首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Unloaded natural rock masses are known to generate seismic signals (Green et al., 2006; Hainzl et al., 2006; Husen et al., 2007; Kraft et al., 2006). Following a 1,000 m3 mass failure into the Mediterranean Sea, centimeter-wide tensile cracks were observed to have developed on top of an unstable segment of the coastal cliff. Nanoseismic monitoring techniques (Wust-Bloch and Joswig, 2006; Joswig, 2008), which function as a seismic microscope for extremely weak seismic events, were applied to verify whether brittle failure is still generated within this unconsolidated sandstone mass and to determine whether it can be detected. Sixteen days after the initial mass failure, three small-aperture sparse arrays (Seismic Navigation Systems-SNS) were deployed on top of this 40-m high shoreline cliff. This paper analyzes dozens of spiky nanoseismic (?2.2 ≥ M L ≥ ?3.4) signals recorded over one night in continuous mode (at 200 Hz) at very short slant distances (3–67 m). Waveform characterization by sonogram analysis (Joswig, 2008) shows that these spiky signals are all short in duration (>0.5 s). Most of their signal energy is concentrated in the 10–75 Hz frequency range and the waveforms display high signal similarity. The detection threshold of the data set reaches M L ?3.4 at 15 m and M L ?2.7 at 67 m. The spatial distribution of source signals shows 3-D clustering within 10 m from the cliff edge. The time distribution of M L magnitude does not display any decay pattern of M L over time. This corroborates an unusual event decay over time (modified Omori’s law), whereby an initial quiet period is followed by regained activity, which then fades again. The polarization of maximal waveform amplitude was used to estimate spatial stress distribution. The orientation of ellipses displaying maximal signal energy is consistent with that of tensile cracks observed in the field and agrees with rock mechanics predictions. The M L– surface rupture length relationship displayed by our data fits a constant-slope extrapolation of empirical data collected by Wells and Coppersmith (1994) for normal fault features at much larger scale. Signal characterization and location as well as the absence of direct anthropogenic noise sources near the monitoring site, all indicate that these nanoseismic signals are generated by brittle failure within the top section of the cliff. The atypical event decay over time that was observed suggests that the cliff material is undergoing post-collapse bulk strain accommodation. This feasibility study demonstrates the potential of nanoseismic monitoring in rapidly detecting, locating and analyzing brittle failure generated within unconsolidated material before total collapse occurs.  相似文献   

2.
We estimate seismological fracture energies from two subsets of events selected from the seismic sequences of L’Aquila (2009), and Northridge (1994): 57 and 16 selected events, respectively, including the main shocks. Following Abercrombie and Rice (Geophys J Int 162: 406–424, 2005), we postulate that fracture energy (G) represents the post-failure integral of the dynamic weakening curve, which is described by the evolution of shear traction as a function of slip. Following a direct-wave approach, we compute mainshock-/aftershock-source spectral ratios, and analyze them using the approach proposed by Malagnini et al. (Pure Appl. Geophys., this issue, 2014) to infer corner frequencies and seismic moment. Our estimates of source parameters (including fracture energies) are based on best-fit grid-searches performed over empirical source spectral ratios. We quantify the source scaling of spectra from small and large earthquakes by using the MDAC formulation of Walter and Taylor (A revised Magnitude and Distance Amplitude Correction (MDAC2) procedure for regional seismic discriminants, 2001). The source parameters presented in this paper must be considered as point-source estimates representing averages calculated over specific ruptured portions of the fault area. In order to constrain the scaling of fracture energy with coseismic slip, we investigate two different slip-weakening functions to model the shear traction as a function of slip: (i) a power law, as suggested by Abercrombie and Rice (Geophys J Int 162: 406–424, 2005), and (ii) an exponential decay. Our results show that the exponential decay of stress on the fault allows a good fit between measured and predicted fracture energies, both for the main events and for their aftershocks, regardless of the significant differences in the energy budgets between the large (main) and small earthquakes (aftershocks). Using the power-law slip-weakening function would lead us to a very different situation: in our two investigated sequences, if the aftershock scaling is extrapolated to events with large slips, a power law (a la Abercrombie and Rice) would predict unrealistically large stress drops for large, main earthquakes. We conclude that the exponential stress evolution law has the advantage of avoiding unrealistic stress drops and unbounded fracture energies at large slip values, while still describing the abrupt shear-stress degradation observed in high-velocity laboratory experiments (e.g., Di Toro et al., Fault lubrication during earthquakes, Nature 2011).  相似文献   

