首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In order to assess the recent anthropogenic environmental changes in Lake Kitaura, central Japan, changes during the past few centuries were reconstructed from results of radiometric and tephrochlonological age determination, magnetic susceptibility measurements, total organic carbon analyses, total nitrogen analyses and fossil diatom analyses on a sediment core from the lake. A total of six major and sub-zones are recognized according to the diatom fossil assemblages, and we discuss aquatic environmental change in Lake Kitaura mainly based on these diatom assemblage change. Zone Ia and Zone Ib (older than AD 1707) are marine to brackish. In Zone IIa (AD␣1707–AD 1836), most of the brackish diatoms disappeared, and were replaced by freshwater species indicating a decrease in salinity. We interpret the salinity decrease in Zone I–IIa as a sea-level fall during the Little Ice Age. The salinity of the lake decreased to near freshwater conditions in Zone IIb (AD 1836–AD 1970), which could arise from alteration in River Tone or development of a sandspit in the mouth of River Tone in addition to sea-level change. In Zone IIIa (AD 1970–AD 1987), the diatom assemblage indicates a freshwater environment, and sedimentation rates increase rapidly. These changes reflect sedimentary environment change and an ecosystem transition due to the construction of the tide gate. In Zone IIIb (AD 1987–AD 2002), the diatom flux (valves cm−2 y−1) increased and species composition changed. The changes in Zone IIIb show a good agreement with limnological monitoring data gathered from the lake. These paleolimnological data suggest that the recent human-induced changes of the aquatic environment of the lake after the 1970s exceed rates during the period concerned in this study.  相似文献   

2.
This study provides a high resolution multi-proxy record of the response of an aquatic ecosystem (Alexander Lake) to forest clearance in New Zealand in the late twentieth century (ca. 1950–2006 AD). New chironomid-based transfer functions for lake water total nitrogen (TN) concentration were applied to the Alexander Lake chironomid record. A test of the significance of reconstructions based on multiple model types indicates that a model with the highest r2 and lowest root mean squared error of prediction may not necessarily perform the best when applied to a particular site. The chironomid-based TN reconstruction and other proxies suggest a complex response by a stained water (dystrophic) lake in a forested catchment to deforestation. Minor perturbations and nutrient influx may favour increased phytoplankton production, but continued light attenuation by dissolved organic carbon and humic compounds prevents proliferation of submerged macrophytes. Complete mechanical forest clearance resulted in a short term pulse of nutrients and eutrophication. The long term effect of deforestation was to increase light penetration and favour the growth of submerged macrophytes. Continued eutrophication of Alexander Lake could be due to a contribution of bird-derived nutrients. Deforestation around Alexander Lake has created a perfect moulting site for Paradise Shelducks (Tadorna variegata Gmelin). The input of total phosphorus from T. variegata could be enough to trigger blooms of Microcystis that currently occur in the lake. Changes in bird behaviour in response to changes in vegetation should therefore be considered a possible result of past (including prehistoric) and future deforestation in New Zealand.  相似文献   

3.
Hypoxia in freshwater systems is currently spreading globally and putting water quality, biodiversity and other ecosystem services at risk. Such adverse effects are of particular concern in permanently stratified meromictic lakes. Yet little is known about when and how meromixis and hypoxia became established (or vanished) prior to anthropogenic impacts, or how human activities such as deforestation, erosion and nutrient cycling affected the mixing regimes of lakes. We used calibrated hyperspectral imaging (HSI) data in the visible and near infrared range from a fresh, varved sediment core taken in Lake Jaczno, NE Poland, to map sedimentary pigments at very high resolution (sub-varve scale) over the past 1700 years. HSI-inferred bacteriopheophytin a (bphe a, produced by anoxygenic phototrophic bacteria) serves as a proxy for meromixis, whereas HSI-inferred green pigments (chlorophyll a and diagenetic products) can be used as estimators of aquatic productivity. Meromixis was established and vanished long before significant human disturbance in the catchment was observed in the late eleventh century AD. Under pre-anthropogenic conditions, however, meromixis was interrupted frequently, and the lake mixing regime flickered between dimixis and meromixis. During two periods with intense deforestation and soil erosion in the catchment, characterised by sedimentary facies rich in clay and charcoal (AD 1070–1255 and AD 1670–1710), the lake was mostly dimictic and better oxygenated than in periods with relative stability and a presumably closed forest around the lake, i.e. without human disturbances. After ca. AD 1960, meromixis became established quasi-permanently as a result of eutrophication. The persistent meromixis of the last ~60 years is unusual with respect to the record of the last 1700 years.  相似文献   

