首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
We measured dissolved N(2)O, CH(4), O(2), NH(4)(+), NO(3)(-) and NO(2)(-) on 7 transects along the polluted Adyar River-estuary, SE India and estimated N(2)O and CH(4) emissions using a gas exchange relation and a floating chamber. High NO(2)(-) implied some nitrification of a large anthropogenic NH(4)(+) pool. In the lower catchment CH(4) was maximal (6.3+/-4.3 x 10(4)nM), exceeding the ebullition threshold, whereas strong undersaturation of N(2)O and O(2) implied intense denitrification. Emissions fluxes for the whole Adyar system approximately 2.5 x 10(8) g CH(4)yr(-1) and approximately 2.4 x 10(6)gN(2)O yr(-1) estimated with a gas exchange relation and approximately 2 x 10(9) g CH(4)yr(-1) derived with a floating chamber illustrate the importance of CH(4) ebullition. An equivalent CO(2) flux approximately 1-10 x 10(10)gy r(-1) derived using global warming potentials is equivalent to total Chennai motor vehicle CO(2) emissions in one month. Studies such as this may inform more effective waste management and future compliance with international emissions agreements.  相似文献   

2.
The increasing concentration of greenhouse gas in the atmosphere and their resultant climatic and environmental changes have been drawing much attention of the governments of various countries in recent years. The sphere of global influence and the comp…  相似文献   

3.
Reservoirs are man‐made lakes that severely impact on river ecosystems, and in addition, the new lake ecosystem can be damaged by several processes. Thus, the benefits of a reservoir, including energy production and flood control, must be measured against their impact on nature. New investigations point out that shallow and tropical reservoirs have high emission rates of the greenhouse gases CO2 and CH4. The methane emissions contribute strongly to climate change because CH4 has a 25 times higher global warming potential than CO2. The pathways for its production include ebullition, diffuse emission via the water‐air interface, and degassing in turbines and downstream of the reservoir in the spillway and the initial river stretch. Greenhouse gas emissions are promoted by a eutrophic state of the reservoir, and, with higher trophic levels, anaerobic conditions occur with the emission of CH4. This means that a qualitative and quantitative jump in greenhouse gas emissions takes place. Available data from Petit Saut, French Guinea, provides a first quantification of these pathways. A simple evaluation of the global warming potential of a reservoir can be undertaken using the energy density, the ratio of the reservoir surface and the hydropower capacity; this parameter is mainly determined by the reservoir's morphometry but not by the hydropower capacity. Energy densities of some reservoirs are given and it is clearly seen that some reservoirs have a global warming potential higher than that of coal use for energy production.  相似文献   

4.
We describe a dynamic model developed from a commercially available modeling package (ECoS-III) to simulate estuarine dissolved inorganic nitrogen (DIN) dynamics, and consequent N(2)O production and atmospheric flux on the timescale of tidal cycles. Simulated model state variables were NH(4)(+), NO(3)(-) and N(2)O concentrations, and salinity. Model outputs were evaluated through comparison with summer field data for the Tyne estuary, UK. The model adequately reproduced the observed axial profiles of NH(4)(+), NO(3)(-) and N(2)O concentrations. Nitrification was shown to be the dominant N(2)O source and estimates of the ratios nitrification to DIN load and N(2)O emission to DIN load are considerably lower than the corresponding values adopted in global scale models of estuarine N(2)O emissions based on DIN transformations. Hence our results are consistent with the requirement imposed by atmospheric N(2)O growth rate constraints that the amount of atmospheric N(2)O arising from agriculturally related sources, including estuarine transformations of N, be revised downward.  相似文献   

