首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Though there is some information on cytotoxicity of copper nanoparticles and silver nanoparticles on human cell lines, there is no information on their genotoxic and cytotoxic behaviour in bivalve molluscs. The aim of this study was to investigate the genotoxic impact of copper oxide and silver nanoparticles using mussels Mytilus galloprovincialis. Mussels were exposed to 10 μg L−1 of CuO nanoparticles and Cu2+ and Ag nanoparticles and Ag+ for 15 days to assess genotoxic effects in hemocytes using the comet assay. The results obtained indicated that copper and silver forms (nanoparticles and ionic) induced DNA damage in hemolymph cells and a time-response effect was evident when compared to unexposed mussels. Ionic forms presented higher genotoxicity than nanoparticles, suggesting different mechanisms of action that may be mediated through oxidative stress. DNA strand breaks proved to be a useful biomarker of exposure to genotoxic effects of CuO and Ag nanoparticles in marine molluscs.  相似文献   

2.
The purpose of this study was to determine the long-term accumulation of either silver or copper from low concentrations in seawater by blue mussels, Mytilus edulis. Mussels raised from eggs in the laboratory to the age of 2·5 months (approximately 4·5 mm in length) were continuously exposed to 0, 1, 5 and 10μg/liter of either silver (nitrate) or copper (chloride) and sampled at 12, 18 and 21 months for growth studies, measurements of metal accumulation and histopathological examination.Whole-body soft tissues were analyzed for the presence of both silver and copper, as background levels of copper in the incoming seawater averaged 2–4 μg/liter. Mussels exposed to silver had accumulated significant amounts of silver only at the highest test concentration (10 μg/liter Ag) after 12 months, but at 18 and 21 months significant levels were accumulated at all three test concentrations. Mussels exposed to copper accumulated significant amounts of copper at 5 and 10 μg/liter Cu after all three sampling periods, but not at 1μg/liter. Silver-exposed animals also accumulated significantly greater amounts of copper than control animals.In a comparative study, field-collected juvenile mussels (approximately 16·1 mm in shell length) and adult mussels (approximately 53·4 mm in shell length) were exposed for 12 months to 0, 5, 25 and 50 μg/liter silver only and subsequently sampled for metal-accumulation analyses and growth measurements. Juvenile mussels accumulated significant amounts of silver at all test concentrations, with the exception of mussels exposed to 5 μg/liter Ag for 6 months. Copper accumulation in the silver-exposed juveniles was significant only at 50 μg/liter Ag after 6 months, but at all test concentrations after 12 months. Adult mussels exposed to silver accumulated significant levels of both silver and copper, but at somewhat lower levels than juveniles.In the growth study, silver had no effect on laboratory reared mussels at the highest concentration of 10 μg/liter tested, whereas copper at 10 μg/liter did appear to affect growth as early as 4 months after the start of experimental exposure. Field-collected juvenile mussels did show inhibition in growth after 6 months' exposure to 25 and 50 μg/liter Ag, with some growth occurring after 12 months. Adults also showed inhibition in growth after 6 months but not at 12 months.Histopathological examination of mussels exposed to either 5 or 10 μg/liter of copper for 18 months showed changes in the digestive diverticula, gastrointestinal tract, reproductive tract and muscle tissues. These changes were more noticeable in mussels exposed to 5 μg/liter Cu than in those exposed to 10 μg/liter. Mussels exposed to silver for 21 months showed yellowish to black particulate deposition in the basement membrane and connective tissue of the various organs and tissues. Silver deposition increased with increasing test concentration.  相似文献   

3.
Early life stages of Spisula solidissima (1-, 4-, 8- and 12-h post-fertilization) were exposed to various concentrations of silver in solution (0, 4, 8, 24, 44, 124 and 278 μg liter?1) for 1 h. An additional group of 1-h post-fertilized eggs was treated with 0, 4, 11 and 24 μg liter?1 silver continuously for 48h. Results indicate that younger embryos are more susceptible to Ag. Exposure of one-hour-old embryos to silver for only 1 h gives results similar to a continuous 48-h exposure to the same concentration of Ag. The calculated EC50 for 48-h continuously exposed embryos was similar to the EC50 for 1-h post-fertilized embryos that were exposed to silver for only 1 h.  相似文献   

