首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Large-eddy simulation of turbulent flow above and within a forest   总被引:10,自引:22,他引:10  
A large-eddy simulation has been performed of an atmospheric surface layer in which the lower third of the domain is occupied by a drag layer and heat sources to represent a forest. Subgridscale processes are treated using second-order closure techniques. Lateral boundaries are periodic, while the upper boundary is a frictionless fixed lid. Mean vertical profiles of wind velocity derived from the output are realistic in their shape and response to forest density. Similarly, vertical profiles of Reynolds stress, turbulent kinetic energy and velocity skewness match observations, at least in a qualitative sense. The limited vertical extent of the domain and the artificial upper boundary, however, cause some departures from measured turbulence profiles in real forests. Instantaneous turbulent velocity and scalar fields are presented which show some of the features obtained by tower instrumentation in the field and in wind tunnels, such as the vertical coherence of vertical velocity and the slope of structures revealed by temperature patterns.  相似文献   

2.
A Large Eddy Simulation (LES) model representing the air flow within and above a plant canopy layer has been completed. Using this model, the organized structures of turbulent flow in the early developmental stages of a crop are simulated and discussed in detail.The effect of the drag due to vegetation is expressed by a term added to the three-dimensional Navier-Stokes equation averaged over the grid scale. For the formulation of sub-grid turbulence processes, the equations for the time-dependent SGS (Sub-Grid-Scale) turbulence energy equation is used, which includes the effects of dissipation (both by viscosity and leaf drag), shear production and diffusion.The organized structure of turbulent flow at the air-plant interface, obtained numerically by the model, yields its contribution to momentum transfer. The three-dimensional large eddy structures, which are composed of spanwise vortices (rolls) and streamwise vortices (ribs), are simulated near the air-plant interface. They are induced by the shear instability at inflection points of the velocity profile. The structure clearly has a life cycle. The instantaneous image of the structure is similar to those observed in the field observations of Gaoet al. (1989) and in the laboratory flume experiments of Ikeda and Ota (1992). These organized structures also account for the well known fact that the sweep motion of turbulence dominates momentum transport within and just above a plant canopy, and the motion of ejection prevails in the higher regions.  相似文献   

3.
Summary The modification of the flow structure arising from the removal of large patches of trees in a managed forest plantation near Gainesville, Florida is described. Using wavelet analysis of turbulence measurements taken above a forest canopy hundreds of meters downwind from the forest gap and well outside the footprint, the present paper examines changes in flow characteristics and demonstrates that the presence of the nearby clearcut introduces extraneous coherent events passing by the eddy-covariance flux measurement system.  相似文献   

4.
Hot-wire anemometers were used to measure air temperature and the three velocity components of the wind within and above a maize canopy. From digitized anemometer outputs, correlation coefficients for vertical heat flux and turbulent momentum transfer were calculated. A comparison of these coefficients with profiles of mean wind speed and mean temperature indicates that the main features of the turbulence may be explained in terms of the usual mixing-length theory. Instantaneous records of heat and momentum flux, however, indicate the existence of other competing turbulent mechanisms due to the unsteady, non-equilibrium nature of the turbulent flow. Regimes of flow dominated by mechanical and/or thermal mixing are indicated. Spectral results show that high shear and turbulent intensity levels as well as the presence of the maize leaves and stalks as vortex-shedding surfaces complicate the energy transfer mechanism. An energy balance between radiation and convection reveals that the energy budget is primarily a balance between solar radiation and the flux of latent heat.Contribution of the Sibley School of Mechanical and Aerospace Engineering, Cornell University, in cooperation with the Agricultural Research Service, U.S. Department of Agriculture, Ithaca, N.Y., U.S.A. and the Cornell University Agricultural Experiment Station. Department of Agronomy Series No. 1116.Sibley School of Mechanical and Aerospace Engineering, Cornell University; U.S. Department of Agriculture, Gainesville, Florida Section for Estuary and Fjord Studies, River and Harbour Laboratory, Technical University of Norway, Trondheim, Norway; State Univ. of New York at Buffalo; and U.S. Department of Agriculture and Cornell University; respectively.  相似文献   