4.
We studied a short sediment core from Lake Hampträsk, southern Finland, for evidence of the ‘Little Ice Age’ (LIA) in aquatic invertebrate communities. Subfossil chironomids, cladocerans, and chydorid ephippia were investigated, together with detrended correspondence analyses (DCAs) and loss-on-ignition (LOI). Our results show two cooler periods. The first cooling, indicated by increased numbers of chydorid ephippia and cold-water chironomid taxa, occurred ca. 1400 AD and the second, more drastic cooling, during the seventeenth century, when cold-water chironomids began to increase. Our data suggest that the cooling culminated around 1700 AD, when cold-stenothermic chironomids and chydorid ephippia attained maximal values and the LOI and diversity of invertebrates decreased to minimal values. After the LIA, the aquatic fauna appeared to respond to rising trophic state caused by enhanced land use in the catchment.  相似文献   

5.
Diatom and geochemical data from Crawford Lake, Ontario, have been used to document limnological responses to periods of cultural disturbance resulting from native Iroquoian occupation of the watershed (1268–1486 AD) and Euro-Canadian agriculture and deforestation (1867 AD–present). Here, we further develop the high-resolution nature of the Crawford Lake sediment record to examine the physical, chemical and biological aspects of limnological response to human disturbances in the lake catchment area with exceptional detail. We report detailed diatom abundance and flux data for individual taxa from Crawford Lake, and further describe the relationship between assemblage composition and environmental conditions using canonical correspondence analysis (CCA). Diatom assemblage data are used to calculate diatom inferred-total phosphorus (DI-TP) concentrations for the past ∼1,000 years. We also examine the diatom community response during and after periods of disturbance by Iroquoian and Euro-Canadian populations, and compare this response to existing geochemical proxies of lake production and new elemental geochemical indicators of catchment area erosion. In particular, we explore the differing limnological response to the two distinct periods of cultural eutrophication and examine the limnological processes that occurred during the period of␣low (or no) human activity (1487–1866 AD), when geochemical indicators of lake production recovered to pre-disturbance conditions, but diatom assemblages notably did not. Our results illustrate the highly susceptible nature of diatom communities to periods of anthropogenic disturbance, and emphasize that ecological indicators (such as diatom assemblages) should be included with other proxies (such as nutrient concentrations and physical characteristics) when assessing disturbance and recovery in lake systems.  相似文献   

6.
This paper presents the recent history of a large prealpine lake (Lake Bourget) using chironomids, diatoms and organic matter analysis, and deals with the ability of paleolimnological approach to define an ecological reference state for the lake in the sense of the European Framework Directive. The study at low resolution of subfossil chironomids in a 4-m-long core shows the remarkable stability over the last 2.5 kyrs of the profundal community dominated by a Micropsectra-association until the beginning of the twentieth century, when oxyphilous taxa disappeared. Focusing on this key recent period, a high resolution and multiproxy study of two short cores reveals a progressive evolution of the lake’s ecological state. Until AD 1880, Lake Bourget showed low organic matter content in the deep sediments (TOC less than 1%) and a well-oxygenated hypolimnion that allowed the development of a profundal oxyphilous chironomid fauna (Micropsectra-association). Diatom communities were characteristic of oligotrophic conditions. Around AD 1880, a slight increase in the TOC was the first sign of changes in lake conditions. This was followed by a first limited decline in oligotrophic diatom taxa and the disappearance of two oxyphilous chironomid taxa at the beginning of the twentieth century. The 1940s were a major turning point in recent lake history. Diatom assemblages and accumulation of well preserved planktonic organic matter in the sediment provide evidence of strong eutrophication. The absence of profundal chironomid communities reveals permanent hypolimnetic anoxia. From AD 1995 to 2006, the diatom assemblages suggest a reduction in nutrients, and a return to mesotrophic conditions, a result of improved wastewater management. However, no change in hypolimnion benthic conditions has been shown by either the organic matter or the subfossil chironomid profundal community. Our results emphasize the relevance of the paleolimnological approach for the assessment of reference conditions for modern lakes. Before AD 1900, the profundal Micropsectra-association and the Cyclotella dominated diatom community can be considered as the Lake Bourget reference community, which reflects the reference ecological state of the lake.  相似文献   