4.
The fast expansion of the global nanotechnology market entails a higher environmental and human exposure to nanomaterials. Silver nanoparticles (AgNP) are used for their antibacterial properties; however, their environmental fate is yet poorly understood. Iceland scallops (Chlamys islandica) were exposed for 12 h to three different silver forms, dissolved Ag(I) (Agdiss), small (S-NP, ∅ = 10–20 nm) and large AgNP (L-NP, ∅ = 70–80 nm), labeled with 110mAg, and bioaccumulation kinetics and tissue distribution using in vivo gamma counting and whole-body autoradiography were determined. All Ag forms were readily and rapidly accumulated. Elimination process was also fast and bi-exponential, with mean biological half-life ranging from 1.4 to 4.3 days and from 17 to 50 days for fast and slow compartments, respectively. Most of the radioactivity concentrated in the hepatopancreas. Agdiss and S-NP tissue distributions were similar indicating a rapid dissolution of the latter in the tissues, contrarily to L-NP which appeared to form long lasting aggregates in the digestive system. Estimated steady-state bioconcentration factors (BCF), ranging between 2700 and 3800 ml g−1 for dissolved and particulate silver forms, showed that C. islandica can accumulate significant quantities of Ag in a short time followed by an efficient depuration process.  相似文献   

5.
Silver determinations in the sea-water around Monaco were carried out using a procedure consisting of preconcentration of silver with lead sulfide, followed by dithizone extraction and spectrophotometric mono-colour measurement of silver-dithizonate. The average concentration of silver in the surface sea-water around Monaco was found to be 0.14Μg Ag/l. It was also concluded that observed variations of silver content in seawater were not related to the fresh water run-off from the neighbouring coast. This suggests that the variations have to be attributed to some other factor or a combination of factors. On the basis of the observed values of the silver content of the Var River water, an upper limit of silver supply by fresh waters into the sea-area around Monaco is estimated to be 2.3Μg Ag per liter of fresh water. Considering the mixing of the fresh water with sea-water, an increase of up to 0.09Μg Ag/l in the sea-water might be expected. The fact that the increase of silver in the sea-water was not observed in connection with the fresh-water mixing suggests that some effective removal process of silver may be in operation at the immediate vicinity of the injection of fresh-water into the sea.  相似文献   

6.
Nanoparticles may be introduced into aquatic environments during production processes and also as a result of release following their use in various commercial formulations and biologic applications. Filter-feeding bivalve mollusks such as oysters are valuable model species for characterizing nanoparticle bioavailability and interactions with basic cellular processes. The adults release their gametes into the environment, so their embryos and larvae are also likely targets of nanoparticles. The purpose of these studies was to characterize the toxicity of metal nanoparticles on embryonic development of oysters, Crassostrea virginica and to compare the relative sensitivity of embryos to adults. Newly-fertilized oyster embryos were exposed to silver nanoparticles (AgNP) and then the percent normal development after 48 h was assessed. Studies were conducted with adult oysters in which they were also exposed to AgNP for 48 h, and the effects on lysosomal destabilization were determined. The expression of metallothionein (MT) gene expression was also assessed in both embryos and adults. Adverse effects on embryonic development were observed at concentrations similar to those that caused both statistically and biologically significant effects on lysosomal destabilization of adults. Significant increases in MT mRNA levels were observed in both embryos and adult oysters, and MT levels were highly induced in embryos. While we do not know whether the toxicity and gene expression responses observed in this study were due to the nanoparticles themselves or the Ag ions that dissociated from the nanoparticles, these kinds of basic studies are essential for addressing the potential impacts of nanoengineered particles on fundamental cellular processes as well as aquatic organisms.  相似文献   

7.
In order to assess the adaptation to metals previously observed in the bioindicator organism, Macoma balthica, subjected to chronic contamination by silver and mercury in the French Loire estuary, the bioaccumulation potential of individual organisms originating from the contaminated Loire estuary and a relatively uncontaminated control estuary (Somme) was evaluated using both radiotracers and stable isotopes of Ag (80 μg Ag litre−1) and Hg (100 μg Hg litre−1). Clams from the contaminated estuary were more sensitive to Ag (LT50 = 9d) than those originating from the Somme estuary (LT50 > 15d), even though the former bioaccumulated Ag to a significantly lower degree. This is attributed to a consequence of the chronic stress induced by Ag while clams were living in their natural environment. Therefore, past history of trace metal contamination should be considered when evaluating the susceptibility of M. balthica to heavy metal exposure. Lower uptake rates obtained for Hg (during the initial uptake phase only) and for Ag in clams from the polluted estuary suggest the presence of an adaptive trait for survival in contaminated areas. However, the lower degree of bioconcentration observed for Ag was not sufficiently low to reduce the sensitivity of the organisms to Ag and allow them to resist the toxic stress. Clams that survived Ag or Hg exposure at LT50 did not protect themselves against metal toxicity by accumulating a significantly lesser amount of these metals than clams which did not survive metal stress. The results suggest that the bioaccumulation potential of each individual was not a factor which can explain the survival ability of M. balthica exposed to chronic Ag and Hg contamination in estuaries. In this case, cellular, biochemical and genetic levels of adaptation are presumed to be of greater importance.  相似文献   