3.
It has been two decades since the last comprehensive standard model of ambient earth noise was published Peterson (Observations and modelling of seismic background noise, US Geological Survey, open-file report 93–322, 1993). The PETERSON model was updated by analyzing the absolute quietest conditions for stations within the GSN (Berger et al. in J Geophys Res 109, 2005; Mcnamara and Buland in Bull Seism Soc Am 94:1517–1527, 2004; Ringler et al. in Seismol Res Lett 81(4) doi:10.1785/gssrl.81.4.605, 2010). Unfortunately, both the original model and the updated models did not include any deployed station in North Africa and Middle East, which reflects the noise levels within the desert environment of those regions. In this study, a survey was conducted to create a new seismic noise model from very broadband stations which recently deployed in North Africa. For this purpose, 1 year of continuous recording of seismic noise data of the Egyptian National Seismic Network (ENSN) was analyzed in order to create a new noise model. Seasonal and diurnal variations in noise spectra were recorded at each station. Moreover, we constructed a new noise model for each individual station. Finally, we obtained a new cumulative noise model for all the stations. We compared the new high-noise model (EHNM) and new low-noise model (ELNM) with both the high-noise model (NHNM) and low-noise model (NLNM) of Peterson (Observations and modelling of seismic background noise, US Geological Survey, open-file report 93–322, 1993). The obtained noise levels are considerably lower than low-noise model of Peterson (Observations and modelling of seismic background noise, US Geological Survey, open-file report 93–322, 1993) at ultra long period band (ULP band), but they are still below the high-noise model of Peterson (Observations and modelling of seismic background noise, US Geological Survey, open-file report 93–322, 1993). The results of this study could be considered as a first step to create permanent seismic noise models for North Africa and Middle East regions.  相似文献   

4.
We investigated frequency-magnitude distribution (FMD) of acoustic emissions (AE) occurring near an active mining front in a South African gold mine, using a catalog developed from an AE network, which is capable of detecting AEs down to M W  ?5. When records of blasts were removed, FMDs of AEs obeyed a Gutenberg?Richter law with similar b values, not depending on post-blasting time from the initial 1-min interval through more than 30 h. This result denies a suggestion in a previous study (Richardson and Jordan Bull Seismol Soc Am, 92:1766–1782, 2002) that new fractures generated by blasting disturb the size distribution of background events, which they interpreted as slip events on existing weak planes. Our AE catalog showed that the GR law with b ~ 1.2 was valid between M W  ?3.7 and 0 for AEs around the mining front. Further, using the mine’s seismic catalog, which covers a longer time period of the same area, we could extend the validity range of the GR law with the same b value up to M W 1.  相似文献   

5.
The effect of location errors in the performance of seismicity-based forecasting methods was studied here using one particular binary forecast technique, the Pattern Informatics (PI) technique (Rundle et al., Proc Nat Acad Sci USA 99, 2514–2521, 2002; Tiampo et al., Pure Appl Geophys 159, 2429–2467, 2002). The Southern Californian dataset was used to generate a series of perturbed catalogs by adding different levels of noise to epicenter locations. The PI technique was applied to these perturbed datasets to perform retrospective forecasts that were evaluated by means of skill scores, commonly used in atmospheric sciences. These results were then compared to the effectiveness obtained from the original dataset. Isolated instances of decline of the PI performance were observed due to the nature of the skill scores themselves, but no clear trend of degradation was identified. Dependence on the total number of events in a catalog also was studied, with no systematic degradation in the performance of the PI for catalogs with events in the cases studied. These results suggest that the stability of the PI method is due to the invariance of the clustering patterns identified by the TM metric (Thirumalai and Mountain, Phys Rev A 39, 3563–3573, 1989) when applied to seismicity.  相似文献   