5.
The output of a large-eddy simulation was used to study the terms ofthe turbulent kinetic energy (TKE) budget for the air layers above andwithin a forest. The computation created a three-dimensional,time-dependent simulation of the airflow, in which the lowest third ofthe domain was occupied by drag elements and heat sources to representthe forest. Shear production was a principal source of TKE in theupper canopy, diminishing gradually above tree-top height and moresharply with depth in the canopy. The transfer of energy to subgridscales (dissipation) was the main sink in the upper part of the domainbut diminished rapidly with depth in the canopy. Removal ofresolved-scale TKE due to canopy drag was extremely important,occurring primarily in the upper half of the forest where the foliagedensity was large. Turbulent transport showed a loss at the canopytop and a gain within the canopy. These general features have beenfound elsewhere but uncertainty remains concerning the effects ofpressure transport. In the present work, pressure was calculateddirectly, allowing us to compute the pressure diffusion term. Wellabove the canopy, pressure transport was smaller than, and opposite insign to, the turbulent transport term. Near the canopy top andbelow, pressure transport acted in concert with turbulent transport toexport TKE from the region immediately above and within the uppercrown, and to provide turbulent energy for the lower parts of theforest. In combination, the transport terms accounted for over half ofthe TKE loss near the canopy top, and in the lowest two-thirds of thecanopy the transport terms were the dominant source terms in thebudget. Moreover, the pressure transport was the largest source ofturbulent kinetic energy in the lowest levels of the canopy, beingparticularly strong under convective conditions. These resultsindicate that pressure transport is important in the plant canopyturbulent kinetic energy budget, especially in the lowest portion ofthe stand, where it acts as the major driving force for turbulentmotions.  相似文献   

6.
Statistics of atmospheric turbulence within and above a corn canopy   总被引:1,自引:2,他引:1  
Two three-dimensional split-film anemometers were used to measure turbulence statistics within and above a corn canopy. Normalised profiles of mean windspeed, root-mean-square velocity, momentum flux, and heat flux were constructed from half-hourly averages by dividing within-canopy measurements by the simultaneous canopy-top measurement. With the exception of the heat flux, these profiles showed consistent shape from day to day. Time series of the three velocity components were recorded on magnetic tape and subsequently analysed to obtain Eulerian time and length scales and the power spectrum of each component at several heights. The timescale was found to have a local minimum value at the top of the canopy. However the length scale L wformed from the timescale and the root-mean-square vertical velocity varied with height as L w 0.1 z. The power-spectra were non-dimensionalised to facilitate comparison of spectra at different heights and times. All spectra had -5/3 regions spanning at least two decades in frequency.  相似文献   

7.
Turbulent flow within and above an almond orchard was measured with three-dimensional wind sensors and fine-wire thermocouple sensors arranged in a horizontal array. The data showed organized turbulent structures as indicated by coherent asymmetric ramp patterns in the time series traces across the sensor array. Space-time correlation analysis indicated that velocity and temperature fluctuations were significantly correlated over a transverse distance more than 4m. Integral length scales of velocity and temperature fluctuations were substantially greater in unstable conditions than those in stable conditions. The coherence spectral analysis indicated that Davenport's geometric similarity hypothesis was satisfied in the lower frequency region. From the geometric similarity hypothesis, the spatial extents of large ramp structures were also estimated with the coherence functions.  相似文献   

8.
Lagged cross-correlation analyses between streamwise velocity at several heights within and above a forest, and between streamwise velocity and surface pressure, provide evidence that turbulence in the sub-crown region of the forest is to a large extent driven by pressure perturbations. The analyses support earlier results based on examination of coherent structures observed in the same forest. The phase of the streamwise velocity signal exhibits an increasing delay with decreasing height, indicative of a downwind tilted structure, until the upper region of the forest is reached, at which point the effect is reversed. It is suggested that positive pressure perturbations ahead of advancing microfronts induce streamwise accelerations in the trunk space. This link between the pressure pattern and the wind field explains why velocity spectra in the trunk space are depleted in the higher frequencies, relative to levels above.  相似文献   

