首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 0 毫秒
1.
The Global Ozone Monitoring Experiment (GOME) is the first of a series of European satellite instruments monitoring global ozone and other relevant trace constituents in the UV/visible spectral range. On 20 April 1995, the European Space Agency (ESA) launched the GOME from Kourou, French Guyana, aboard the second European Remote Sensing satellite (ERS-2). In order to obtain the geometric albedo from the backscattered terrestrial radiance measurements, a solar irradiance measurement sequence in the spectral range between 240 nm and 790 nm is carried out once every day. The GOME solar irradiance is recorded at a moderate spectral resolution (0.2–0.4 nm), thus providing an excellent opportunity to contribute to the long-term investigation of solar flux variation associated with the 11-year solar activity cycle from space, which started in 1978 with SBUV (Solar Backscatter UV Experiment) observations on Nimbus-7 and covers solar cycles 21 and 22. This paper briefly describes the GOME spectrometer and measurement mode which are relevant to the solar viewing. Preliminary results from the solar irradiance measurements between 1995 and 1997 and comparisons to SSBUV-8 (Shuttle SBUV) in January 1996 are presented. Solar activity indices used as proxies for solar flux variation are often used to find a correlation with observed variation in atmospheric quantities, for instance, total ozone. Initial results from the GOME Mgii (280 nm) and Caii K (393 nm) solar activity index calculation are presented and discussed. The coupling of solar irradiance variability to global change is a current source of scientific and public concern. This study shows that GOME/ERS-2 (1995–2001) and the next generation of European remote sensing instruments, SCIAMACHY and GOME/METOP, have the potential to provide continuity in the measurements of solar irradiance from space well into the next century.  相似文献   

2.
A new radio spectrometer, CALLISTO, is presented. It is a dual-channel frequency-agile receiver based on commercially available consumer electronics. Its major characteristic is the low price for hardware and software, and the short assembly time, both two or more orders of magnitude below existing spectrometers. The instrument is sensitive at the physical limit and extremely stable. The total bandwidth is 825 MHz, and the width of individual channel is 300 kHz. A total of 1000 measurements can be made per second. The spectrometer is well suited for solar low-frequency radio observations pertinent to space weather research. Five instruments of the type were constructed until now and put into operation at several sites, including Bleien (Zurich) and NRAO (USA). First results in the 45–870 MHz range are presented. Some of them were recorded in a preliminary setup during the time of high solar activity in October and November 2003.  相似文献   

3.
We analyze the light curves of the recent solar eclipses measured by the Herzberg channel (200?–?220 nm) of the Large Yield RAdiometer (LYRA) onboard Project for OnBoard Autonomy (PROBA2). The measurements allow us to accurately retrieve the center-to-limb variations (CLV) of the solar brightness. The formation height of the radiation depends on the observing angle, so the examination of the CLV provide information about a broad range of heights in the solar atmosphere. We employ the 1D NLTE radiative transfer COde for Solar Irradiance (COSI) to model the measured light curves and corresponding CLV dependencies. The modeling is used to test and constrain the existing 1D models of the solar atmosphere, e.g. the temperature structure of the photosphere and the treatment of the pseudo-continuum opacities in the Herzberg continuum range. We show that COSI can accurately reproduce not only the irradiance from the entire solar disk, but also the measured CLV. Hence it can be used as a reliable tool for modeling the variability of the spectral solar irradiance.  相似文献   