6.
Three-dimensional frequency dependent S-wave quality factor (Qβ(f)) value for the central Honshu region of Japan has been determined in this paper using an algorithm based on inversion of strong motion data. The method of inversion for determination of three-dimensional attenuation coefficients is proposed by Hashida and Shimazaki (J Phys Earth. 32, 299–316, 1984) and has been used and modified by Joshi (Curr Sci. 90, 581–585, 2006; Nat Hazards. 43, 129–146, 2007) and Joshi et al. (J. Seismol. 14, 247–272, 2010). Twenty-one earthquakes digitally recorded on strong motion stations of Kik-net network have been used in this work. The magnitude of these earthquake ranges from 3.1 to 4.2 and depth ranging from 5 to 20 km, respectively. The borehole data having high signal to noise ratio and minimum site effect is used in the present work. The attenuation structure is determined by dividing the entire area into twenty-five three-dimensional blocks of uniform thickness having different frequency-dependent shear wave quality factor. Shear wave quality factor values have been determined at frequencies of 2.5, 7.0 and 10 Hz from record in a rectangular grid defined by 35.4°N to 36.4°N and 137.2°E to 138.2°E. The obtained attenuation structure is compared with the available geological features in the region and comparison shows that the obtained structure is capable of resolving important tectonic features present in the area. The proposed attenuation structure is compared with the probabilistic seismic hazard map of the region and shows that it bears some remarkable similarity in the patterns seen in seismic hazard map.  相似文献   

7.
“Repeating earthquakes” identified by waveform cross-correlation, with inter-event separation of no more than 1 km, can be used for assessment of location precision. Assuming that the network-measured apparent inter-epicenter distance X of the “repeating doublets” indicates the location precision, we estimated the regionalized location quality of the China National Seismograph Network by comparing the “repeating events” in and around China by Schaff and Richards (Science 303: 1176–1178, 2004; J Geophys Res 116: B03309, 2011) and the monthly catalogue of the China Earthquake Networks Center. The comparison shows that the average X value of the China National Seismograph Network is approximately 10 km. The mis-location is larger for the Tibetan Plateau, west and north of Xinjiang, and east of Inner Mongolia, as indicated by larger X values. Mis-location is correlated with the completeness magnitude of the earthquake catalogue. Using the data from the Beijing Capital Circle Region, the dependence of the mis-location on the distribution of seismic stations can be further confirmed.  相似文献   

8.
Historically, surface subsidence as a result of subsurface groundwater fluctuations have produced important and, at times, catastrophic effects, whether natural or anthropogenic. Over the past 30?years, numerical and analytical techniques for the modeling of this surface deformation, based upon elastic and poroelastic theory, have been remarkably successful in predicting the magnitude of that deformation (Le Mouélic and Adragna in Geophys Res Lett 29:1853, 2002). In this work we have extended the formula for a circular-shaped aquifer (Geertsma in J Petroleum Tech 25:734–744, 1973) to a more realistic elliptical shape. We have improved the accuracy of the approximation by making use of the cross terms of the expansion for the elliptic coordinates in terms of the eccentricity, e, and the mean anomaly angle, M, widely used in astronomy. Results of a number of simulations, in terms of e and M developed from the transcendental Kepler equation, are encouraging, giving realistic values for the elliptical approximation of the vertical deformation due to groundwater change. Finally, we have applied the algorithm to modeling of groundwater in southern California.  相似文献   