9.
植被内部的风速分布规律和湍流交换特性   总被引:5,自引:0,他引:5  
刘树华 《气象》1990,16(3):8-12
  相似文献   

10.
The usefulness of the canopy flow index concept is demonstrated for a two-story evergreen tropical forest. A sample of about 2500 wind profiles was utilized. It encompasses a large range of ambient wind conditions and spans the whole monsoon cycle in Southeast Asia.It was found that the use of two canopy flow indices (one for the upper and one for the lower canopy) would be necessary to simulate the average canopy flow. For the upper canopy, an average value of 4.04 was obtained; for the lower canopy an index of 1.77 was computed. The indices seem to be independent of the ambient wind speed (if 2 m s-1 is exceeded), yet strongly dependent on wind direction.  相似文献   

11.
Turbulence measurements performed at high frequencies yield data revealing intermittent and multi-scale processes. Analysing time series of turbulent variables thus requires extensive numerical treatment capable, for instance, of performing pattern recognition. This is particularly important in the case of the atmospheric surface layer and specifically in the vicinity of plant canopies, where largescale coherent motions play a major role in the dynamics of turbulent transport processes. In this paper, we examine the ability of the recently developedwavelet transform to extract information on turbulence structure from time series of wind velocities and scalars. It is introduced as a local transform performing a time-frequency representation of a given signal by a specific wavelet function; unlike the Fourier transform, it is well adapted to studying non-stationary signals. After the principles and the most relevant mathematical properties of wavelet functions and transform are given, we present various applications of relevance for our purpose: determination of time-scales, data reconstruction and filtering, and jump detection. Several wavelet functions are inter-compared, using simple artificially generated data presenting large-scale features similar to those observed over plant canopies. Their respective behaviour in the time-frequency domain leads us to assign a specific range of applications for each.  相似文献   

12.
Turbulence statistics were measured in a natural black-spruce forest canopy in southeastern Manitoba, Canada. Sonic anemometers were used to measure time series of vertical wind velocity (w), and cup anemometers to measure horizontal wind speed (s), above the canopy and at seven different heights within the canopy. Vertical profiles were measured during 25 runs on eight different days when conditions above the canopy were near-neutral.Profiles of s and of the standard deviation ( w ) of w show relatively little scatter and suggest that, for this canopy and these stability conditions, profiles can be predicted from simple measurements made above the canopy. Within the canopy, a negative skewness and a high kurtosis of the w-frequency distributions indicate asymmetry and the persistence of large, high-velocity eddies. The Eulerian time scale is only a weak function of height within the canopy.Although w-power spectra above the canopy are similar to those in the free atmosphere, we did not observe an extensive inertial subrange in the spectra within the canopy. Also, a second peak is present that is especially prominent near the ground. The lack of the inertial subrange is likely caused by the presence of sources and sinks for turbulent kinetic energy within our canopy. The secondary spectral peak is probably generated by wake turbulence caused by form drag on the wide, horizontal spruce branches.  相似文献   

13.
14.
Observations have been made of the structure of turbulence and turbulent exchange within plant canopy layers. A new three-dimensional anemometer was used to measure the eddy fluxes of heat and momentum, and the related cospectra, within and above a corn crop and above a red pine forest. Measured values of momentum and heat fluxes, at each height within the corn canopy, were relatively constant proportions of the flux above the canopy, for the period of a day's observation. Extensive regions obeying a –5/3 power relation were found. Isotropy was found above the forest at high frequencies while above and within the corn crop, the ratios of the lateral and vertical spectral densities to the longitudinal component were less than the expected value in the – 5/3 region. In all situations, the vertical velocity spectra were more peaked than a universal curve, particularly a vertical velocity spectrum from above the forest. It is suggested that the additional variance results from the mixing caused by the individual roughness elements. As expected, the spectra could not be normalized using the height above the soil surface to calculate a non-dimensional frequency, but scaling heights were estimated by matching the frequencies of the peak of each curve with that of the universal curve. Cospectra of uw and wT within the corn canopy were of similar shape and frequency regime, and were basically similar in shape to cospectra above the crop. All of the cospectra were more sharply peaked than universal cospectral curves.  相似文献   