7.
Diatoms, Cladocera, and chironomids preserved in the sediments of Lake Dalgoto were studied to reconstruct the history of the lake ecosystem in the context of the vegetation history as represented by the pollen stratigraphy. Younger Dryas silty sediments at the base of the core are characterized by low diversity of aquatic organisms. The transition to the Holocene is indicated by a sharp change from silt to clay-gyttja. The migration and expansion of trees at lower elevations between 10200 and 8500 14C-yr BP, along with higher diversities and concentrations of aquatic organisms and the decreased proportion of north-alpine diatoms, point to rapidly rising summer temperatures. After 6500 14C-yr BP the expansion of Pinus mugo in the catchment coincides with signs of natural eutrophication as recorded by an increase of planktonic diatoms. In the late Holocene (4000–0 14C-yr BP) Pinus peuce and Abies are reduced and Picea expands. Cereal grains and disturbance indicators suggest late-Holocene human modification of the vegetation.  相似文献   

8.
Documentary and anecdotal evidence is presented to supplement geomorphological evidence for the conversion of Lake Forsyth (Wairewa) from marine inlet to brackish to freshwater lake within near historic time. Growth of the barrier across the lake outlet is likely to continue in the future.  相似文献   

9.
We studied the sedimentology, benthic foraminifera, molluscs, and δ18O and δ13C of Ammonia tepida tests in two late Holocene sediment cores from Lake Qarun (Egypt). The cores, QARU2 (upper section, 8.2 m) and QARU4 (1.4 m), span approximately the past 500 years of sedimentation. Benthic foraminifera first appeared in the upper part of QARU2 at 314 cm depth, ca. AD 1550. This depth marks the beginning of colonization of the lake by foraminifera and indicates a change in lake water salinity, as foraminifera cannot tolerate fresh water. Initially, three species of benthic foraminifera colonized the lake, Ammonia tepida, Cribroelphidium excavatum and Cribrononion incertum. Relative abundance of these species fluctuated throughout cores QARU2 and QARU4 and highest overall faunal diversity occurred at the beginning of the twentieth century. High relative abundances of C. incertum and deformed tests are attributed to periods of greater lakewater salinity. Peaks in both δ18O and δ13C indicate times of higher evaporation and reduced fresh water inflow. Inferred salinity was high around AD 1700 and after AD 1990. Rapid response of climate proxy variables indicates the high sensitivity of Lake Qarun to environmental changes over the past several 100 years. Increases in lakewater Mg concentration during past evaporative events, associated with less fresh water inflow, probably provided conditions suitable for C. incertum to build its white or transparent tests. Gradual decrease of C. incertum, until its disappearance at 100 cm depth ca. AD 1890, indicates a more persistent trend in lake water chemistry. Higher concentrations of dissolved sulphates were the likely cause of this species disappearance. Recent, twentieth-century sediments were deposited under optimal salinity (37‰) for benthic fauna, but further environmental changes are indicated by the decrease or disappearance of several benthic foraminifera and mollusc species. Intermittent hypoxia in the lake’s bottom waters, caused by cultural eutrophication, may account for these most recent changes.  相似文献   