8.
Five vertical profiles of silver (Ag) in the subarctic northeast Pacific are presented. Dissolved (< 0.2 μm) Ag concentrations within the surface mixed layer range from 6–25 pM, with the highest observed values at the most coastal site. Elevated Ag concentrations at this station are most likely attributable to the estuarine circulation in the Juan de Fuca Strait. One open-ocean station (P20) exhibited a strong surface Ag maximum. The station was located at the edge of a Haida eddy which raises the possibility that such eddies transport Ag seaward from the coastal zone. Ag concentrations in the deep waters ranged from 60–80 pM. These measurements are consistent with other recent Ag data collected in the Pacific. Ag profiles throughout the Pacific Ocean yield a strong positive correlation between Ag concentration and dissolved silicic acid concentration. However, Ag is depleted relative to silicic acid at intermediate depths where dissolved O2 concentrations are low, implying a possible removal of Ag from oxygen-depleted waters by scavenging and/or precipitation.  相似文献   

9.
Mediterranean (blue) mussels (Mytilus galloprovincialis) collected from a reference site were transplanted to 15 stations in coastal areas around Ulsan and Onsan Bays, an extensively metal polluted area in Korean coastal waters, to assess metal contamination in the coastal oceans of Korea. During the biomonitoring periods (June 30 to July 20, 2003; 21 days), transplanted mussels, seawater, and particulate materials were collected for analysis of 15 metals (Ag, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Sb, Se, Sn, and Zn). Transplanted mussels showed metal enrichment compared to initial concentrations and spatial gradients consistent with dissolved and/or particulate metal concentrations in seawaters. Based on Q mode factor analysis, stations were clustered into three groups. The first group, located on Onsan Bay, showed high Ag, Cd, Cu, Hg, Pb, Sb and Zn enrichment, presumably arising from non-ferrous metal refineries and chemical industries in this area. The second group was located near the mouth of the Oehwang River and was enriched in Co from petrochemical industries. The third group comprised a site intermediate between Group 1 and Group 2, an isolated station with independent metal sources located in Jangsaengpo harbor, where a number of ship repairing and building companies operate, and a less contaminated station near a small fishing village. Metal accumulation rates (%·day-1) in mussels were estimated to be between 8% (Cr) and 281% (Pb), based on accumulated metal concentrations over 21 days. The active biomonitoring technique using M. galloprovincialis demonstrated here is a useful monitoring method because it reflects the present status of seawaters; furthermore, physiological factors can be standardized, and bioavailable and time-integrated metal concentrations can be obtained. Furthermore, this method can be applied even in coastal seawaters so heavily contaminated that living organisms would not normally survive.  相似文献   

10.
The cellular distribution and chemical forms of Ag were determined in mussels after accumulation of the metal from sea water. The major accumulations were either in the vacuoles of connective tissue macrophages, where it was associated with S, or in deposits in the fibrillar layer of the basement membranes of the digestive diverticulum and kidney epithelia, where it was bound to the sulphydryl and sulphate groups of glycoproteins and proteoglycans. In acutely exposed animals, about 10 % of the accumulated Ag was found in a (Ag, Cu)-binding protein with characteristics indicating that it may be a metallothionein. There was a concomitant increase in the body Cu levels after Ag exposure and 40 % of this was bound to this low molecular weight metal-binding protein.  相似文献   