5.
Based on the estimation of greenhouse gases (GHG) emissions and carbon sequestration of the total conversion of marshlands (TMC), marshlands conversion to paddy fields (MCPFs) and marshlands conversion to uplands (MCULs), this study revealed the contribution to the global warming mitigation (CGWM) of paddy fields versus uplands converted from marshlands in the Sanjiang Plain (excluding the Muling‐Xingkai Plain on south of Wanda Mountain), Heilongjiang Province, northeast China. The results showed that the total area of MCPFs and MCULs was 504.23 × 103 ha between 1982 and 2005. The CGWM per unit area was 45.53 t CO2eq/ha for MCPFs and that was 23.95 t CO2eq/ha for MCULs, with an obvious 47.40% reduction. The MCPFs and MCULs ecosystems acted as the carbon sink all of the year. As far as CGWM per unit area is concerned, MCPFs mitigated the greenhouse effect which was greater than MCULs. And it was effective that the implementation of the uplands transformed into paddy fields in Northeast China with regard to marshlands protection and croplands (including paddy fields and uplands) reclamation.  相似文献   

6.
To preliminarily study N2O emissions and the importance of environmental parameters on N2O flux from subtropical agroecosystem in China,N2O flux measurements were made at three cultivated agricultural lands in Guizhou Province,southwestern China.Based on the test and validation of daily N2O flux and its several associated variables between DNDC model and field measurements,DNDC model has been employed to estimate total N2O emissions from entire agricultural lands and its spatial distribution at county scale in Guizhou in 1995,and to assess the contributions of cropping practices on N2O emissions.  相似文献   

7.
Carbon-dioxide releases associated with a mid-Cretaceous super plume and the emplacement of the Ontong-Java Plateau have been suggested as a principal cause of the mid-Cretaceous global warming. We developed a carbonate-silicate cycle model to quantify the possible climatic effects of these CO2 releases, utilizing four different formulations for the rate of silicate-rock weathering as a function of atmospheric CO2. We find that CO2 emissions resulting from super-plume tectonics could have produced atmospheric CO2 levels from 3.7 to 14.7 times the modern pre-industrial value of 285 ppm. Based on the temperature sensitivity to CO2 increases used in the weathering-rate formulations, this would cause a global warming of from 2.8 to 7.7 degrees C over today's global mean temperature. Altered continental positions and higher sea level may have been contributed about 4.8 degrees C to mid-Cretaceous warming. Thus, the combined effects of paleogeographic changes and super-plume related CO2 emissions could be in the range of 7.6 to 12.5 degrees C, within the 6 to 14 degrees C range previously estimated for mid-Cretaceous warming. CO2 releases from oceanic plateaus alone are unlikely to have been directly responsible for more than 20% of the mid-Cretaceous increase in atmospheric CO2.  相似文献   

8.
气候变化对湖库水环境的潜在影响研究进展   总被引:1,自引:3,他引:1  
本文着重归纳气候变化对湖库热力特性、冰期、溶解氧、营养盐、浮游植物和水生植物等方面的影响规律,探讨气候变化对湖库水环境潜在影响的区域差异,讨论现有研究方法的优缺点和发展前景.研究表明,气候变暖对湖库物理过程的影响最为显著;热带草原气候和温带海洋性气候对于气候变暖和降雨变化的响应较其他气候类型突出;气候变化对湖库水环境的影响效果具有两面性.通过分析各气候类型中气候变暖对磷水平的潜在影响差异表明,亚热带季风气候的湖库更可能受气候变暖的影响趋于富营养状态.在今后研究中,建议深入开展各气候类型中区域性气候变化对湖库水环境影响的实例研究.  相似文献   

