance components; at Cabauw site the saturation value is the governing parameter. These results fit satisfactorily into the other PILPS models. In particular, we are able to reproduce with PROGSURF the total variability of most other PILPS models by simply changing the atmospheric demand and soil moisture availability parameters. PROGSURF presently serves to simulate observed surface fluxes for an atmospheric diagnostic model.  相似文献   

19.
Cover     
End of flight fragmentation of the 02:44:30 UT, 18 November 2012, fireball over the San Francisco Bay Area in California (shown in a horizontally mirrored image to depict the time series from left to right). These photographs were taken from a distance of about 65 km by Robert P. Moreno Jr. from Santa Rosa, using a hand‐held Canon EOS 7D digital still camera (200‐mm focal length), at a rate of four frames per second. This compilation of images shows several discrete fragment trains trailing the leading fragment, each of which was generated coincident with flares in the meteor light curve recorded by other cameras. Six of the surviving meteorites were recovered in the town of Novato following publication of the fall area calculated by Peter Jenniskens (SETI Institute and NASA Ames Research Center) based on video observations of the fireball by the Cameras for Allsky Meteor Surveillance project. Photo: Robert P. Moreno Jr., compilation by Jim Albers.  相似文献   

20.
Valley networks observed on the martian surface are found mostly on Noachian-aged highlands units, but a few occur on younger volcanic edifices. Enigmatically, they do not occur on all younger volcanoes of similar age or location. Using new data, we reanalyze the radially arrayed valleys on the flanks of Hecates Tholus, a Hesperian-aged shield volcano, and test the hypothesis that these valleys might have formed via basal melting of summit snowpack. We find that magmatic intrusions with reasonable geometries provide sufficient heat flux to cause basal melting of snowpack, with the resulting meltwater interpreted to be responsible for incision of the observed valleys. Valley morphology is similar to valleys observed adjacent to seasonally melting Antarctic Dry Valley glaciers formed on comparable slopes, supporting the hypothesis of a snowmelt origin. These relatively young valley networks are thus plausibly interpreted to form under circumstances in which summit snow accumulation was melted during one or more episodes of high localized heat flux.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号