11.
The development of off-shore wind farms along the coastline of north-west Europe is rapidly increasing; it is therefore important to study how this will affect the marine environment. The present study modelled the growth and feed-backs of blue mussels in natural beds and on turbine foundations in an off-shore wind farm (OWF) located in a shallow coastal ecosystem by coupling a dynamic energy budget (DEB) model to a small-scale 3D hydrodynamic–biogeochemical model. The model results showed that blue mussels located higher up in the water column on turbine pillars achieved a 7–18 times higher biomass than those located on the scour protection because the former experience an enhanced advective food supply. Secondly, the high biomasses of blue mussels on foundations created local ‘hot spots’ of biological activity and changed ecosystem dynamics due to their feed-backs e.g. ingestion of microplankton and copepods, excretion of ammonium and egestion of faecal pellets. The model results were supported by field measurements around foundations of Chl a concentrations and biomasses of the fauna community. Our study emphasised that OWFs seem to be particularly favourable for blue mussels in the western Baltic Sea and that the functioning of the OWFs as artificial reef ecosystems depends upon how the blue mussels interact with their local pelagic and benthic environment.  相似文献   

12.
Accumulation of polycyclic aromatic hydrocarbons (PAHs) was determined in blue mussels (Mytilus spp.) and shore crabs (Hemigrapsus sp.) at a recently closed military fuel depot in central San Francisco Bay, California. In April 1996, during a period of above average precipitation, specimens were collected at the depot, near the depot, and at sites 10 and 20 km south of the depot. Four weeks after the rains ended, blue mussels were again collected at the depot, and at two additional sites in the central Bay region. In April, total PAHs in mussels from the depot were significantly higher only than that in mussels collected 20 km from the depot; however, seven specific, substituted PAHs were higher at the depot than at all other sites. In June, only two of the 38 PAHs common in mussels in April were detected at the depot; these concentrations were comparable to ambient concentrations in mussels at the Bay. It seemed that bioavailability of PAHs at the depot was enhanced by rainfall, probably due to the mobilization of PAHs via groundwater into the Bay. Concentrations in mussels from chronically contaminated sites were about five times higher than mussels collected from the depot. Low PAH concentrations were detected in shore crabs near the depot, and the highest levels were not associated with the depot. Observed PAH concentrations are discussed in relation to upper trophic organisms.  相似文献   

13.
In many aquatic organisms including Mytilus edulis, the role of temperature on bioaccumulation of metals is still not clearly understood. In this study, uptake and accumulation of Cu, Co, Cd and Pb in mussels were investigated at different temperatures (6-26 degrees C). Results from exposure of isolated gills showed a positive relationship between temperature and metal uptake. But in whole organism experiments, only the accumulations of non-essential metals (Cd, Pb) showed a similar trend while the two essential metals Co and Cu were independent and inversely related to temperature, respectively. With exception of Cu, elimination process appeared to be independent of temperature. The study also showed that neither changes in scope for growth (SFG) of mussels nor chemical speciation could fully account for the observed temperature-effects. Overall, these results suggest that fundamentally (i.e. at epithelial membranes), temperature-effects on uptake are largely due to changes in solution chemistry and physical kinetics, which favours higher uptake at high temperature. But at whole organism level, complex physiological responses appears to mask the relationship, particularly for biologically essential metals like copper.  相似文献   

14.
Fatty acid biomarkers were used to investigate the biogeochemistry of a former blue mussel (Mytilus edulis) aquaculture site in a shallow, sheltered cove in northeastern Newfoundland. High levels of polyunsaturated fatty acids (PUFA) in net-tow and sediment trap samples indicated a substantial phytoplankton source of organic matter, and fluctuations in specific fatty acid biomarkers reflected the changing abundances of diatoms and dinoflagellates. In comparison, sediments contained very low levels of PUFA (<15%) and were dominated by terrestrial and bacterial markers. In a separate study, blue mussels were grown at this closed site, providing the opportunity to examine the relationship between lipid supply, as recorded by net-tow and trap samples, and bivalve requirements. The average plankton fatty acid composition throughout the year agreed well with that of the adult blue mussels, suggesting that fatty acids were provided in proportions very similar to the bivalves' requirements. The fatty acid composition of the blue mussels was typical of those collected elsewhere, with PUFA proportions near 50%. However, examination of fatty acid data of plankton sampled in other areas revealed that the plankton in the current study may have been unusual in providing fatty acids at levels required by the bivalves.  相似文献   