9.
Lake Bonney, a permanently ice-covered Antarctic lake, has a middepth maximum N2O concentration of 41.6 micromoles N (>580,000% saturation with respect to the global average mixing ratio of N2O) in its east lobe, representing the highest level yet reported for a natural aquatic system. Atmospheric N2O over the lake was 45% above the global average, indicating that this lake is an atmospheric source of N2O. Apparent N2O production (ANP) was correlated with apparent oxygen utilization (AOU), and denitrification was not detectable, implying that nitrification is the primary source for this gas. The slope of a regression of ANP on AOU revealed that potential N2O production per unit of potential O2 consumed in the east lobe of Lake Bonney is at least two orders of magnitude greater than reported for the ocean. The maximum yield ratio for N2O [ANP/(NO2(-) + NO3-)] in Lake Bonney is 26% (i.e. 1 atom of N appears in N2O for every 3.9 atoms appearing in oxidized N), which exceeds previous reports for pelagic systems, being similar to values from reduced sediments. Areal N2O flux from the lake to the atmosphere is >200 times the areal flux reported for oceanic systems; most of this gas apparently enters the atmosphere through a small moat that occupies approximately 3% of the surface of the lake and exists for approximately 10 weeks in summer.  相似文献   

10.
湖泊等内陆水体是大气N2O潜在的重要排放源,也是全球N2O收支估算的重要组成部分。目前全球湖泊普遍面临富营养化和蓝藻暴发等问题,明晰藻型湖泊N2O排放强度及其环境影响因子对准确估算湖泊N2O排放和预测其未来变化至关重要。本研究选择太湖藻型湖区为研究对象,同时选取人为活动影响较小的湖心区作为对比区域,基于2011年8月至2013年8月为期2年的逐月连续观测,探讨藻型湖区N2O排放特征及其影响因素。结果表明,藻型湖区呈现极强的N2O排放,其排放通量为(4.88±3.05) mmol/(m2·d),是参考区域(湖心:(2.10±4.31) mmol/(m2·d))的2倍多。此外,在藻型湖区中不同点位N2O排放差异显著,受河流外源输入影响,近岸区是N2O的热点排放区,其年均排放通量高达10.93 mmol/(m2·d)。连续观测表明N2  相似文献   

11.
《国际泥沙研究》2020,35(3):249-255
Because of the important contributions of electrochemical redox reactions to biochemical cycles and their potential application for the in-situ remediation of contaminated sediment,the mechanisms of long-distance electron transport coupling spatially separated redox half reactions in sediment have drawn much attention.To explore a preliminary mechanism of long-distance electron transport in sediment,in the current study,two simplified composite systems are constructed consisting of spherical ferroferric oxide(Fe_3 O_4) nanoparticles and rod-like carbon nanotubes(CNTs) as conductive fillers and silica(SiO_2) particles as the matrix.Two different constructed composite systems(e.g.,SiO_2/Fe3 O4 and SiO_2/Fe3 O4/CNTs) were used to model a three-dimensional sediment framework instead of sediment with quite co mplex components.The effects of the loading of conductive fillers(e.g.,Fe_3 O_4,CNTs) and the particle size of SiO_2 matrix on the conductive behavior of the composite system were investigated.The results showed that both of the electrical properties of SiO_2/Fe3 O4 and SiO_2/Fe3 O4/CNTs composite systems typically exhibited a non-linear conductive behavior that the electrical conductivity increased with the increasing of filler loading and showed an abrupt increase at critical filler loading.The conductivity of the SiO_2/Fe_3 O_4 and SiO_2/Fe3 O4/CNTs composite systems with micro-sized SiO_2 as the matrix was higher than that of the composite systems with nano-sized SiO_2 as the matrix.Compared with the SiO_2/Fe_3 O_4 composite system,the electrical conductivity of the SiO_2/Fe3 O4/CNTs composite system was enhanced by several orders of magnitude and only a small loading of CNTs could make the conductivity of the SiO_2/Fe_3 O_4/CNTs composite system reach a higher level.The electrical conductivity predicted by the electrical conductivity model of a two-phase composite system showed a similar trend as the experimental results and the two-dimensional(2 D) percolation-based model filled with rods gave a good estimation of percolation probability.  相似文献   