4.
A search for any particular feature in any single solar neutrino dataset is unlikely to establish variability of the solar neutrino flux since the count rates are very low. It helps to combine datasets, and in this article we examine data from both the Homestake and GALLEX experiments. These show evidence of modulation with a frequency of 11.85 year−1, which could be indicative of rotational modulation originating in the solar core. We find that precisely the same frequency is prominent in power spectrum analyses of the ACRIM irradiance data for both the Homestake and GALLEX time intervals. These results suggest that the solar core is inhomogeneous and rotates with a sidereal frequency of 12.85 year−1. From Monte Carlo calculations, it is found that the probability that the neutrino data would by chance match the irradiance data in this way is only 2 parts in 10 000. This rotation rate is significantly lower than that of the inner radiative zone (13.97 year−1) as recently inferred from analysis of Super-Kamiokande data, suggesting that there may be a second, inner tachocline separating the core from the radiative zone. This opens up the possibility that there may be an inner dynamo that could produce a strong internal magnetic field and a second solar cycle.  相似文献   

5.
The Chinese Area Positioning System (CAPS) is a positioning system based on satellite communication that is fundamentally different from the 3"G" (GPS, GLONASS and GALILEO) systems. The latter use special-purpose navigation satellites to broadcast navi-gation information generated on-board to users, while the CAPS transfers ground-generated navigation information to users via the communication satellite. In order to achieve accurate Positioning, Velocity and Time (PVT), the CAPS employs the following strategies to over-come the three main obstacles caused by using the communication satellite: (a) by real-time following-up frequency stabilization to achieve stable frequency; (b) by using a single carrier in the transponder with 36 MHz band-width to gain sufficient power; (c) by incorporating Decommissioned Geostationary Orbit communication satellite (DGEO), barometric pressure and Inclined Geostationary Orbit communication satellite (IGSO) to achieve the 3-D posi-tioning. Furthermore, the abundant transponders available on DGEO can be used to realize the large capacity of communication as well as the integrated navigation and communication. With the communication functions incorporated, five new functions appear in the CAPS: (1) combination of navigation and communication; (2) combination of navigation and high accu-racy orbit measurement; (3) combination of navigation message and wide/local area differen-tial processing; (4) combination of the switching of satellites, frequencies and codes; and (5) combination of the navigation message and the barometric altimetry. The CAPS is thereby labelled a PVT5C system of high accuracy. In order to validate the working principle and the performance of the CAPS, a trial system was established in the course of two years at a cost of about 20 million dollars. The trial constellation consists of two GEO satellites located at E87.5°and E110.5°, two DGEOs located at E130° and E142°, as well as barometric altimetry as a virtual satellite. Static and dynamic performance tests were completed for the Eastern, the Western, the Northern, the Southern and the Middle regions of China. The evaluation results are as follows: (1) land static test, plane accuracy range: C/A code, 15~25 m; P code, 5~10 meters; altitude accuracy range, 1~3 m; (2) land dynamic test, plane accuracy range, C/A code, 15~25 m; P code, 8~10m; (3) velocity accuracy, C/A code, 0.13~0.3 ms-1, P code, 0.15~0.17m s-1; (4) timing accuracy, C/A code, 160ns, P code, 13 ns; (5) timing compared accuracy of Two Way Satellite Time and Frequency Transfer (TWSTFT), average accuracy, 0.068 ns; (6) random error of the satellite ranging, 10.7 mm; (7) orbit determination accuracy, better than 2 m. The above stated random error is 1σ error. At present, this system is used as a preliminary operational system and a complete system with 3 GEO, 3 DGEO and 3 IGSO is being established.  相似文献   

6.
Since their discovery over 100 years ago, there have been many suggestions for the origin and development of solar spicules. Because the velocities of spicules are comparable to the sound and Alfvén speeds of the low chromosphere, linear theory cannot fully describe them. Consequently, detailed tests of theoretical ideas had to await the development of computing power that only became available during the 1970s. This work reviews theories for spicules and spicule-like features over approximately the past 25 years, with an emphasis on the models based on nonlinear numerical simulations. These models have given us physical insight into wave propagation in the solar atmosphere, and have helped elucidate how such waves, and associated shock waves, may be capable of creating motions and structures on magnetic flux tubes in the lower solar atmosphere. So far, however, it has been difficult to reproduce the most-commonly-quoted parameters for spicules with these models, using what appears to be the most suitable input parameters. A key impediment to developing satisfactory models has been the lack of reliable observational information, which is a consequence of the small angular size and transient lifetime of spicules. I close with a list of key observational questions to be addressed with space-based satellites, such as the currently operating TRACE satellite, and especially the upcoming Solar-B mission. Answers to these questions will help determine which, if any, of the current models correctly explains spicules.  相似文献   

