首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spatially averaged temperature and salinity profiles from individual cruises between 1990 and 2009 were analysed to outline the temporal evolution of water mass properties in the deep convection site in the South Adriatic Pit (SAP). The long-term variability in thermohaline conditions has been explained and related to a close feedback mechanism between the Ionian and the Adriatic Sea. Prominent influences of the Eastern Mediterranean Transient are manifested in changes in the vertical temperature and salinity patterns in the South Adriatic, and the whole studied period was divided into three stages according to the main thermohaline characteristics: 1990-1995, 1995-2004 and the last period from 2005 onwards.Particular attention was given to data collected during 2006-2009, which permitted us to situate the actual thermohaline properties in the context of the decadal variability. This last period was characterised by a very low production of dense water in the northern basin during 2007, while from winter 2008 high production of North Adriatic Deep Water (NAdDW) and Adriatic Deep Water (AdDW) in the northern and southern basins, respectively, was observed. Finally, we used the Optimum Multiparameter Analysis (OMP) to identify the percentages of the different water masses contained in the SAP, and this highlighted some differences between two recent periods studied (2007 and 2008) and the production of dense waters.  相似文献   

2.
孙婷婷  黄涛  刘雨昕  孙庆业 《湖泊科学》2022,34(6):1854-1865
phoD基因编码的碱性磷酸酶驱动沉积物有机磷矿化并释放生物可利用磷,促进了富营养化湖泊蓝藻的生长与暴发,但对富营养化湖泊蓝藻生消周期phoD基因细菌群落动态变化的认识依然有限.本文研究了中国典型富营养化湖泊巢湖蓝藻生消过程沉积物碱性磷酸酶活性(APA)、phoD基因细菌多样性和群落结构的动态变化及其与环境的关系.结果显示:巢湖沉积物APA活性在蓝藻生长与暴发阶段显著升高,且与水温、pH、溶解氧(DO)等环境因子显著相关.蓝藻生消各阶段沉积物phoD基因细菌群落的优势菌属均由PseudonocardiaFriedmanniella构成;与蓝藻潜伏期和衰亡期相比,生长初期与暴发期大多数样点沉积物Pseudonocardia的丰度显著降低而Friedmanniella显著升高.携带phoD基因的菌属丰度呈显著的时空变化,其中菌属丰度的空间异质性较高.蓝藻生长初期与暴发期的phoD基因细菌群落的Ace指数与Shannon多样性指数显著大于潜伏期与衰亡期.研究表明,携带phoD基因细菌群落结构的变化主要受APA、DO、叶绿素a、水温、总磷以及无机磷的驱动;春季蓝藻的生长消耗大量上覆水溶解性无机磷,激发了沉积物APA活性并诱发Friedmanniella生长从而缓解水体磷限制.  相似文献   

3.
This numerical study focuses on the response of the Western Adriatic Current to wind forcing. The turbulent buoyant surface current is induced by the Po river outflow in the Adriatic Sea. Idealized and realistic wind conditions are considered by retaining the complex geomorphology of the middle Adriatic basin. In the absence of wind, the Adriatic Promontories force the current to separate from the coast and induce instabilities. Persistent 7-m s − 1 downwelling favorable northwesterly winds thicken and narrow the current. Instabilities whose size is ~10 km develop but ultimately vanish, since there is not enough across-shore space to grow. On the contrary, 7-m s − 1 upwelling favorable southeasterly winds thin and widen the current, and instabilities can grow to form mesoscale (~35 km) features. When realistic winds are considered, the same trends are observed, but the state of the sea set up by previous wind events also plays a crucial role. The turbulent regimes set up by different winds affect mixing and the WAC meridional transport. With downwelling winds, the transport is generally southward and mixing happens mostly between the fresher (S ≤ 38) salinity classes. With upwelling winds, the transport decreases and changes sign, and mixing mainly involves saltier (S > 38) waters. In all cases, mixing is enhanced when a finer 0.5-km horizontal resolution is employed.  相似文献   