9.
We applied the maximum likelihood method produced by Kijko and Sellevoll (Bull Seismol Soc Am 79:645–654, 1989; Bull Seismol Soc Am 82:120–134, 1992) to study the spatial distributions of seismicity and earthquake hazard parameters for the different regions in western Anatolia (WA). Since the historical earthquake data are very important for examining regional earthquake hazard parameters, a procedure that allows the use of either historical or instrumental data, or even a combination of the two has been applied in this study. By using this method, we estimated the earthquake hazard parameters, which include the maximum regional magnitude $ \hat{M}_{\max } , $ the activity rate of seismic events and the well-known $ \hat{b} $ value, which is the slope of the frequency-magnitude Gutenberg-Richter relationship. The whole examined area is divided into 15 different seismic regions based on their tectonic and seismotectonic regimes. The probabilities, return periods of earthquakes with a magnitude M?≥?m and the relative earthquake hazard level (defined as the index K) are also evaluated for each seismic region. Each of the computed earthquake hazard parameters is mapped on the different seismic regions to represent regional variation of these parameters. Furthermore, the investigated regions are classified into different seismic hazard level groups considering the K index. According to these maps and the classification of seismic hazard, the most seismically active regions in WA are 1, 8, 10 and 12 related to the Alia?a Fault and the Büyük Menderes Graben, Aegean Arc and Aegean Islands.  相似文献   

10.
We relocated the hypocentral coordinates of small to moderate-sized earthquakes reported by the National Earthquake Information Center (NEIC) between April 2002 and August 2006 in the Gulf of California region and recorded by the broadband stations of the network of autonomously recording seismographs (NARS?CBaja array). The NARS?CBaja array consists of 19 stations installed in the Baja California peninsula, Sonora and Sinaloa, Mexico. The events reported by the preliminary determinations of epicenters (PDE) catalog within the period of interest have moment magnitudes (M w) ranging between 1.1 and 6.7. We estimated the hypocentral location of these events using P and S wave arrivals recorded by the regional broadband stations of the NARS?CBaja and the RESBAN (Red Sismológica de Banda Ancha) arrays and using a standard location procedure with the HYPOCENTER code (Lienert and Havskov in Seism Res Lett 66:26?C36, 1995) as a preliminary step. To refine the location of the initial hypocenters, we used the shrinking box source-specific station term method of Lin and Shearer (J Geophys Res 110, B04304, 2005). We found that most of the seismicity is distributed in the NW?CSE direction along the axis of the Gulf of California, following a linear trend that, from north to south, steps southward near the main basins (Wagner, Delfin, Guaymas, Carmen, Farallon, Pescadero and Alarcon) and spreading centers. We compared the epicentral locations reported in the PDE with the locations obtained using regional arrival times, and we found that earthquakes with magnitudes in the range 3.2?C5.0?mb differ on the average by as much as 43?km. For the M w magnitude range between 5 and 6.7 the discrepancy is less, differing on the average by about 25?km. We found that the relocated epicenters correlate well with the main bathymetric features of the Gulf.  相似文献   