7.
8.
9.
The good quality of the observing sequence of about 60 photographs of the white-light corona taken during the total solar eclipse observations on 29 March 2006, in Al Sallum, Egypt, enable us to use a new method of image processing for enhancement of the fine structure of coronal phenomena. We present selected magnetic-field lines derived for different parameters of the extrapolation model. The coincidence of the observed coronal white-light fine structures and the computed field-line positions provides a 3D causal relationship between coronal structures and the coronal magnetic field.  相似文献   

10.
This addendum uses an alternate fit for the electron density distribution \(N(r)\) (see Figure 1) and estimates the coronal magnetic field using the new model. We find that the estimates of the magnetic field are in close agreement using both the models.
We have fit the \(N(r)\) distribution obtained from STEREO-A/COR1 and SOHO/LASCO-C2 using a fifth-order polynomial (see Figure 1). The expression can be written as
$$\begin{aligned} N_{\text{cor}}(r) &= 1.43 \times 10^{9} r^{-5} - 1.91 \times 10^{9} r^{-4} + 1.07 \times 10^{9} r^{-3} - 2.87 \times 10^{8} r^{-2} \\ &\quad {} + 3.76 \times 10^{7} r^{-1} - 1.91 \times 10^{6} , \end{aligned}$$
(1)
where \(N_{\text{cor}}(r)\) is in units of cm?3 and \(r\) is in units of \(\mathrm{R}_{\odot}\). The background coronal electron density is enhanced by a factor of 5.5 at 2.63 \(\mathrm{R}_{\odot}\) during the coronal mass ejection (CME). The estimated coronal magnetic field strength (\(B\)) using radio data indicates that \(B(r) \approx(0.51\text{\,--\,}0.48) \pm 0.02\ \mathrm{G}\) in the range \(r \approx2.65\text{\, --\,}2.82\ \mathrm{R}_{\odot}\). The field strengths for STEREO-A/COR1 and SOHO/LASCO-C2 are ≈?0.32 G at \(r \approx 3.11\ \mathrm{R}_{\odot}\) and ≈?0.12 G at \(r \approx 4.40\ \mathrm{R}_{\odot}\), respectively.
  相似文献   

11.
An important issue in the tomographic reconstruction of the solar poles is the relatively rapid evolution of the polar plumes. We demonstrate that it is possible to take into account this temporal evolution in the reconstruction. The difficulty of this problem comes from the fact that we want a four-dimensional reconstruction (three spatial dimensions plus time) whereas we only have three-dimensional data (two-dimensional images plus time). To overcome this difficulty, we introduce a model that describes polar plumes as stationary objects whose intensity varies homogeneously with time. This assumption can be physically justified if one accepts the stability of the magnetic structure. This model leads to a bilinear inverse problem. We describe how to extend linear inversion methods to these kinds of problems. Studies of simulations show the reliability of our method. Results for SOHO/EIT data show that we can estimate the temporal evolution of polar plumes to improve the reconstruction of the solar poles from only one point of view. We expect further improvements from STEREO/EUVI data when the two probes will be separated by about 60°.  相似文献   