12.
Soil erosion has been identified as a potential global carbon sink since eroded organic matter is replaced at source and eroded material is readily buried. However, this argument has relied on poor estimates of the total fate of in‐transit particulates and could erroneously imply soil erosion could be encouraged to generate carbon stores. These previous estimates have not considered that organic matter can also be released to the atmosphere as a range of greenhouse gases, not only carbon dioxide (CO2), but also the more powerful greenhouse gases methane (CH4) and nitrous oxide (N2O). As soil carbon lost by erosion is only replaced by uptake of CO2, this could represent a considerable imbalance in greenhouse gas warming potential, even if it is not significant in terms of overall carbon flux. This work therefore considers the flux of particulate organic matter through UK rivers with respect to both carbon fluxes and greenhouse gas emissions. The results show that, although emissions to the atmosphere are dominated by CO2, there are also considerable fluxes of CH4 and N2O. The results suggest that soil erosion is a net source of greenhouse gases with median emission factors of 5.5, 4.4 and 0.3 tonnes CO2eq/yr for one tonne of fluvial carbon, gross carbon erosion and gross soil erosion, respectively. This study concludes that gross soil erosion would therefore only be a net sink of both carbon and greenhouse gases if all the following criteria are met: the gross soil erosion rate were very low (<91 tonnes/km2/yr); the eroded carbon were completely replaced by new soil organic matter; and if less than half of the gross erosion made it into the stream network. By establishing the emission factor for soil erosion, it becomes possible to properly account for the benefits of good soil management in minimizing losses of greenhouse gases to the atmosphere as a by‐product of soil erosion. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
甲烷(CH4)是一种重要的温室气体,对全球气候变化有不可忽视的影响.三峡水库是中国最大的水库,其潜在的CH4释放近年来备受关注.然而,此地区现存研究主要集中于水气界面通量观测,对库底沉积物同底层水体CH4浓度变化之间关系的认知仍然欠缺.为探究三峡水库泥沙主要沉降淤积的中段区域库底水体CH4浓度变化及其主要影响因素,本研究于2017年8月2018年11月在涪陵南沱镇、忠县石宝寨、万州小周镇采集库底上覆水体和底泥样本,并结合三峡水库调度运行特征进行分析.结果表明,三峡水库中段库底上覆水CH4浓度范围为0.02~0.91μmol/L,二氧化碳(CO 2)浓度范围为0.006~0.105 mmol/L,沉积物有机碳含量范围为7~90 g/kg,总氮含量范围为0.27~45.6 g/kg.另外,三峡水库低水位运行时期(59月),上游及陆源输入大量异源性有机碳是该时期三峡库中段底部CH4积累的充分条件.在水库高水位运行时期(10月次年4月),水位与径流变化对三峡水库中段底部CH4的影响并不明显,库底自源性有机质相对比重有所增加,温度是该时期影响水库底层水体CH4浓度分布的主要水环境因素.  相似文献   

14.
A process-based ecosystem productivity model BEPS (Boreal Ecosystem Productivity Simulator) was updated to simulate half-hourly exchanges of carbon, water and energy between the atmosphere and terrestrial ecosystem at a temperate broad-leaved Korean pine forest in the Changbai Mountains, China. The BEPSh model is able to capture the diurnal and seasonal variability in carbon dioxide, water vapor and heat fluxes at this site in the growing season of 2003. The model validation showed that the simulated net ecosystem productivity (NEP), latent heat flux (LE), sensible heat flux (Hs) are in good agreement with eddy covariance measurements with an R2 value of 0.68, 0.86 and 0.72 for NEP, LE and Hs, respectively. The simulated annual NEP of this forest in 2003 was 300.5 gC/m2, and was very close to the observed value. Driving this model with different climate scenarios, we found that the NEP in the Changbai Mountains temperate broad-leaved Korean pine mixed forest ecosystem was sensitive to climate variability, and the current carbon sink will be weakened under the condition of global warming. Furthermore, as a process-based model, BEPSh was also sensitive to physiological parameters of plant, such as maximum Rubisco activity (Vcmax) and the maximum stomatal conductance (gmax), and needs to be carefully calibrated for other applications.  相似文献   