11.
We apply the Bakun and Wentworth (Bull Seism Soc Am 87:1502–1521, 1997) method to determine the location and magnitude of earthquakes occurred in Central Asia using MSK-64 intensity assignments. The attenuation model previously derived and validated by Bindi et al. (Geophys J Int, 2013) is used to analyse 21 earthquakes that occurred over the period 1885–1964, and the estimated locations and magnitudes are compared to values available in literature. Bootstrap analyses are performed to estimate the confidence intervals of the intensity magnitudes, as well as to quantify the location uncertainty. The analyses of seven significant earthquakes for the hazard assessment are presented in detail, including three large historical earthquakes that struck the northern Tien-Shan between the end of the nineteenth and the beginning of the twentieth centuries: the 1887, M 7.3 Verny, the 1889, M 8.3 Chilik and the 1911, M 8.2 Kemin earthquakes. Regarding the 1911, Kemin earthquake the magnitude values estimated from intensity data are lower (i.e. MILH?=?7.8 and MIW?=?7.6 considering surface wave and moment magnitude, respectively) than the value M?=?8.2 listed in the considered catalog. These values are more in agreement with the value M S?=?7.8 revised by Abe and Noguchi (Phys Earth Planet In, 33:1–11, 1983b) for the surface wave magnitude. For the Kemin earthquake, the distribution of the bootstrap solutions for the intensity centre reveal two minima, indicating that the distribution of intensity assignments do not constrain a unique solution. This is in agreement with the complex source rupture history of the Kemin earthquake, which involved several fault segments with different strike orientations, dipping angles and focal mechanisms (e.g. Delvaux et al. in Russ Geol Geophys 42:1167–1177, 2001; Arrowsmith et al. in Eos Trans Am Geophys Union 86(52), 2005). Two possible locations for the intensity centre are obtained. The first is located on the easternmost sub-faults (i.e. the Aksu and Chon-Aksu segments), where most of the seismic moment was released (Arrowsmith et al. in Eos Trans Am Geophys Union 86(52), 2005). The second location is located on the westernmost sub-faults (i.e. the Dzhil'-Aryk segment), close to the intensity centre location obtained for the 1938, M 6.9 Chu-Kemin earthquake (MILH?=?6.9 and MIW?=?6.8).  相似文献   

12.
The International Data Centre (IDC) in Vienna, Austria, is determining, as part of automatic processing, sensor noise levels for all seismic, hydroacoustic, and infrasound (SHI) stations in the International Monitoring System (IMS) operated by the Provisional Technical Secretariat of the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO). Sensor noise is being determined several times per day as a power spectral density (PSD) using the Welch overlapping method. Based on accumulated PSD statistics a probability density function (PDF) is also determined, from which low and high noise curves for each sensor are extracted. Global low and high noise curves as a function of frequency for each of the SHI technologies are determined as the minimum and maximum of the individual station low and high noise curves, respectively, taken over the entire network of contributing stations. An attempt is made to ensure that only correctly calibrated station data contributes to the global noise models by additionally considering various automatic detection statistics. In this paper global low and high noise curves for 2010 are presented for each of the SHI monitoring technologies. Except for a very slight deviation at the microseism peak, the seismic global low noise model returns identically the Peterson (1993) NLNM low noise curve. The global infrasonic low noise model is found to agree with that of Bowman et al. (2005, 2007) but disagrees with the revised results presented in Bowman et al. (2009) by a factor of 2 in the calculation of the PSD. The global hydroacoustic low and high noise curves are found to be in quantitative agreement with Urick’s oceanic ambient noise curves for light to heavy shipping. Whale noise is found to be a feature of the hydroacoustic high noise curves at around 15 and 25 Hz.  相似文献   