4.
2009年7月至2010年6月,以每月一次的频率对百花湖(水库)麦西河河口浮游植物群落结构和环境因子进行调查.监测到浮游植物66种(属),浮游植物主要由绿藻、硅藻和蓝藻组成,夏秋季湖泊假鱼腥藻(Pseudanabaena limnetica)为优势浮游植物,而冬春季梅尼小环藻(Cyclotella meneghinia...  相似文献   

5.
The coastal plain bordering the southern Venice Lagoon is a reclaimed lowland characterized by high subsidence rate, and ground level and water-table depth below sea level. In this agricultural region, where the surface hydrologic network is entirely artificially controlled by irrigation/drainage canals, salinization problems have long been encountered in soils and groundwaters. Here we use isotopic and geochemical tracers to improve our understanding of the origin of salinization and mineralization of the semi-confined aquifer (0–40 m), and the freshwater inputs to this hydrological system. Water samples have been collected at different seasons in the coastal Adriatic Sea, lagoon, rivers and irrigation canals, as well as in the semi-confined aquifer at depths between 12 and 35 m (14 boreholes), and in the first confined aquifer (three boreholes drilled between 40 and 80 m depth). Stable isotopes (δ18O and δD) and conductivity profiles show that direct saline intrusion from the sea or the lagoon is observed only in a restricted coastal strip, while brackish groundwaters are found over the entire topographic and piezometric depression in the centre of the study area. Fresh groundwaters are found only in the most western zone. The sharp isotopic contrast between the western and central regions suggests disconnected hydrological circulations between these two parts of the shallow aquifer. The border between these two regions also corresponds to the limits of the most strongly subsiding zone.Our results can be interpreted in terms of a four end-member mixing scheme, involving (1) marine water from the lagoon or the open sea, (2) alpine and pre-alpine regional recharge waters carried either by the main rivers Adige, Bacchiglione and Brenta (irrigation waters) or by the regional groundwater circulation, (3) local precipitation, and (4) evaporated waters infiltrated from the surface. Infiltration from the surface is also revealed by the stratification of the electrical conductivity profiles, showing that the brackish groundwaters are overlain by a shallow layer of less saline water all over the central depression. In the first confined aquifer, the groundwaters have isotopic compositions similar to the deep groundwaters of the Venetian confined aquifers (40–400 m depth). The isotopic data and the Br/Cl ratio show that the origin of the salinization of the phreatic aquifer can be ascribed to seawater intrusion alone, with no indication of the involvement of deep brines (identified at 450 m depth) in the process.The chemical composition of the saline and brackish groundwaters is characterized by an excess of sodium and a deficit of calcium compared to conservative mixing between fresh groundwaters and seawater. This suggests that the phreatic aquifer is progressively freshening, as a consequence of the beneficial influence of the extensive irrigation/drainage network, including raised canals acting as a hydraulic barrier along the coast. This freshening tendency may have been lasting since the reclamation in the mid-twentieth century, and has probably been accelerated by the ban on groundwater abstraction since the 1970s.  相似文献   

6.
The recent earthquake sequences of 2012 (northern Italy) and 2013 (Marche offshore) provided new, fundamental constraints to the active tectonic setting of the outer northern Apennines. In contrast to the Po Plain area, where the 2012 northern Italy earthquakes confirmed active frontal thrusting, the new focal mechanisms obtained in this study for the 2013 Marche offshore earthquakes indicate that only minor thrust fault reactivation occurs in the Adriatic domain, even for a theoretically favourably oriented maximum horizontal compression. Recent seismicity in this domain appears to be mainly controlled by transcurrent crustal faults dissecting the Apennine thrust belt. The along-strike stress field variation from the Po Plain to the Adriatic area has been quantitatively investigated by applying the multiple inverse method (MIM) to the analysis of the entire seismicity recorded from January 1976 to August 2014, from the top 12 km of the crust (fault plane solutions from 127 earthquakes with MW  4), allowing us to obtain a comprehensive picture of the state of stress over the outer zone of the fold and thrust belt. The present-day stress field has been defined for 39 cells of 1.5° × 1.5° surface area and 12 km depth. The obtained stress field maps point out that, although the entire outer northern Apennines belt is characterized by a sub-horizontal maximum compressive axis (σ1), the minimum compression (σ3) is sub-vertical only in the Po Plain area, becoming sub-horizontal in the Adriatic sector, thus confirming that the latter region is dominated by an active tectonic regime of strike-slip type.  相似文献   