10.
This study used palaeolimnological approaches to determine how Holocene climatic and environmental changes affected aquatic assemblages in a subarctic lake. Sediments of the small Lake Njargajavri, in northern Finnish Lapland above the present treeline, were studied using multi-proxy methods. The palaeolimnological development of the lake was assessed by analyses of chironomids, Cladocera and diatoms. The lake was formed in the early Holocene and was characterized by prominent erosion and leaching from poorly developed soils before the establishment of birch forests, resulting in a high pH and trophic state. The lake level started to lower as early as ca. 10,200 cal. BP. In the resulting shallow basin, rich in aquatic mosses, pH decreased and a diverse cladoceran and chironomid assemblage developed. It is likely that there was a slight rise in the water level ca. 8000 cal. BP. Later, during the mid-Holocene characterized by low effective moisture detected elsewhere in Fennoscandia, the lake probably completely dried out; this is manifest as a hiatus in the stratigraphy. The sediment record continues from ca. 5000 cal. BP onwards as the lake formed again due to increased effective moisture. The new lake was characterized by very low pH. The possible spread of pine to the catchment and the development of heath community may have contributed to the unusually steep (for northern Fennoscandia) decline in pH via change in soils, together with the natural decrease in leaching of base cations. Furthermore, the change in pH may have been driven by cooling climate, affecting the balance of dissolved inorganic carbon in the lake.  相似文献   

11.
Diatoms, pollen, physical and magnetic analyses of the sediments have been used to reconstruct the development over the last 6000 years of Lake Bussjösjön, a small lake in southern Sweden. Stratigraphic variations in a core of more than 15 m reveal changes in diatom assemblages, which correspond closely to changes in pollen, loss-on-ignition, and magnetic measurements that are related to land use and vegetation changes in the catchment. From ca 6000 BP to 2700 BP, a forest surrounded what was then a slightly eutrophic lake. The sudden appearance of Cyclostephanos dubius (Fricke) Round and several epiphytic/epipsammic diatoms at 2700 BP coincides with deforestation of the catchment (2700 BP to 2500 BP). A change in land use from predominantly pasture to arable land from 1300 BP to 1100 BP caused a high level of soil erosion with a decrease of C. dubius and the increase of Stephanodiscus species. An increase of epiphytic/epipsammic species coincides with increased arable farming and the change from a field-rotation to a crop-rotation system, and shows not only an increase in eutrophication but also changes in water depth. The influence of the catchment through time resulted in a smaller, shallower and eutrophic to hypertrophic lake.  相似文献   

12.
Fish introduction and eutrophication are important disturbances to aquatic ecosystems, especially to oligotrophic plateau lakes that are generally considered to be very vulnerable ecosystems. Planktivorous fish Neosalanx taihuensis were introduced to Lake Fuxian, an oligotrophic (TP 17 μg/l) deep (average depth 89.7 m) plateau lake in southwest China, in the middle of the 1980s. After the introduction, N. taihuensis became the dominant fish species, and the total fish yield increased about threefold. Although the lake is still oligotrophic, the trophic state of Lake Fuxian has started to shift with increasing nutrient supply (eutrophication) due to an increase in human activities in the drainage basin. This study investigated the effects of N. taihuensis introduction and eutrophication on the cladoceran community of Lake Fuxian by examining changes in cladoceran assemblages and abundance, as well as the morphological features of Bosmina microfossils in the lake sediment. Absolute abundance of total Bosmina increased substantially after the middle of the 1980s. In addition, dominance of Bosmina with straight antennules was replaced by Bosmina with hooked antennules. The morphological variables (length of carapace, antennule and mucro) of Bosmina all decreased when planktivorous fish N. taihuensis achieved relatively large numbers. Eutrophication was the most important process determining cladoceran abundance, while fish introduction played an important role in structuring the cladoceran community in this oligotrophic, deep plateau lake.  相似文献   

13.
末次冰盛期时吉兰泰盐湖的湖泊状态与古气候特征   总被引:1,自引:1,他引:0  
通过现代季风边缘区的吉兰泰盐湖钻孔JLT11-A孔沉积岩芯的矿物分析,结合地层盘星藻的含量探讨末次冰盛期(LGM)时湖泊的状态和古气候特征。结果显示:在LGM时吉兰泰湖泊沉积矿物主要是石英、长石为主的碎屑岩沉积,含量在85%左右,显示出陆源碎屑矿物的高输入状态,可能指示区域寒冷干旱的环境;其次是以方解石为主的碳酸盐的沉积,含量约为10%;氯化物为主的石盐类矿物一般不足5%,但持续存在,指示湖泊仍然有较高的盐度,因此地层中的淡水藻类盘星藻可能是由河流输入。由于陆源碎屑矿物输入强烈,矿物组合可能难以直接指示吉兰泰盐湖湖水状态。区域的干冷的气候与大多数的古气候记录一致,而与新疆西部的冷湿的环境不同。对比邻近区域的古气候研究结果发现,本区域在LGM时段夏季降水相对于冰消期偏多,而相对于MIS3阶段晚期偏少,整体夏季风减弱。吉兰泰盐湖末次冰盛期到末次冰消期以来矿物组合的变化表明,湖泊环境可能受到夏季太阳辐射、全球与区域温度变化以及夏季风强弱变化的影响。  相似文献   