13.
14.
Seismic source characteristics of low-yield (0.5–5 kt) underground explosions are inferred from hydrodynamic simulations using a granite material model on high-performance (parallel) computers. We use a non-linear rheological model for granite calibrated to historical near-field nuclear test data. Equivalent elastic P-wave source spectra are derived from the simulated hydrodynamic response using reduced velocity potentials. Source spectra and parameters are compared with the models of Mueller and Murphy (Bull Seism Soc Am 61:1675–1692, 1971, hereafter MM71) and Denny and Johnson (Explosion source phenomenology, pp 1–24, 1991, hereafter DJ91). The source spectra inferred from the simulations of different yields at normal scaled depth-of-burial (SDOB) match the MM71 spectra reasonably well. For normally buried nuclear explosions, seismic moments are larger for the hydrodynamic simulations than MM71 (by 25 %) and for DJ91 (by over a factor of 2), however, the scaling of moment with yield across this low-yield range is consistent for our calculations and the two models. Spectra from our simulations show higher corner frequencies at the lower end of the 0.5–5.0 kt yield range and stronger variation with yield than the MM71 and DJ91 models predict. The spectra from our simulations have additional energy above the corner frequency, probably related to non-linear near-source effects, but at high frequencies the spectral slopes agree with the f ?2 predictions of MM71. Simulations of nuclear explosions for a range of SDOB from 0.5 to 3.9 show stronger variations in the seismic moment than predicted by the MM71 and DJ91 models. Chemical explosions are found to generate higher moments by a factor of about two compared to nuclear explosions of the same yield in granite and at normal depth-of-burial, broadly consistent with comparisons of nuclear and chemical shots at the US Nevada Test Site (Denny, Proceeding of symposium on the non-proliferation experiment, Rockville, Maryland, 1994). For all buried explosions, the region of permanent deformation and material damage is not spherical but extends along the free surface above and away from the source. The effect of damage induced by a normally buried nuclear explosion on seismic radiation is explored by comparing the motions from hydrodynamic simulations with those for point-source elastic Green’s functions. Results show that radiation emerging at downward takeoff angles appears to be dominated by the expected isotropic source contribution, while at shallower angles the motions are complicated by near-surface damage and cannot be represented with the addition of a simple secondary compensated linear vector dipole point source above the shot point. The agreement and differences of simulated source spectra with the MM71 and DJ91 models motivates the use of numerical simulations to understand observed motions and investigate seismic source features for underground explosions in various emplacement media and conditions, including non-linear rheological effects such as material strength and porosity.  相似文献   

15.
To investigate the nature of Pn propagation, we have implemented the spectral-element method (SEM) for vertically and laterally varying media with and without attenuation. As a practical measure, essential features of the Pn waves are distilled into seismic attributes including arrival times, amplitudes and pulse frequencies. To validate the SEM simulations, we first compare the SEM results with reflectivity calculations of Braile and Smith (Geophys. J.R. Astr. Soc. 40, 145–176, 1975) and then to the asymptotic results of ?erveny and Ravindra (Theory of Seismic Headwaves, University of Toronto Press, pp. 235–250, 1971). Models with random, laterally varying Moho structures are then simulated, where the amplitude and pulse frequency characteristics are found to be stable to small Moho interface perturbations. SEM calculations for models with different upper-mantle velocity gradients are next performed where it is found that interference effects can strongly influence the Pn amplitudes and pulses frequencies. For larger-scale, laterally varying structures, SEM models similar to that found along the Hi-CLIMB array in Tibet are then performed. It is observed that large-scale structures, along with small-scale structures, upper-mantle velocity gradients and attenuation, can all significantly affect the Pn attributes. Ambiguities between upper-mantle velocity gradients and attenuation are also found when using Pn amplitudes and pulse frequency attributes. These ambiguities may be resolved, to some degree, by using the curvature of the travel times at longer regional distance, however, this would also be complicated by lateral variability.  相似文献   