7.
In this study are discussed new SEM-EDS analyses performed on glass shards from five cores collected in the Central Adriatic Sea and two cores recovered from the South Adriatic Sea. A total of 26 tephra layers have been characterized and compared with the geochemical features of terrestrial deposits and other tephra archives in the area (South Adriatic Sea and Lago Grande di Monticchio, Vulture volcano). The compositions are compatible with either a Campanian or a Roman provenance. The cores, located on the Central Adriatic inner and outer shelf, recorded tephra referred to explosive events described in the literature: AP3 (sub-Plinian activity of the Somma-Vesuvius, 2710 ± 60 14C years BP); Avellino eruption (Somma–Vesuvius, 3548 ± 129 14C years BP); Agnano Monte Spina (Phlegrean Fields, 4100 ± 400 years BP); Mercato eruption (Somma–Vesuvius, 8010 ± 35 14C years BP; Agnano Pomici Principali eruption (Phlegrean Fields, 10,320 ± 50 14C years BP); Neapolitan Yellow Tuff (Phlegrean Fields, 12,100 ± 170 14C years BP). Some of these layers were also observed in the South Adriatic core IN68-9 in addition to younger (AP2, sub-Plinian eruption, Somma–Vesuvius, 3225 ± 140 14C years BP), and older layers (Pomici di Base eruption, Somma–Vesuvius, 18,300 ± 150 14C years BP). Significant is the tephra record of core RF95-7 that, for the first time in the Adriatic Sea, reports the occurrence of tephra layers older than 60 ka: the well known Mediterranean tephra layers X2 (ca. 70 ka), W1 (ca. 140 ka) and V2 (Roman origin, ca. 170 ka) as well as other tephra layers attributed, on the basis of geochemistry and biostratigraphy, to explosive eruptions occurred at Vico (138 ± 2 and 151 ± 3 ka BP) and Ischia (147–140 ka BP).  相似文献   

8.
9.
The anthropogenic eutrophication of surface waters and the global climate warming promoted some bloom-forming tropical cyanobacteria, including Anabaena, distribution northwards. Anabaena bergii var. limnetica was for the first time recorded in Lithuania from the hypertrophic Lake Gineitišk?s in 2008. It developed when the water temperature reached its annual maximum (July–August); its highest biomass (0.26 mg L−1) was reached at the end of July. Akinetes formation started in the middle of August. The morphological variability of A. bergii var. limnetica morphospecies is presented. The morphological, ecological differences and distribution of A. bergii var. limnetica and the related morphospecies A. bergii, A. bergii f. minor, Anabaena minderi are discussed.  相似文献   

10.
The sources and pathways of mode waters and lower thermocline waters entering the subtropical gyre of the Indian Ocean are examined. A Lagrangian analysis is performed on an eddy-admitting simulation of the Global Ocean performed by the DRAKKAR Group (NEMO/OPA), which captures the main observed features. We trace the subducted mode water’s pathways, identify their formation regions and trace whether their source waters come from the Atlantic, Pacific or Indian sectors of the Southern Ocean. Three main sites for mode waters ventilation in the Indian sector are identified with different circulation pathways and source water masses: (a) just north of Kerguelen, where 4.2 Sv of lighter Subantarctic Mode Waters (SAMW); σ 0 ∼ 26.5) are exported—originating in the Atlantic and Agulhas Retroflection regions; (b) SW of Australia, where 6.5 Sv of medium SAMW (σ 0 ∼ 26.6) are ventilated—originating in the southern and denser Agulhas Retroflection region; (c) SW of Tasmania and along the South Australian coast, where 3 Sv of denser SAMW (σ 0 ∼ 26.75) are ventilated—originating from three sources: Leeuwin Current waters, Tasman Sea (Pacific) waters and Antarctic Surface Waters. In all cases, modelled mode waters were last ventilated in the Indian Ocean just north of the deepest winter-mixed layers. For the waters subducted SW of Australia, the last ventilation site extends even further north. Waters ventilated in the deepest mixed layers north of the Subantarctic Front are then re-ventilated 5 years later southwest of Australia. The model results raise new hypotheses that revisit the classical picture of the SAMW formation and transformation, where a large homogeneous mixed layer is subducted and ‘slides’ equatorward, essentially maintaining the T/S characteristics acquired at the surface. Firstly, the last ventilation of the modelled mode waters is not in the region of the deepest mixed layers, as previously thought, but further north in regions of moderate meso-scale eddy activity. Secondly, the model shows for the first time a significant source region for Indian Ocean mode waters coming from deep winter-mixed layers along the south Australian coast. Finally, this analysis shows how the mode water characteristics are modified after subduction, due to internal eddy mixing. The simulation shows that resolved eddies have a strong impact on the mixed layer properties and that isopycnal eddy mixing also contributes to the generation of more homogeneous mode water characteristics in the interior.  相似文献   

