首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sediment flux in marsh tidal creeks is commonly used to gauge sediment supply to marshes. We conducted a field investigation of temporal variability in sediment flux in tidal creeks in the accreting tidal marsh at China Camp State Park adjacent to northern San Francisco Bay. Suspended‐sediment concentration (SSC), velocity and depth were measured near the mouths of two tidal creeks during three 6‐ to 10‐week deployments: two in winter and one in summer. Currents, wave properties and SSC were measured in the adjacent shallows. All deployments spanned the largest spring tides of the season. Results show that tidally averaged suspended‐sediment flux (SSF) in the tidal creeks varied from slightly landward to strongly bayward with increasing tidal energy. SSF was negative (bayward) for tidal cycles with maximum water surface elevation above the marsh plain. Export during the largest spring tides dominated the cumulative SSF for each deployment. During ebb tides following the highest tides, velocities exceeded 1 m s?1 in the narrow tidal creeks, resulting in negative tidally averaged water flux, and mobilizing sediment from the creek banks or bed. Storm surge also produced negative SSF. Tidally averaged SSF was positive in wavy conditions with moderate tides. Spring tide sediment export at the creek mouth was about twice that at a station 130 m further up the tidal creek. The negative tidally averaged water flux near the creek mouth during spring tides indicates that in the lower marsh some of the water flooding directly across the bay–marsh interface drains through the tidal creeks, and suggests that this interface may be a pathway for sediment supply to the lower marsh as well. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

2.
The long‐term (10–100 years) evolution of tidal channels is generally considered to interact with the bio‐geomorphic evolution of the surrounding intertidal platform. Here we studied how the geometric properties of tidal channels (channel drainage density and channel width) change as (1) vegetation establishes on an initially bare intertidal platform and (2) sediment accretion on the intertidal platform leads to a reduction in the tidal prism (i.e. water volume that during a tidal cycle floods to and drains back from the intertidal platform). Based on a time series of aerial photographs and digital elevation models, we derived the channel geometric properties at different time steps during the evolution from an initially low‐elevated bare tidal flat towards a high‐elevated vegetated marsh. We found that vegetation establishment causes a marked increase in channel drainage density. This is explained as the friction exerted by patches of pioneer vegetation concentrates the flow in between the vegetation patches and promotes there the erosion of channels. Once vegetation has established, continued sediment accretion and tidal prism reduction do not result in significant further changes in channel drainage density and in channel widths. We hypothesize that this is explained by a partitioning of the tidal flow between concentrated channel flow, as long as the vegetation is not submerged, and more homogeneous sheet flow as the vegetation is deeply submerged. Hence, a reduction of the tidal prism due to sediment accretion on the intertidal platform, reduces especially the volume of sheet flow (which does not affect channel geometry), while the concentrated channel flow (i.e. the landscape forming volume of water) is not much affected by the tidal prism reduction. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
Sediment waves in river systems have been widely reported, although few studies have examined the interaction between these waves and the morphology of the reaches through which they pass. This interaction determines how waves are modified as they propagate downstream. This study documents the origin and downstream passage of an avulsion-generated sediment wave through a 374 m study reach of the Allt Dubhaig, Scotland. A nested survey framework was adopted, with volumes calculated from cross-sections spaced between 10 and 40 m apart documenting the origin and downstream passage of the wave. The wave moved through an intensively (c. 1 m cross-section spacing) monitored 120 m stretch (Reach A) within the study reach, allowing assessment of sediment exchanges between the incoming wave and the local morphology. Successive surveys show the movement of the wave through and out of the reach, and also that areas where wave sediment was deposited did not always correspond with areas of subsequent erosion. Reach A was divided into three morphologically distinct sub-reaches (1A, 2A and 3A) within which sediment fluxes and the three-dimensional distribution of erosion/deposition were estimated. Sediment wave input into 1A and 2A (relatively stable sub-reaches) caused forced bar aggradation and erosion of sediment from elsewhere within the reach, which then became part of the wave. The downstream transfer of this sediment into unstable 3A caused aggradation and, in response, widespread erosion which increased the magnitude of the sediment wave as it exited reach A. Sediment exchange between the recipient reach and the wave depends upon local morphological stability and is a crucial process affecting wave magnitude and attenuation. The macroscale sediment wave interacted with, rather than overwhelmed, the recipient morphology. © 1998 John Wiley & Sons, Ltd.  相似文献   