16.
In a companion article Akkar et al. (Bull Earthq Eng, doi:10.1007/s10518-013-9461-4, 2013a; Bull Earthq Eng, doi:10.1007/s10518-013-9508-6, 2013b) present a new ground-motion prediction equation (GMPE) for estimating 5 %-damped horizontal pseudo-acceleration spectral (PSA) ordinates for shallow active crustal regions in Europe and the Middle East. This study provides a supplementary viscous damping model to modify 5 %-damped horizontal spectral ordinates of Akkar et al. (Bull Earthq Eng, doi:10.1007/s10518-013-9461-4 2013a; Bull Earthq Eng, doi:10.1007/s10518-013-9508-6, 2013b) for damping ratios ranging from 1 to 50 %. The paper also presents another damping model for scaling 5 %-damped vertical spectral ordinates that can be estimated from the vertical-to-horizontal (V/H) spectral ratio GMPE that is also developed within the context of this study. For consistency in engineering applications, the horizontal and vertical damping models cover the same damping ratios as noted above. The article concludes by introducing period-dependent correlation coefficients to compute horizontal and vertical conditional mean spectra (Baker in J Struct Eng 137:322–331, 2011). The applicability range of the presented models is the same as of the horizontal GMPE proposed by Akkar et al. (Bull Earthq Eng, doi:10.1007/s10518-013-9461-4 2013a; Bull Earthq Eng, doi:10.1007/s10518-013-9508-6, 2013b): as for spectral periods $0.01 \hbox { s}\le \,\hbox {T}\le \,4\hbox { s}$ as well as PGA and PGV for V/H model; and in terms of seismological estimator parameters $4\le \hbox {M}_\mathrm{w} \le 8, \hbox { R} \le 200 \hbox { km}, 150\hbox { m/s}\le \hbox { V}_\mathrm{S30}\le $ 1,200 m/s, for reverse, normal and strike-slip faults. The source-to-site distance measures that can be used in the computations are epicentral $(\hbox {R}_\mathrm{epi})$ , hypocentral $(\hbox {R}_\mathrm{hyp})$ and Joyner–Boore $(\hbox {R}_\mathrm{JB})$ distances. The implementation of the proposed GMPEs will facilitate site-specific adjustments of the spectral amplitudes predicted from probabilistic seismic hazard assessment in Europe and the Middle East region. They can also help expressing the site-specific design ground motion in several formats. The consistency of the proposed models together with the Akkar et al. (Bull Earthq Eng, doi:10.1007/s10518-013-9461-4 2013a; Bull Earthq Eng, doi:10.1007/s10518-013-9508-6, 2013b) GMPE may be advantageous for future modifications in the ground-motion definition in Eurocode 8 (CEN in Eurocode 8, Design of structures for earthquake resistance—part 1: general rules, seismic actions and rules for buildings. European Standard NF EN 1998-1, Brussels, 2004).  相似文献   

17.
Dispersion, attenuation and wavefronts in a class of linear viscoelastic media proposed by Strick and Mainardi (Geophys J R Astr Soc 69:415–429, 1982) and a related class of models due to Lomnitz, Jeffreys and Strick are studied by a new method due to the author. Unlike the previously studied explicit models of relaxation modulus or creep compliance, these two classes support propagation of discontinuities. Due to an extension made by Strick, either of these two classes of models comprise both viscoelastic solids and fluids. We also discuss the Andrade viscoelastic media. The Andrade media do not support discontinuity waves and exhibit the pedestal effect.  相似文献   

18.
Earthquake early warning systems (EEWS) are considered to be an effective, pragmatic, and viable tool for seismic risk reduction in cities. While standard EEWS approaches focus on the real-time estimation of an earthquake’s location and magnitude, innovative developments in EEWS include the capacity for the rapid assessment of damage. Clearly, for all public authorities that are engaged in coordinating emergency activities during and soon after earthquakes, real-time information about the potential damage distribution within a city is invaluable. In this work, we present a first attempt to design an early warning and rapid response procedure for real-time risk assessment. In particular, the procedure uses typical real-time information (i.e., P-wave arrival times and early waveforms) derived from a regional seismic network for locating and evaluating the size of an earthquake, information which in turn is exploited for extracting a risk map representing the potential distribution of damage from a dataset of predicted scenarios compiled for the target city. A feasibility study of the procedure is presented for the city of Bishkek, the capital of Kyrgyzstan, which is surrounded by the Kyrgyz seismic network by mimicking the ground motion associated with two historical events that occurred close to Bishkek, namely the 1911 Kemin (M?=?8.2; ±0.2) and the 1885 Belovodsk (M?=?6.9; ±0.5) earthquakes. Various methodologies from previous studies were considered when planning the implementation of the early warning and rapid response procedure for real-time risk assessment: the Satriano et al. (Bull Seismol Soc Am 98(3):1482–1494, 2008) approach to real-time earthquake location; the Caprio et al. (Geophys Res Lett 38:L02301, 2011) approach for estimating moment magnitude in real time; the EXSIM method for ground motion simulation (Motazedian and Atkinson, Bull Seismol Soc Am 95:995–1010, 2005); the Sokolov (Earthquake Spectra 161: 679–694, 2002) approach for estimating intensity from Fourier amplitude spectra; and the Tyagunov et al. (Nat Hazard Earth Syst Sci 6:573–586, 2006) approach for risk computation. Innovatively, all these methods are jointly applied to assess in real time the seismic risk of a particular target site, namely the city of Bishkek. Finally, the site amplification and vulnerability datasets considered in the proposed methodology are taken from previous studies, i.e., Parolai et al. (Bull Seismol Soc Am, 2010) and Bindi et al. (Soil Dyn Earthq Eng, 2011), respectively.  相似文献   