11.
12.
We elucidate the ecology of Recent Ostracoda from a deep brackish lake, Tangra Yumco (30°45′—31°22′N and 86°23′—86°49′E, 4595 m a.s.l.) and adjacent waters on the southern Tibetan Plateau. Ostracod associations (living and empty valves) in sixty-six sediment samples collected from diverse aquatic habitats (lakes, estuary-like water and lagoon-like water waters, rivers, ponds and springs) were quantitatively assessed.Eleven Recent Ostracoda were found (nine living and two as empty valves only). Cluster analysis established two significant (p < 0.05) habitat specific associations; (i) Leucocytherella sinensis, Limnocythere inopinata, Leucocythere? dorsotuberosa, Fabaeformiscandona gyirongensis and Candona xizangensis are lacustrine fauna. (ii) Tonnacypris gyirongensis, Candona candida, Ilyocypris sp., Heterocypris incongruens and Heterocypris salina are temporary water species.Ostracod distribution and abundance are significantly (p < 0.05) correlated to physico-chemical variables. The first two axes of a canonical correspondence analysis (CCA) explain 30.9% of the variation in the species abundance data. Conductivity and habitat types are the most influential ecological factors explaining the presence and abundance of ostracods. Spearman correlation analysis reveals that: (i) Two species, L.? dorsotuberosa (r = 0.25) and L. inopinata (r = 0.36) have a significant positive correlation with conductivity while one species, T. gyirongensis (r = −0.68) displays a significant negative correlation with conductivity. Limnocythere inopinata correlates significantly positive (r = 0.37) with alkalinity. Fabaeformiscandona gyirongensis correlates significantly positive (r = 0.28) with water depth.Key indicator living assemblages are: (i) L. sinensis dominates Ca-depleted brackish waters although ubiquitously distributed; (ii) L.? dorsotuberosa dwells in fresh to brackish waters; (iii) L. inopinata predominates in mesohaline to polyhaline waters; (iv) F. gyirongensis inhabits exclusively brackish-lacustrine deeper waters; (v) C. candida populates freshwaters; (vi) T. gyirongensis and Ilyocypris sp. are restricted to shallow temporary waters; (vii) H. incongruens occurs in ponds.Water depth indicators are F. gyirongensis and L.? dorsotuberosa, useful in ostracod assemblages for palaeo-water depth reconstruction.Our results expand the knowledge of the ecological significance of Recent Tibetan Ostracoda ecology. This is a new insight on habitat chacteristics of both living assemblages and sub-Recent associations of ostracods in mountain aquatic ecosystems. The new modern ostracod dataset can be used for the quantitative reconstruction of past environmental variables (e.g., conductivity) and types of water environment. The key indicator ostracods are relevant in palaeolimnological and climate research on the Tibetan Plateau.  相似文献   