14.
Spores of coprophilous fungi, especially Sporormiella, are often well preserved in lake sediment cores. It has been hypothesized that such spores can be used to quantify past livestock abundance. The quantitative relationship between fungal spore abundance and livestock populations, however, is not well established, nor are the mechanisms of spore transport and deposition in lacustrine systems. Multiple cores from Lake Allos, a large high-elevation lake in the French Alps, were used to map the modern abundance of Sordaria and Sporormiella spores throughout the lake. We observed high spatial heterogeneity with respect to spore numbers. No correlation with the distance from shoreline was found. There was, however, a relation with distance from the two main lake inlets. These results were used to select two fungi-rich sediment cores to investigate grazing pressure over the last two centuries. Comparisons were made between spore influx and historic data on livestock densities in the catchment. A sharp decrease in Sporormiella influx ca. 1894–1895 was associated with a reported reduction in sheep in the Allos catchment at that time. Mean influx of Sporormiella decreased by a factor of three between the nineteenth and twentieth centuries, reflecting a reduction in the reported number of animals in the Lake Allos catchment, from 6,000 to 2,000. This study confirmed that Sporormiella spore abundance in lake sediments can be used as a proxy for catchment herbivore numbers in paleoecological reconstructions. Nevertheless, our data indicate that before spore accumulation can be used to infer past domestic herbivore density, one must understand the processes of coprophilous spore transfer from the catchment to the lake and the influence of core location on spore numbers in the sediment.  相似文献   

15.
Paleolimnological analyses were used to infer limnological changes during the past ~ 300 yrs in the west basin of Peninsula Lake, a small (853 ha) Precambrian Shield lake in Ontario, Canada, that has been subjected to moderate cultural disturbances (forest clearance, cottage and resort development). This study represents a pioneering attempt to use sedimentary chironomid assemblages and weighted-averaging models to quantify past hypolimnetic anoxia (expressed as the anoxic factor, AF). Impacts of forest clearance and human land-use on deepwater oxygen availability and surface water quality were assessed by comparing chironomid-inferred AF and diatom-inferred total phosphorus concentration ([TP]) to changes in terrestrial pollen and historical data. This study also discusses the ability of chironomids to quantitatively infer changes in AF.Pre-disturbance chironomid assemblages were stable and dominated by taxa indicative of oxygen-rich hypolimnetic conditions (e.g., Protanypus, Heterotrissocladius, Micropsectra type), while diatoms indicated oligotrophic lake status (diatom inferred [TP] = 5-7 g·l-1). Chironomids characteristic of lower oxygen availability (e.g., Chironomus, Procladius) increased following land-clearance, road construction, establishment of a grist mill and lakeshore development beginning ca. 1870. Increased abundances of Tanytarsus s. lat., a multigeneric group of mainly littoral chironomids, since 1900, indicated that littoral chironomids may have comprised a greater proportion of fossil assemblages during periods of eutrophication and prolonged anoxia. Abundances of meso-eutrophic diatom taxa (e.g., Fragilaria crotonensis, Asterionella formosa, Aulacoseira ambigua, A. subarctica) increased concurrent with European settlement (ca. 1870) and diatom-inferred [TP] doubled (~ 6-12 g·l-1), further indicating that naturally-oligotrophic Precambrian Shield lakes were extremely sensitive to initial land-clearance activities.Recent increases in oligotrophic diatom taxa (e.g., Cyclotella stelligera) indicate a shift to more oligotrophic conditions since ca. mid-1960s, with greatest changes since ca. 1980. The chironomids Heterotrissocladius and Micropsectra type also increased at this time suggesting greater deepwater oxygen availability. These recent water-quality improvements, possibly in response to enhanced nutrient removal from detergents and sewage, climate-related reductions in external phosphorus loads, and catchment (but not lake) acidification and reforestation, suggest that habitat for commercially-valuable cold-water fishes has improved in recent decades despite greater recreational lake-use.Paleolimnological assessment of trophic status changes in Peninsula Lake using fossil diatom and chironomid assemblages were in good agreement. Diatom inferences of [TP] and chironomid inferences of AF both suggest that Peninsula Lake was historically oligotrophic, became oligo-mesotrophic after European settlement, and returned to oligotrophy in recent yrs. Chironomid inferences of [TP] consistently underestimated the trophic status of Peninsula Lake, possibly due to its relatively large hypolimnion. These results suggest that AF represents a useful tool for quantitatively reconstructing the past trophic status of deeper, stratified lakes.  相似文献   