19.
An overview of the S-wave velocity (V s) structural model of the Caribbean with a resolution of 2°?×?2° is presented. New tomographic maps of Rayleigh wave group velocity dispersion at periods ranging from 10 to 40?s were obtained as a result of the frequency time analysis of seismic signals of more than 400 ray-paths in the region. For each cell of 2°?×?2°, group velocity dispersion curves were determined and extended to 150?s by adding data from a larger scale tomographic study (Vdovin et al., Geophys. J. Int 136:324–340, 1999). Using, as independent a priori information, the available geological and geophysical data of the region, each dispersion curve has been inverted by the “hedgehog” non-linear procedure (Valyus, Determining seismic profiles from a set of observations (in Russian), Vychislitielnaya Seismologiya 4, 3–14. English translation: Computational Seismology (V.I. Keylis-Borok, ed.) 4:114–118, 1968), in order to compute a set of V s versus depth models up to 300?km of depth. Because of the non-uniqueness of the solutions for each cell, a local smoothness optimization has been applied to the whole region in order to choose a three-dimensional model of V s, satisfying this way the Occam's razor concept. Several known and some new main features of the Caribbean lithosphere and asthenosphere are shown on these models such as: the west directed subduction zone of the eastern Caribbean region with a clear mantle wedge between the Caribbean lithosphere and the subducted slab; the complex and asymmetric behavior of the crustal and lithospheric thickness in the Cayman ridge; the predominant oceanic crust in the region; the presence of continental type crust in Central America, and the South and North America plates; as well as the fact that the bottom of the upper asthenosphere gets shallower going from west to east.  相似文献   

20.
We investigate interseismic deformation across the San Jacinto fault at Anza, California where previous geodetic observations have indicated an anomalously high shear strain rate. We present an updated set of secular velocities from GPS and InSAR observations that reveal a 2–3 km wide shear zone deforming at a rate that exceeds the background strain rate by more than a factor of two. GPS occupations of an alignment array installed in 1990 across the fault trace at Anza allow us to rule out shallow creep as a possible contributor to the observed strain rate. Using a dislocation model in a heterogeneous elastic half space, we show that a reduction in shear modulus within the fault zone by a factor of 1.2–1.6 as imaged tomographically by Allam and Ben-Zion (Geophys J Int 190:1181–1196, 2012) can explain about 50 % of the observed anomalous strain rate. However, the best-fitting locking depth in this case (10.4 ± 1.3 km) is significantly less than the local depth extent of seismicity (14–18 km). We show that a deep fault zone with a shear modulus reduction of at least a factor of 2.4 would be required to explain fully the geodetic strain rate, assuming the locking depth is 15 km. Two alternative possibilities include fault creep at a substantial fraction of the long-term slip rate within the region of deep microseismicity, or a reduced yield strength within the upper fault zone leading to distributed plastic failure during the interseismic period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号