13.
The paper attempts to document long-term changes in deep Adriatic water patterns by applying the Self-Organising Maps (SOM) method to temperature, salinity, dissolved-oxygen content, orthophosphate and total inorganic nitrogen profiles sampled at a single deep station in the South Adriatic Pit (SAP) over a half century (1957-2009). Seasonality observed in upper layers has been removed by the least-squares fitting of the annual and semi-annual sinusoidal functions. The sensitivity of the SOM to various parameter combinations reveals the importance of temperature, salinity and dissolved oxygen for mapping different water patterns, while nutrients have less influence on quality and applicability of SOM solutions to the extraction of characteristic SAP water profiles. The quality of fit obtained for different combination of the measured parameters introduced to a SOM suggests that the incomplete combinations of input parameters increase an imperfection in the applicability of SOMs to the dataset. Two modes of long-term changes in the SAP obtained by the SOM analyses are discussed with respect to the processes that drive the variability in the area, e.g., the Adriatic-Ionian Bimodal Oscillation: where the first mode is characterised by rapid changes in the transition of SAP water masses, observed before 1980s (less adoptable by the SOMs), and the second mode is characterised by steady transitions (better adoptable by the SOMs), observed in the 1990s and the 2000s. The SOM method is found to have certain advantages when compared to other methods that have previously been used to distinguish the Adriatic water masses, as it does not depend on predefinition of water mass sources and allows for gaps in series.  相似文献   

14.
Spatial and seasonal fluctuations in autotrophic picoplankton (APP) abundance in a eutrophic, dimictic lake (Lake Aydat, France) were measured concurrently with a variety of environmental variables. Cell number ranged from 0.03 to 2.36×106 cells·ml–1 (highest concentrations were >5-fold higher than in oligotrophic lakes) and averaged 24 ± 7% of total picoplankton abundance (APP + heterotrophic bacteria). APP abundance (1) peaked in spring simultaneously with heterotrophic flagellate and ciliate densities, (2) decreased during the nitrogen-limited and summer stratification period, and (3) increased with fall turnover. In summer-autumn, the contribution of single-cell eukaryotic (up to 66%) and colonial prokaryotic (18%) forms to total abundance peaked in the bottom waters. Multivariate regression analyses suggest that >40% variance in APP number changes may be explained by ciliate abundance (at 0–4 m depth-range), heterotrophic flagellate number and oxygen concentration (5–9 m), and ciliate carbon biomass (10–14 m). The model accounting for changes in heterotrophic bacterial abundance (5–9 m) indicates chlorophylla concentration (r 2=58%) and ciliate abundance (r 2=34%) as dominant covariates. The data presented here suggest that micrograzers control APP abundance in Lake Aydat.  相似文献   

15.
The horizontal and vertical distribution of jellyfish was assessed in the Chiloé Inland sea, in the northern area of the Chilean Patagonia. A total of 41 species of cnidarians (8 siphonophores, 31 hydromedusae, 2 scyphomedusae) were collected. Eleven jellyfish species were recorded for the first time in the area. Species richness was higher in spring than in winter (37 vs. 25 species, respectively). Species such as Muggiaea atlantica, Solmundella bitentaculata, and Clytia simplex were extremely abundant in spring. The total abundance (408,157 ind 1000 m?3) was 18 times higher in spring than in winter (22,406 ind 1000 m?3).The horizontal distribution of the most abundant species (four in winter, five in spring) showed decreasing abundances in the north–south direction in winter and spring. Peak abundances occurred in the northern microbasins (Reloncaví Fjord, Reloncaví and Ancud gulfs), where the water column stability, phytoplankton and zooplankton abundance were higher, compared with the southern microbasins (Corcovado Gulf, Boca del Guafo). During the spring higher jellyfish abundance season, the vertical distribution of the dominant species (except M. atlantica) showed peak values at mid-depth (30–50 m) and in the deepest sampled layer (50–200 m). This vertical distribution pattern reduced seaward transport in the shallowest layer through estuarine circulation and also limited mortality by predation in the more illuminated shallow layers. Thus, jellyfish were able to remain in the interior waters during the season of maximum biological production.  相似文献   