4.
The origin and growth of blind tidal channels is generally considered to be an erosional process. This paper describes a contrasting depositional model for blind tidal channel origin and development in the Skagit River delta, Washington, USA. Chronological sequences of historical maps and photos spanning the last century show that as sediments accumulated at the river mouth, vegetation colonization created marsh islands that splintered the river into distributaries. The marsh islands coalesced when intervening distributary channels gradually narrowed and finally closed at the upstream end to form a blind tidal channel, or at mid‐length to form two blind tidal channels. Channel closure was probably often mediated through gradient reduction associated with marsh progradation and channel lengthening, coupled with large woody debris blockages. Blind tidal channel evolution from distributaries was common in the Skagit marshes from 1889 to the present, and it can account for the origin of very small modern blind tidal channels. The smallest observed distributary‐derived modern blind tidal channels have mean widths of 0·3 m, at the resolution limit of the modern orthophotographs. While channel initiation and persistence are similar processes in erosional systems, they are different processes in this depositional model. Once a channel is obstructed and isolated from distributary flow, only tidal flow remains and channel persistence becomes a function of tidal prism and tidal or wind/wave erosion. In rapidly prograding systems like the Skagit, blind tidal channel networks are probably inherited from the antecedent distributary network. Examination of large‐scale channel network geometry of such systems should therefore consider distributaries and blind tidal channels part of a common channel network and not entirely distinct elements of the system. Finally, managers of tidal habitat restoration projects generally assume an erosional model of tidal channel development. However, under circumstances conducive to progradation, depositional channel development may prevail instead. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
A detailed field study was carried out on a tidal bore to document the turbulent processes and sediment entrainment which occurred. The measured bore, within the Arcins Channel of the Garonne River (France), was undular in nature and was followed by well‐defined secondary wave motion. Due to the local river geometry a collision between the Arcins channel tidal bore and the bore which formed within the main Garonne River channel was observed about 800 m upstream of the sampling site. This bore collision generated a transient standing wave with a black water mixing zone. Following this collision the bore from the main Garonne River channel propagated ‘backward’ to the downstream end of the Arcins channel. Velocity measurements with a fine temporal resolution were complemented by measurements of the sediment concentration and river level. The instantaneous velocity data indicated large and rapid fluctuations of all velocity components during the tidal bore. Large Reynolds shear stresses were observed during and after the tidal bore passage, including during the 'backward' bore propagation. Large suspended sediment concentration estimates were recorded and the suspended sediment flux data showed some substantial sediment motion, consistent with the murky appearance of the flood tide waters. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
It is widely recognized nowadays that there are at least two different phases of bedload sediment transport in gravel‐bed rivers. However, the transition between these phases is still poorly or subjectively defined, especially at bends in rivers, where cross‐stream sediment transport can strongly influence changes in the texture of the transported sediment. In this paper, we use piecewise models to identify objectively, at two points in the cross‐section of a river bend, the discharge at which the transition between bedload transport phases occurs. Piecewise models were applied to a new bedload data set collected during a wide range of discharges while analysing the associated changes in sediment texture. Results allowed the identification of two well‐differentiated phases of sediment transport (phase I and phase II), with a breakpoint located around bankfull discharge. Associated with each phase there was a change in bedload texture. In phase I there was non‐dominance in the transport of fine or coarse fractions at a particular sampling point; but in phase II bedload texture was strongly linked to the position of the sampling point across the channel. In this phase, fine particles tended to be transported to the inner bank, while coarse sizes were transferred throughout the middle parts of the channel. Moreover, bedload texture at the inner sampling point became bimodal while the transport of pebble‐sized particles was increasing in the central parts of the river channel. It is suggested that this general pattern may be related both to secondary currents, which transfer finer particles from the outer to the inner bank, and to the progressive dismantling of the riverbed surface layer. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