12.
13.
Messmer  Peter  Benz  Arnold O.  Monstein  Christian 《Solar physics》1999,187(2):335-345
A broadband radio spectrometer has been put into operation at Bleien, Switzerland, to register the flare emission of the full Sun. In the frequency range of operation, 0.1 to 4.0 GHz, both modes of circular polarization are recorded continuously. The new system, Phoenix-2, has been developed from the experience with the previous Phoenix spectrometer. Improved, computer-controlled focal hardware allows now a complete daily calibration, a more sophisticated calibration procedure, and monitoring of all essential instrumental and environmental parameters. Calibrated data are now usually available the day after observation and are accessible through the Internet. The scientific improvements include a larger frequency range of observation, a larger number of completely recorded events due to full-day registration, more accurate measurements, particularly in circular polarization, and more reliable operation. First observations are presented and quantitative results comparing the calibration with single frequency instruments are reported. Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1023/A:1005194314845  相似文献   

14.
The highly variable solar extreme ultraviolet (EUV) radiation is the major energy input to the Earth’s upper atmosphere, strongly impacting the geospace environment, affecting satellite operations, communications, and navigation. The Extreme ultraviolet Variability Experiment (EVE) onboard the NASA Solar Dynamics Observatory (SDO) will measure the solar EUV irradiance from 0.1 to 105?nm with unprecedented spectral resolution (0.1?nm), temporal cadence (ten seconds), and accuracy (20%). EVE includes several irradiance instruments: The Multiple EUV Grating Spectrographs (MEGS)-A is a grazing-incidence spectrograph that measures the solar EUV irradiance in the 5 to 37?nm range with 0.1-nm resolution, and the MEGS-B is a normal-incidence, dual-pass spectrograph that measures the solar EUV irradiance in the 35 to 105?nm range with 0.1-nm resolution. To provide MEGS in-flight calibration, the EUV SpectroPhotometer (ESP) measures the solar EUV irradiance in broadbands between 0.1 and 39?nm, and a MEGS-Photometer measures the Sun’s bright hydrogen emission at 121.6?nm. The EVE data products include a near real-time space-weather product (Level?0C), which provides the solar EUV irradiance in specific bands and also spectra in 0.1-nm intervals with a cadence of one minute and with a time delay of less than 15?minutes. The EVE higher-level products are Level?2 with the solar EUV irradiance at higher time cadence (0.25?seconds for photometers and ten seconds for spectrographs) and Level?3 with averages of the solar irradiance over a day and over each one-hour period. The EVE team also plans to advance existing models of solar EUV irradiance and to operationally use the EVE measurements in models of Earth’s ionosphere and thermosphere. Improved understanding of the evolution of solar flares and extending the various models to incorporate solar flare events are high priorities for the EVE team.  相似文献   

15.
Alevizos  A.  Polygiannakis  J.  Kakouris  A.  Moussas  X. 《Solar physics》1999,186(1-2):401-412
A method is described whereby a particle distribution measured by a number of telescopes (four in this application), observing the whole sky, mounted upon a spinning spacecraft, can be resolved into a set of spherical harmonics. The coefficients of the expansion are used to estimate the anisotropy of the particles and components of the anisotropy in different frames of reference (e.g., solar wind frame, RTN frame, spacecraft frame, etc.) for specific energy channels. For the transformation of the distribution function between frames of reference moving each other, the respective Compton–Getting correction is performed by a new geometrical approach. The respective energy change is also evaluated.  相似文献   

16.
Version 2.0 of CRPropa [CRPropa is published under the 3rd version of the GNU General Public License (GPLv3). It is available, together with a detailed documentation of the code, at https://crpropa.desy.de.] is public software to model the extra-galactic propagation of ultra-high energy nuclei of atomic number Z26 through structured magnetic fields and ambient photon backgrounds taking into account all relevant particle interactions. CRPropa covers the energy range 7×1016<E/eV<A×1022 where A is the nuclear mass number. CRPropa can also be used to track secondary γ-rays and neutrinos which allows the study of their link with the charged primary nuclei – the so called multi-messenger connection. After a general introduction we present several sample applications of current interest concerning the physics of extragalactic ultra-high energy radiation.  相似文献   