16.
Frozen sediment cores from Lake Pupuke in Auckland City, New Zealand, contain a high resolution decadal to annual scale record of changing lake paleoenvironments and geochemistry that reflects changing landuse and hydrology in the catchment over the past c. 190 years. A reliable chronology is available from AMS 14C and 210Pb dating of the sediments, with the timing of the older part of the record supported by the first appearance of pollen of introduced Pinus and Plantago lanceolata associated with European settlement of Auckland in the early 1840s. Diatom stratigraphy, sediment elemental and carbon isotope geochemistry reflect changes in sediment sources and lake conditions commensurate with European development of the Lake Pupuke catchment, in particular enhanced algal productivity controlled by the influx of nutrients after c. 1920 AD. Attempts to prevent nuisance algal blooms in 1933, 1934 and 1939 using CuSO4 addition produced Cu spikes in the sediment that allowed confirmation of the accuracy of the 210Pb chronology. Hence, the elemental and isotopic composition of the Lake Pupuke sediments reflect the timing of significant anthropogenic activities, rather than climatic variations, that have occurred within the watershed over the past c. 190 years. The comparison of records of land use change in the catchment with the multi-proxy record of changes in the sediments usually allowed unambiguous identification of the signatures of change and their causes.  相似文献   

17.
Analyses of down-core variations in pollen and charcoal in two short cores of lake sediment and wood samples taken from the in situ remains of Nuxia congesta from Lake Emakat, a hydrologically-closed volcanic crater lake occupying the Empakaai Crater in northern Tanzania, have generated evidence of past vegetation change and lake level fluctuations. Eight AMS radiocarbon (14C) dates on bulk samples of lake sediment provide a chronological framework for the two cores and indicate that the sediment record analysed incorporates the last c. 1200 years. The in situ remains of a Nuxia congesta tree, now standing in deep water, were dated with three additional AMS 14C dates, suggesting tree growth within the interval ∼1500–1670 AD. Down-core variations in pollen from terrestrial taxa, particularly the montane forest trees Hagenia abyssinica and Nuxia congesta, indicate a broad period of generally more arid conditions in the catchment to c. 1200 AD and at a prolonged period between c. 1420 and 1680 AD. Variations in pollen from plants in lake margin vegetation indicate low lake levels, presumably as a result of reduced effective precipitation, contemporary with indications of relatively dry conditions mentioned above, but also during the late 18th and the late 19th centuries. The presence of charcoal throughout both cores indicates the frequent occurrence of vegetation fires. An increase in burning, evident in the charcoal data and dated to the early to mid second millennium AD, could relate to an expansion of human population levels and agricultural activity in the region.  相似文献   