15.
Measurements of chemical contaminants in caged (transplanted) and resident mussel populations have become a routine tool for monitoring and assessing the status and trends of coastal water quality. However, few long-term data sets are available to assess the comparability and efficacy of these two monitoring approaches. Three long-term independent data sets exist for Boston Harbor: the National Mussel Watch program has analyzed resident blue mussels (Mytilus edulis) from the Boston Harbor/Massachusetts Bay region for over twenty years, the Massachusetts Water Resources Authority has annually deployed caged (transplanted) mussels (M. edulis) to assess bioaccumulation potential of sewage effluent discharged under its NPDES permit for over fourteen years, and the GulfWatch program has analyzed resident blue mussel populations for over twelve years. Together, these data provide consistent and comparable information on temporal and spatial changes in chemical contamination in Boston Harbor as steps were taken to reduce contaminant loading. The data also demonstrate the complementary nature of resident and caged (transplanted) mussels for assessing contaminant trends even when the basic approaches and sampling frequency differ. These fifteen-year data sets demonstrate contaminant concentrations in mussels from Boston Harbor are similar and with few exceptions have significantly decreased since the early 1990s. The observed trends also demonstrate broad scale improvements to the quality of Boston Harbor and expand understanding of the response of coastal systems to interventions that reduce the load of chemicals to the ocean.  相似文献   

16.
纳米银广泛用于抗菌材料、医疗设备和其他抗菌产品。在纳米银产品的生产、运输、消费和处置过程中,纳米银将不可避免地释放到自然环境中,而水生生态系统是纳米银在自然界中重要的汇之一。本文以青岛近海为研究对象,采集现场海水进行实验室模拟培养,通过测定(48 h)不同浓度纳米银(0.5、5和50 mg/L)短期暴露下对表层海水中浮游细菌死亡率、蛋白质含量、碱性磷酸酶活性及氨肽酶活性的变化,研究纳米银对近岸海区浮游细菌生长和活性的影响。研究结果表明,在纳米银胁迫下细菌生长和活性受到显著抑制(P<0.05),高浓度组在培养4 h后死亡率达到最高值88.20%,随着暴露时间延长,纳米银胁迫组活细菌数量缓慢恢复、死亡率逐渐减小;纳米银对碱性磷酸酶活性和氨肽酶活性的抑制效应分别在培养4和8 h后达到最高,分别为8.58%和32.55%,在培养16 h后,酶活性开始缓慢上升,表现出对纳米银胁迫的适应性;纳米银组的蛋白质含量在培养8 h后达到最低,相比于对照组降低了29.80%,在培养后期同样有所升高,蛋白质含量接近于对照组。由此可见,纳米银对青岛近海浮游细菌的生长和活性都具有显著的抑制效应;不同浓度纳米银对细菌的抑制效应不同,纳米银浓度越高,抑制效应越明显(P<0.05),具有明显的浓度梯度效应;在培养后期,碱性磷酸酶活性和氨肽酶活性都有恢复,蛋白质含量上升,细菌死亡率下降,表明细菌对纳米银胁迫表现出一定的适应性。  相似文献   

17.
The objective of this research was to quantify the impact of pollution along the coastlines of the Irish Sea. Pollution assessment was based on the combined measurement of scope for growth (SFG), and chemical contaminants in the tissues of mussels (Mytilus edulis) collected from 38 coastal sites around the Irish Sea during June-July in 1996 and 1997. On the UK mainland coast, the SFG showed a general trend with a significant decline in water quality in the Liverpool and Morecambe Bay region. High water quality was recorded along the west coast of Wales, as well as southwest England and northwest Scotland (clean reference sites outside the Irish Sea). Along the coast of Ireland there was a similar trend with reduced SFG within the Irish Sea region. SFG was generally low north of Duncannon and then improved north of Belfast. The poor water quality on both sides of the Irish Sea is consistent with the prevailing hydrodynamics and the spatial distribution of contaminants associated with urban/ industrial development. The decline in SFG of mussels on both sides of the Irish Sea was associated with a general increase in contaminant levels in the mussels. Certain contaminants, including PAHs, TBT, sigmaDDT, Dieldrin, gamma-HCH, PCBs, and a few of the metals (Cd, Se, Ag, Pb), showed elevated concentrations. Many of these contaminants were particularly elevated in the coastal margins of Liverpool Bay, Morecambe Bay and Dublin Bay. A quantitative toxicological interpretation (QTI) of the combined tissue residue chemistry and SFG measurements indicated that at the majority of coastal sites, c. 50 to > 80% of the observed decline in SFG was due to PAHs as a result of fossil fuel combustion and oil spills. TBT levels were highest at major ports and harbours, but these concentrations only made a minor contribution to the overall reduction in SFG. At no sites were individual metals accumulated to concentrations that could cause a significant effect on SFG. The study identified many sites where the observed reduction in SFG was far greater than predicted from the limited number of chemical contaminants analysed, thus indicating the presence of additional 'unknown toxicants'. Sewage (containing domestic, agricultural and industrial components) appears to be an important contributor to reduced SFG and linear alkylbenzenes (LABs) and As may provide suitable 'sewage markers'. There was a highly significant positive correlation between SFG and As (P < 0.001). This relationship may be due to reduced As uptake by algal food material and mussels at sites with elevated P04 concentrations (e.g. at sites with sewage inputs). Phosphate is a known competitive inhibitor of As accumulation, at least in algae. The results highlight that further research is required on 'sewage markers' in mussels. The SFG approach therefore provides a rapid, cost-effective and quantitative measure of pollution impact, as well as a means of identifying the causes through a QTI of tissue contaminants levels. It also serves to identify the presence of unidentified toxicants and areas that require further study.  相似文献   