15.
A greenhouse warming caused by increased emissions of carbon dioxide from the Deccan Traps volcanism has been suggested as the cause of the terminal Cretaceous extinctions on land and in the sea. We estimate total eruptive and noneruptive CO2 output by the Deccan eruptions (from 6 to 20 x 10(16) moles) over a period of several hundred thousand years based on best estimates of the CO2 weight fraction of the original basalts and basaltic melts, the fraction of CO2 degassed, and the volume of the Deccan Traps eruptions. Results of a model designed to estimate the effects of increased CO2 on climate and ocean chemistry suggest that increases in atmospheric pCO2 due to Deccan Traps CO2 emissions would have been less than 75 ppm, leading to a predicted global warming of less than 1 degree C over several hundred thousand years. We conclude that the direct climate effects of CO2 emissions from the Deccan eruptions would have been too weak to be an important factor in the end-Cretaceous mass extinctions.  相似文献   

16.
The two key mechanisms for biologically driven carbon sequestration in oceans are the biological pump(BP) and the microbial carbon pump(MCP); the latter is scarcely simulated and quantified in the China seas. In this study, we developed a coupled physical-ecosystem model with major MCP processes in the South China Sea(SCS). The model estimated a SCSaveraged MCP rate of 1.55 mg C m~(-2) d~(-1), with an MCP-to-BP ratio of 1:6.08 when considering the BP at a depth of 1000 m.Moreover, the ecosystem responses were projected in two representative global warming scenarios where the sea surface temperature increased by 2 and 4°C. The projection suggested a declined productivity associated with the increased near-surface stratification and decreased nutrient supply, which leads to a reduction in diatom biomass and consequently the suppression of the BP. However, the relative ratio of picophytoplankton increased, inducing a higher microbial activity and a nonlinear response of MCP to the increase in temperature. On average, the ratio of MCP-to-BP at a 1000-m depth increased to 1:5.95 with surface warming of 4°C, indicating the higher impact of MCP in future ocean carbon sequestration.  相似文献   

17.
Abstract

Quantifying the impacts of climate change on the hydrology and ecosystem is important in the study of the Loess Plateau, China, which is well known for its high erosion rates and ecosystem sensitivity to global change. A distributed ecohydrological model was developed and applied in the Jinghe River basin of the Loess Plateau. This model couples the vegetation model, BIOME BioGeochemicalCycles (BIOME-BGC) and the distributed hydrological model, Water and Energy transfer Process in Large river basins (WEP-L). The WEP-L model provided hydro-meteorological data to BIOME-BGC, and the vegetation parameters of WEP-L were updated at a daily time step by BIOME-BGC. The model validation results show good agreement with field observation data and literature values of leaf area index (LAI), net primary productivity (NPP) and river discharge. Average climate projections of 23 global climate models (GCMs), based on three emissions scenarios, were used in simulations to assess future ecohydrological responses in the Jinghe River basin. The results show that global warming impacts would decrease annual discharge and flood season discharge, increase annual NPP and decrease annual net ecosystem productivity (NEP). Increasing evapotranspiration (ET) due to air temperature increase, as well as increases in precipitation and LAI, are the main reasons for the decreasing discharge. The increase in annual NPP is caused by a greater increase in gross primary productivity (GPP) than in plant respiration, whilst the decrease in NEP is caused by a larger increase in heterotrophic respiration than in NPP. Both the air temperature increase and the precipitation increase may affect the changes in NPP and NEP. These results present a serious challenge for water and land management in the basin, where mitigation/adaption measures for climate change are desired.