17.
An investigation of the optical response of the atmosphere before, during, and afterthe total solar eclipse of 26 February 1998 at the Caribbean Peninsula of Paraguaná (Falcón State) in Venezuela, was made by measuring photometrically the intensity of the sky brightness in three strategic directions: zenith, horizon anti-parallel or opposite the umbra path, and horizon perpendicular to this path. From these measurements, and by applying in an inverse way an empirical photometric model, very rough estimations of theextinction coefficient, and also of the average optical depth, were obtained in one of these particular directions. However based on meteorological measurements such as those of relative humidity and temperature, and applying a different model, a better estimation in the visual of the total global extinction coefficient of the sky (except the horizon), were made considering the contribution of each component: atmospheric aerosol, water vapour, ozone and Rayleigh scattering. It is shown that this global coefficient is mostly dependent upon aerosol extinction. In spite of the strong reduction of sky brightness photometrically observed during the totality, the results show that the sky was not dark. This is confirmed by the results obtained for the total global extinction coefficient. Additionally it is estimated that the total solar eclipse that took place also in Falcón State, Venezuela, at the beginning of the last century on 3 February 1916, was 30% darker that the 1998 eclipse, and that atmospheric aerosol played a relevant and similar role in the scattering of sunlight during the totality as it was for 1998's. Visual observations made during each event, which show that at length only one or two bright stars could be seen in the sky, support the results obtained for both eclipses.  相似文献   

18.
We performed for the first time stereoscopic triangulation of coronal loops in active regions over the entire range of spacecraft separation angles (?? sep??6°,43°,89°,127°,and 170°). The accuracy of stereoscopic correlation depends mostly on the viewing angle with respect to the solar surface for each spacecraft, which affects the stereoscopic correspondence identification of loops in image pairs. From a simple theoretical model we predict an optimum range of ?? sep??22°??C?125°, which is also experimentally confirmed. The best accuracy is generally obtained when an active region passes the central meridian (viewed from Earth), which yields a symmetric view for both STEREO spacecraft and causes minimum horizontal foreshortening. For the extended angular range of ?? sep??6°??C?127° we find a mean 3D misalignment angle of ?? PF??21°??C?39° of stereoscopically triangulated loops with magnetic potential-field models, and ?? FFF??15°??C?21° for a force-free field model, which is partly caused by stereoscopic uncertainties ?? SE??9°. We predict optimum conditions for solar stereoscopy during the time intervals of 2012??C?2014, 2016??C?2017, and 2021??C?2023.  相似文献   

19.
The second(O2) observational campaign of gravitational waves(GWs) organized by the LIGO/Virgo Collaborations has led to several breakthroughs such as the detection of GW signals from merger systems involving black holes or neutrons stars. During O2, 14 GW alerts were sent to the astronomical community with sky regions mostly covering over hundreds of square degrees. Among them, six were finally confirmed as real astrophysical events. Since 2013, a new set of ground-based robotic telescopes called Ground-based Wide Angle Camera system(GWAC) project and its pathfinder mini-GWAC has been developed to contribute to the various challenges of multi-messenger and time domain astronomy. The GWAC system is built up in the framework of the ground-segment system of the SVOM mission that will be devoted to the study of the multi-wavelength transient sky in the next decade. During O2, only the mini-GWAC telescope network was fully operational. Due to the wide field of view and fast automatic follow-up capabilities of the mini-GWAC telescopes, they were adept to efficiently cover the sky localization areas of GW event candidates. In this paper, we present the mini-GWAC pipeline we have set up to respond to GW alerts and we report our optical follow-up observations of eight GW alerts detected during the O2 run. Our observations provided the largest coverage of the GW localization areas with a short latency made by any optical facility. We found tens of optical transient candidates in our images, but none of those could be securely associated with any confirmed black hole – black hole merger event. Based on this first experience and the near future technical improvements of our network system, we will be more competitive in detecting the optical counterparts from some GW events that will be identified during the upcoming O3 run, especially those emerging from binary neutron star mergers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号