18.
DNA adducts in gills and digestive gland, as well as polycyclic aromatic hydrocarbon (PAH) tissue levels were analysed in blue mussels (Mytilus spp.) from Nordic coastal areas (Iceland, Norway and Sweden) with diffuse or point sources of PAHs of various origins. Both DNA adduct and PAH tissue levels were generally low, indicating low PAH exposure to the mussels in the areas studied. DNA adducts were found to be higher in gills than in digestive gland of the mussels at all sites studied. Elevated DNA adduct levels in gills were found at 6 sites out of 18 compared to reference sites in respective coastal zones. Adduct levels ranged from 0.5 to 10 nmol adducts/mol normal nucleotides, being highest in mussels from Reykjavík harbour, Iceland (intertidal mussels), and from Fiskaatangen, Norway (subtidal mussels). Total PAH tissue levels in the mussels ranged between 40 and 11,670 ng/g dry wt., and were significantly correlated with DNA adduct levels (r(2)=0.73, p<0.001). PAH ratio values indicated that the PAHs were in most cases of pyrolytic origin, but with petrogenic input near harbours and an oil refinery.  相似文献   

19.
To evaluate the applicability of a diffusive gradient in thin film (DGT) probe for monitoring dissolved metals in coastal seawater, DGT-labile metal concentrations were compared with total dissolved metal concentrations using spiked and natural seawater samples in the laboratory and transplanted mussels (Mytilus galloprovincialis). This was achieved through the simultaneous deployment of DGT probes and transplanted mussels in Ulsan Bay during winter and summer. DGT-labile metal concentrations were 45% (Cu) ~ 90% (Zn) of total dissolved concentrations, and the order of non-labile concentrations was Cu > Pb > Co ~ Ni > Cd ~ Zn in both metal-contaminated and non-contaminated seawater samples, which was similar to the order of stability of metal complexes in the Irving–Williams series. The overall variability of the DGT probe results within and between tanks was less than 10% (relative standard deviation: RSD) for all the metals tested during a 48-h deployment. The accumulation of metals, as determined by DGT probes, represented the spatial gradients better than the transplanted mussels did for all of the metals tested, and the extent of metal accumulation in mussels differed depending on the metal. The comparison of results for the DGT probe and the transplanted mussels in two seasons (winter and summer) suggested that metal accumulation in mussels was controlled by the physiological factors of mussels and partly by their diet (particulate metal loadings). The DGT probe could be used as a monitoring tool for dissolved metals in coastal seawater because its results explained only labile species. When using the DGT probe, slightly more than half of the total dissolved concentration in seawater samples for all the metals investigated displayed timeintegrated properties and distinct spatial gradients from pristine to metal-contaminated seawater.  相似文献   

20.
With the development of aquaculture, there is an urgent demand for an alternative antibacterial agent to reduce the drug resistance and environmental pollution caused by the abuse of antibiotics. Recently, silver nanoparticles(Ag NPs) have been viewed as a novel type of antimicrobial agents due to their unique advantages. In this study,Ag NPs were biosynthesized with the ginger rhizomes extract. The biosynthesized Ag NPs were characterised by UV–visible spectroscopy, transmission electron microscopy, X-ray diffraction and fourier transform infrared spectroscopy. Furthermore, the antimicrobial activities of the Ag NPs were fully analyzed against six typical aquatic pathogens. The results indicated that the components in ginger extract could function as the chemical reductant to synthesize Ag NPs. Moreover, compared with the Ag NPs synthesized by chemical methods, the biosynthesized Ag NPs were smaller, and had higher stability and antibacterial activity. Therefore, the biosynthesized Ag NPs using ginger extract may have prospective applications in aquaculture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号