Editor Z.W. Kundzewicz; Associate editor D. Yang

Citation Peng, H., Jia, Y.W., Qiu, Y.Q., and Niu, C.W., 2013. Assessing climate change impacts on the ecohydrology of the Jinghe River basin in the Loess Plateau, China. Hydrological Sciences Journal, 58 (3), 651–670.  相似文献   

18.
The Global Warming Debate: A Review of the State of Science   总被引:2,自引:0,他引:2  
A review of the present status of the global warming science is presented in this paper. The term global warming is now popularly used to refer to the recent reported increase in the mean surface temperature of the earth; this increase being attributed to increasing human activity and in particular to the increased concentration of greenhouse gases (carbon dioxide, methane and nitrous oxide) in the atmosphere. Since the mid to late 1980s there has been an intense and often emotional debate on this topic. The various climate change reports (1996, 2001) prepared by the IPCC (Intergovernmental Panel on Climate Change), have provided the scientific framework that ultimately led to the Kyoto protocol on the reduction of greenhouse gas emissions (particularly carbon dioxide) due to the burning of fossil fuels. Numerous peer-reviewed studies reported in recent literature have attempted to verify several of the projections on climate change that have been detailed by the IPCC reports.The global warming debate as presented by the media usually focuses on the increasing mean temperature of the earth, associated extreme weather events and future climate projections of increasing frequency of extreme weather events worldwide. In reality, the climate change issue is considerably more complex than an increase in the earth’s mean temperature and in extreme weather events. Several recent studies have questioned many of the projections of climate change made by the IPCC reports and at present there is an emerging dissenting view of the global warming science which is at odds with the IPCC view of the cause and consequence of global warming. Our review suggests that the dissenting view offered by the skeptics or opponents of global warming appears substantially more credible than the supporting view put forth by the proponents of global warming. Further, the projections of future climate change over the next fifty to one hundred years is based on insufficiently verified climate models and are therefore not considered reliable at this point in time.  相似文献   

19.
Climate warming, one of the main features of global change, has exerted indelible impacts on the environment, among which the impact on the transport and fate of pollutants has aroused widespread concern. Persistent organic pollutants (POPs) are a class of pollutants that are transported worldwide. Determining the impact of climate warming on the global cycling of POPs is important for understanding POP cycling processes and formulating relevant environmental policies. In this review, the main research findings in this field over the past ten years are summarized and the effects of climate warming on emissions, transport, storage, degradation and toxicity of POPs are reviewed. This review also summarizes the primary POP fate models and their application. Additionally, research gaps and future research directions are identified and suggested. Under the influence of climate change, global cycling of POPs mainly shows the following responses. (1) Global warming directly promotes the secondary emission of POPs; for example, temperature rise will cause POPs to be re-released from soils and oceans, and melting glaciers and permafrost can re-release POPs into freshwater ecosystems. (2) Global extreme weather events, such as droughts and floods, result in the redistribution of POPs through intense soil erosion. (3) The changes in atmospheric circulation and ocean currents have significantly influenced the global transport of POPs. (4) Climate warming has altered marine biological productivity, which has changed the POP storage capacity of the ocean. (5) Aquatic and terrestrial food-chain structures have undergone significant changes, which could lead to amplification of POP toxicity in ecosystems. (6) Overall, warming accelerates the POP volatilization process and increases the amount of POPs in the environment, although global warming facilitates their degradation at the same time. (7) Various models have predicted the future environmental behaviors of POPs. These models are used to assist governments in comprehensively considering the impact of global warming on the environmental fate of POPs and therefore controlling POPs effectively. Future studies should focus on the synergistic effects of global changes on the cycling of POPs. Additionally, the interactions among global carbon cycling, water cycling and POP cycling will be a new research direction for better understanding the adaptation of ecosystems to climate change.  相似文献   

20.
海原断裂带东南段土壤气体地球化学特征   总被引:17,自引:1,他引:16       下载免费PDF全文
在海原断裂带东南段4个地点跨断层测量了土壤气中He、H2、N2、O2、CH4、C2 H6、Rn和Hg 的浓度及He、H2、CH4、Rn和Hg的通量.测量结果表明,N2/O2、Hg和Rn的背景值分别是4.2、50.4ng/m3和5.8k Bq/m3;土壤气中He和CH4在海原断裂带东南段端部有强烈异常,并且脱气强烈,通量...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号