16.
The seasonal ecological response of microzooplankton in the southeastern Arabian Sea is presented. During the spring intermonsoon period, stratification and depletion of nitrate in the surface waters (nitracline was at 60 m depth) cause low integrated chlorophyll a (av. 19±11.3 mg m−2) and primary production (av. 164±91 mgC m−2 d−1). On the other hand, nutrient enrichment associated with coastal upwelling and river influx during the onset and peak summer monsoon resulted in high integrated chlorophyll a (av. 21±6 mg m−2 and av. 29±21 mg m−2, respectively) and primary production (av. 255±94 mgC m−2 d−1 and av. 335±278 mgC m−2 d−1, respectively). During all three periods, diazotropic cyanobacterium Trichodesmium erythraeum dominated in the nutrient depleted surface waters. A general increase in abundance of larger diatoms was evident in the surface waters of the inshore region during monsoon periods. The microzooplankton abundance was found to be significantly higher during the spring intermonsoon (av.241±113×103 ind m−2) as compared to onset of summer monsoon (av. 105±89×103 ind m−2) and peak summer monsoon (av.185±175×103 ind m−2). Microzooplankton community during the spring intermonsoon was numerically dominated by ciliates while heterotrophic dinoflagellate was the dominant ones during the monsoon periods. The high abundance of ciliates during the spring intermonsoon could be attributed to the stratified environmental condition prevailed in the study area which favors high abundance of smaller phytoplankton and cyanobacteria, the most preferred food of ciliates. On the other hand, the dominance of heterotrophic dinoflagellates during the monsoon periods could be linked to their ability to graze larger diatoms which were abundant during the monsoon periods. The overall results show low abundance of microzooplankton in the eastern Arabian Sea during the monsoon periods mainly due to a decline in ciliates abundance. This decline during the monsoon periods could be the result of (a) low abundance of smaller phytoplankton and (b) high stock of mesozooplankton predators (av. 245 ml 100 m−3).  相似文献   

17.
Vertical distributions of chlorophyll in deep, warm monomictic lakes   总被引:1,自引:0,他引:1  
The factors affecting vertical distributions of chlorophyll fluorescence were examined in four temperate, warm monomictic lakes. Each of the lakes (maximum depth >80 m) was sampled over 2 years at intervals from monthly to seasonal. Profiles were taken of chlorophyll fluorescence (as a proxy for algal biomass), temperature and irradiance, as well as integrated samples from the surface mixed layer for chlorophyll a (chl a) and nutrient concentrations in each lake. Depth profiles of chlorophyll fluorescence were also made along transects of the longest axis of each lake. Chlorophyll fluorescence maxima occurred at depths closely correlated with euphotic depth (r 2 = 0.67, P < 0.01), which varied with nutrient status of the lakes. While seasonal thermal density stratification is a prerequisite for the existence of a deep chlorophyll maximum (DCM), our study provides evidence that the depth of light penetration largely dictates the DCM depth during stratification. Reduction in water clarity through eutrophication can cause a shift in phytoplankton distributions from a DCM in spring or summer to a surface chlorophyll maximum within the surface mixed layer when the depth of the euphotic zone (z eu) is consistently shallower than the depth of the surface mixed layer (z SML). Trophic status has a key role in determining vertical distributions of chlorophyll in the four lakes, but does not appear to disrupt the annual cycle of maximum chlorophyll in winter.  相似文献   

18.
The abundance, size, and fluorescence of picophytoplankton cells were investigated during the summer (July-August of 2009) and winter (January of 2010) extending from near-shore coastal waters to oligotrophic open waters in northern South China Sea, under the influence of contrasting seasonal monsoons. We found that the median abundance of Prochlorococcus averaged over top 150 m decreased nearly 10 times in the winter compared to the summer in the whole survey area, while median abundance of Synechococcus and picoeukaryotes increased 2.6 and 2.4 folds, respectively. Vertical abundance profiles of picoeukaryotes usually formed a subsurface maximum during the summer with the depth of maximal abundances tracking the depth of nutricline, whereas their vertical distributions were more uniform during the winter. Size and cellular fluorescence of Prochlorococcus and Synechococcus usually increased with depth in the summer, while the size of picoeukaryotes was smallest at the depth of maximal abundances. Size, cellular fluorescence, and chlorophyll-to-carbon ratio of Prochlorococcus and Synechococcus in surface waters were generally higher in the winter than in the summer and onshore than offshore, probably resulting from different temperature, nutrient, and light environments as well as different ecotype compositions. Prochlorococcus cells were most abundant in warm and oligotrophic environments, while the abundance of Synechococcus and picoeukaryotes was the highest in waters with intermediate chlorophyll and nutrient concentrations. The distributional patterns of picophytoplankton groups are consistent with their specific physiology documented in previous studies and can be possibly predicted by environmental physical and chemical variables.  相似文献   