18.
A paleolimnological investigation of post-European sediments in a Lake Michigan coastal lake was used to examine the response of Lower Herring Lake to anthropogenic impacts and its role as a processor of watershed inputs. We also compare the timing of this response with that of Lake Michigan to examine the role of marginal lakes as early warning indicators of potential changes in the larger connected system and their role in buffering Lake Michigan against anthropogenic changes through biotic interactions and material trapping. Sediment geochemistry, siliceous microfossils and nutrient-related morphological changes in diatoms, identified three major trophic periods in the recent history of the lake. During deforestation and early settlement (pre-1845–1920), lake response to catchment disturbances results in localized increases in diatom abundances with minor changes in existing communities. In this early phase of disturbance, Lower Herring Lake acts as a sediment sink and a biological processor of nutrient inputs. During low-lake levels of the 1930s, the lake goes through a transitional period characterized by increased primary productivity and a major shift in diatom communities. Post-World War II (late 1940s–1989) anthropogenic disturbances push Lower Herring Lake to a new state and a permanent change in diatom community structure dominated by Cyclotella comensis. The dominance of planktonic summer diatom species associated with the deep chlorophyll maximum (DCM) is attributed to epilimnetic nutrient depletion. Declining Si:P ratios are inferred from increased sediment storage of biogenic silica and morphological changes in the silica content of Aulacoseira ambigua and Stephanodiscus niagarae. Beginning in the late 1940s, Lower Herring Lake functions as a biogeochemical processor of catchment inputs and a carbon, nutrient and silica sink. Microfossil response to increased nutrients and increased storage of biogenic silica in Lower Herring Lake and other regional embayments occur approximately 20–25 years earlier than in a nearby Lake Michigan site. Results from this study provide evidence for the role of marginal lakes and bays as nutrient buffering systems, delaying the impact of anthropogenic activities on the larger Lake Michigan system.  相似文献   

19.
We analyzed pollen, non-pollen palynomorphs (NPPs), calcareous microfossils, plant macrofossils, diatoms, chrysophyte cysts, opal phytoliths and organic matter content in a 123-cm sediment sequence from Nahuel Rucá Lake, a shallow, freshwater system in the southeastern Pampa grasslands, Argentina. Three stages in the lake evolution were identified. Before 3,680 cal year BP, only pollen, NPPs (dinoflagellate cysts and acritarchs) and ostracods were recovered, suggesting brackish/saline conditions in the lake and nearby areas. Freshwater conditions are, however, indicated by Myriophyllum, Pediastrum and Zygnemataceae. The brackish/saline conditions could have been caused by marine influence during a Holocene sea level high stand that affected the area ca. 6,000 year BP. Between 3,680 and 390 cal year BP, macrophyte pollen and plant macrofossils indicate increasingly freshwater conditions in the lake and the adjacent area. Diatom and ostracod assemblages, however, suggest brackish and oligotrophic conditions, giving way to freshwater and meso-eutrophic conditions toward the end of this period. The relationship between submersed macrophytes (Myriophyllum, Potamogeton, Ceratophyllum, Chara) and planktonic algae (Chlorophyta and diatoms), suggests a shift in the lake from a clear to a turbid state. This turbid state is more evident after 390 cal year BP. High values of Pediastrum, Scenedesmus and diatoms (Cyclotella meneghiniana, Aulacoseira granulata, A. muzzanensis) observed during this stage could have reduced light penetration, with consequent loss of submersed plants. Pollen and plant macrofossils in the uppermost 20 cm indicate a shallow, freshwater lake similar to present, though an increase in brackish/freshwater diatoms suggests an increase in salinity, perhaps related to periodic droughts. Opal phytoliths yield a regional paleoclimatic reconstruction that agrees closely with inferences made using pollen, mammals and sediment characteristics.  相似文献   

20.
We examine sediment dynamics in an upland, temperate lake system, Lake Bassenthwaite (NW England), in the context of changing climate and land use, using magnetic and physical core properties. Dating and analysis of the sedimentary records of nine recovered cores identify spatially variable sedimentation rates across the deep lake basin. Mineral magnetic techniques, supported by independent geochemical analyses, identify significant variations both in sediment source and flux over the last ∼2100 years. Between ∼100 years BC and ∼1700 AD, sediment fluxes to the lake were low and dominated by material sourced from within the River Derwent sub-catchment (providing 80% of the hydraulic load at the present day). Post-1700 AD, the lake sediments became dominantly sourced from Newlands Beck (presently providing ∼10% of the lake’s hydraulic load). Three successive, major pulses of erosion and increased sediment flux appear linked to specific activities within the catchment, specifically: mining activities and associated deforestation in the mid-late nineteenth century; agricultural intensification in the mid-twentieth century and, within the last decade, the additional possible impact of climate change. These results are important for all upland areas as modifications in climate become progressively superimposed upon the effects of previous and/or ongoing anthropogenic catchment disturbance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号