15.
16.
Air flow was observed above and within canopies of a number of kinds of soybeans. The Clark cultivar and two isolines of the Harosoy cultivar were studied in 1979 and 1980, respectively. Wind speed above the canopy was measured with cup anemometers. Heated thermistor anemometers were used to measure air flow within the canopy. Above-canopy air flow was characterized in terms of the zero-plane displacement (d), roughness parameter (z o) and drag coefficient (C d). d and z o were dependent on canopy height but were independent of friction velocity in the range 0.55 to 0.75 m s?1 · C d for the various canopies ranged from 0.027 to 0.035. Greater C d values were measured over an erectophile canopy than over a planophile canopy. C d was not measurably affected by differences in leaf pubescence. Within-canopy wind profiles were measured at two locations: within and between rows. The wind profile was characterized by a region of great wind shear in the upper canopy and by a region of relatively weak wind shear in the middle canopy. Considerable spatial variability in wind speed was evident, however. This result has significant implications for canopy flow modeling efforts aimed at evaluating transport in the canopy. In the lower canopy, wind speed within a row increased with depth whereas wind speed between two rows decreased with depth. The wind speeds at the two locations tended to converge to a common value at a height near 0.10 m. The attenuation of within-canopy air flow was stronger in canopies with greater foliage density. Canopy flow attenuation seemed to decrease with increasing wind speed, suggesting that high winds distorted the shape of the canopy in such a manner that the penetration of wind into the canopy increased.  相似文献   

17.
A numerical two-dimensional model based on higher-order closure assumptions is developed to simulate the horizontal microclimate distribution over an irrigated field in arid surroundings. The model considers heat, mass, momentum, and radiative fluxes in the soil-plant-atmosphere system. Its vertical domain extends through the whole planetary boundary layer. The model requires temporal solar and atmospheric radiation data, as well as temporal boundary conditions for wind-speed, air temperature, and humidity. These boundary conditions are specified by an auxiliary mesoscale model and are incorporated in the microscale model by a nudging method. Vegetation parameters (canopy height, leaf-angle orientation distribution, leaf-area index, photometric properties, root-density distribution), soil texture, and soil-hydraulic and photometric properties are considered.The model is tested using meteorological data obtained in a drip-irrigated cotton field located in an extremely arid area, where strong fetch effects are expected. Four masts located 50 m before the leading edge of the field and 10, 30, and 100 m inward from the leading edge are used to measure various meteorological parameters and their horizontal and vertical gradients.Calculated values of air and soil temperatures, wind-speed, net radiation and soil, latent, and sensible heat fluxes agreed well with measurements. Large horizontal gradients of air temperature are both observed and measured within the canopy in the first 40 m of the leading edge. Rate of evapotranspiration at both the upwind and the downwind edges of the field are higher by more than 15% of the midfield value. Model calculations show that a stable thermal stratification is maintained above the whole field for 24 h. The aerodynamic and thermal internal boundary layer (IBL) growth is proportional to the square root of the fetch. This is also the observed rate of growth of the thermal IBL over a cool sea surface.  相似文献   

18.
The influence of atmospheric stability on the behaviour of the third moment of flow velocities observed inside a deciduous forest canopy is examined. Results suggest that buoyancy plays a dominant role in dictating the magnitude of gusts observed inside tall vegetation. Furthermore, an examination of the turbulence recorded throughout leaf fall inside the same forest indicates that larger velocity skewnesses are observed inside a canopy in full leaf than inside a sparse canopy. The behaviour of the measured terms in the non-dimensionalized rate equation of the third moment of canopy flow velocities is also examined. Turbulent diffusion and turbulence gradient interaction terms are largest in stable conditions in the upper canopy layer while these are most important in unstable conditions in the lower canopy layer. In all stability regimes, the turbulent diffusion term is the main source of skewness. The turbulence gradient interaction term, the residual and buoyant production terms all contribute to destroy skewness in stable conditions.  相似文献   

19.
Average air velocities and turbulent Reynolds stresses were calculated at fixed heights above 1 Hz progressive sinusoidal water waves by reanalyzing the experimental data of Chao and Hsu (1978).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号