19.
2002-2017年千岛湖浮游植物群落结构变化及其影响因素   总被引:2,自引:0,他引:2  
为认识大型水库中浮游植物群落结构的演替特征及其驱动机制,以钱塘江流域新安江水库(下称"千岛湖")为例,基于2002-2017年16年的水库浮游植物数据,结合同期千岛湖水质与水文气象资料,分析了千岛湖浮游植物结构及优势属的长期变化特征,探讨了影响浮游植物群落结构变化的主要因素.结果表明:2002-2017年千岛湖共鉴定出浮游植物7门93属,主要由硅藻门、绿藻门、蓝藻门及隐藻门种类组成.16年间,浮游植物年均丰度和群落结构经历了4个阶段:2008年前丰度持续低值且蓝藻不是主要类群,2009-2012年丰度较高且蓝藻成为主要类群,及2013-2015丰度降低且蓝藻占比降低,2016-2017年丰度增加且蓝藻再次成为主要类群.浮游植物门类变化的同时伴随着优势属的变化:浮游植物年优势属从2002-2008年的小环藻属(Cyclotella)、隐藻属(Cryptomonas)和蓝隐藻属(Chroomonas)转变为2009-2012年的颤藻属(Oscillatoria)、小球藻属(Chlorella)、小环藻属和蓝隐藻属,2013-2017年又转变为鱼腥藻属(Anabaena)、束丝藻属(Aphanizomenon)、小环藻属、针杆藻属(Synedra)、直链藻属(Melosira)、栅藻属(Scenedesmus)和蓝隐藻属.冗余分析表明,气温、风速、水位、入库流量等气象水文因子和总氮浓度、电导率、氮磷比、透明度等水质因子与浮游植物群落结构变化关系密切.研究结果表明,在千岛湖这种大型贫-中营养水库,浮游植物群落结构不仅受来水营养盐负荷的影响,还在很大程度上受水文、气象条件的影响,给水库藻类水华等生态风险的预测以及水库水质管理带来了挑战.  相似文献   

20.
Spatio‐temporal heterogeneity in soil water content is recognized as a common phenomenon, but heterogeneity in the hydrogen and oxygen isotope composition of soil water, which can reveal processes of water cycling within soils, has not been well studied. New advances are being driven by measurement approaches allowing sampling with high density in both space and time. Using in situ soil water vapour probe techniques, combined with conventional soil and plant water vacuum distillation extraction, we monitored the hydrogen and oxygen stable isotopic composition of soil and plant waters at paired sites dominated by grasses and Gambel's oak (Quercus gambelii) within a semiarid montane ecosystem over the course of a growing season. We found that sites spaced only 20 m apart had profoundly different soil water isotopic and volumetric conditions. We document patterns of depth‐ and time‐explicit variation in soil water isotopic conditions at these sites and consider mechanisms for the observed heterogeneity. We found that soil water content and isotopic variability were damped under Q. gambelii, perhaps due in part to hydraulic redistribution of deep soil water or groundwater by Q. gambelii in these soils relative to the grass‐dominated site. We also found some support for H isotope discrimination effects during water uptake by Q. gambelii. In this ecosystem, the soil water content was higher than that at the neighbouring Grass site, and thus, 25% more water was available for transpiration by Q. gambelii compared with the Grass site. This work highlights the role of plants in governing soil water variation and demonstrates that they can also strongly influence the isotope ratios of soil water. The resulting fine‐scale heterogeneity has implications for the use of isotope tracers to study soil hydrology and evaporation and transpiration fluxes to improve understanding of water cycling through the soil–plant–atmosphere continuum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号