7.
Understanding sediment sorting and bedding dynamics has high value to unravelling the mechanisms underlying geomorphological, geological, ecological and environmental imprints of tidal wetlands and hence to predicting their future changes. Using the Nanhui tidal flat on the Changjiang (Yangtze) Delta, China, as a reference site, this study establishes a schematized morphodynamic model coupling flow, sediment dynamics and bed level change to explore the processes that govern sediment sorting and bedding phenomena. Model results indicate an overall agreement with field data in terms of tidal current velocities, suspended sediment concentrations (SSCs), deposition thicknesses and sedimentary structures. Depending on the variation of tidal current strength, sand-dominated layers (SDLs) and mud-dominated layers (MDLs) tend to form during spring and neap tides, respectively. Thinner tidal couplets are developed during daily scale flood–ebb variations. A larger tidal level variation during a spring–neap tidal cycle, associated with a stronger tidal current variation, favours the formation of SDLs and tidal couplets. A larger boundary sediment supply generally promotes the formation of tidal bedding, though the bedding detail is partially dependent on the SSC composition of different sediment types. Sediment properties, including for example grain size and settling velocity, are also found to influence sediment sorting and bedding characteristics. In particular, finer and coarser sediment respond differently to spring and neap tides. During neap tides, relatively small flow velocities favour the deposition of finer sediment, with limited coarser sediment being transported to the upper tidal flat because of the larger settling velocity. During spring tides, larger flow velocities transport more coarser sediment to the upper tidal flat, accounting for distinct lamination formation. Model results are qualitatively consistent with field observations, but the role of waves, biological processes and alongshore currents needs to be included in further studies to establish a more complete understanding.  相似文献   

8.
Peatlands are an important store of soil carbon, and play a vital role in global carbon cycling, and when located in close proximity to urban and industrial areas, can also act as sinks of atmospherically deposited heavy metals. Large areas of the UK's blanket peat are significantly degraded and actively eroding which negatively impacts carbon and pollutant storage. The restoration of eroding UK peatlands is a major conservation concern, and over the last decade measures have been taken to try to control erosion and restore large areas of degraded peat. This study utilizes a sediment source fingerprinting approach to assess the effect of restoration practices on sediment production, and carbon and pollutant export in the Peak District National Park, southern Pennines (UK). Suspended sediment was collected using time integrated mass flux samplers (TIMS), deployed across three field areas which represent the surface conditions exhibited through an erosion–restoration cycle: (i) intact; (ii) actively eroding; and (iii) recently re‐vegetated. Anthropogenic pollutants stored near the peat's surface have allowed material mobilized by sheet erosion to be distinguished from sediment eroded from gully walls. Re‐vegetation of eroding gully systems is most effective at stabilizing interfluve surfaces, switching the locus of sediment production from contaminated surface peat to relatively ‘clean’ gully walls. The stabilization of eroding surfaces reduces particulate organic carbon (POC) and lead (Pb) fluxes by two orders of magnitude, to levels comparable with those of an intact peatland, thus maintaining this important carbon and pollutant store. The re‐vegetation of gully floors also plays a key role in decoupling eroding surfaces from the fluvial system, and further reducing the flux of material. These findings indicate that the restoration practices have been effective over a relatively short timescale, and will help target and refine future restoration initiatives. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper we use multiple field surveys spanning several decades to systematically evaluate the geomorphic consequences of a change in flow hydraulics from uniform flow to backwater flow for the lower Trinity River in east Texas, USA. Spatial changes in lateral migration rate, channel geometry, and point bar size correspond to two distinct geomorphic zones. Within the upstream uniform flow reach, the river channel is defined by fully developed point bars and a high rate of lateral channel migration. This zone transitions where the median channel bottom elevation drops below sea level. At this point flow is affected by the backwater influence of the Trinity Bay water surface elevation, as opposed to being bed slope control dominated. The change in hydraulics within the backwater zone is reflected in the channel morphology, which is characterized by smaller point bars, narrower and more symmetrical cross-sectional channel geometry, lower channel migration rates, and little to no bend deformation or cutoffs. Studying the connection between channel geometry, river bend kinematics, sediment transport, and fluid mechanics in each zone provides a deeper understanding of the relationship between channel shape and river mechanics. © 2019 John Wiley & Sons, Ltd.  相似文献   

10.
In alluvial river systems, lateral inputs of water and/or sediment at junctions or undercut hillsides can disrupt what would otherwise be smooth downstream trends in mainstream bed elevation, channel gradient, and bed grain size. Generic styles of mainstream response to lateral inputs are investigated using a one‐dimensional sediment routing model with multiple grain size fractions. Numerical experiments isolate the effects of three para‐meters: ratio of tributary to mainstream water flux (QR), ratio of tributary to mainstream bedload flux (FR), and ratio of tributary to mainstream bedload diameter (DR). The findings are not unduly sensitive to the choice of initial conditions or to approximations made in the model. The primary distinction is between junctions that aggrade, causing local profile convexity with interrupted downstream fining, and junctions that degrade. The immediate effects of aggradation extend further upstream than downstream, whereas degradation is much more subdued and has no upstream impact. Aggradation is typical of coarse inputs (DR > 2), and degradation of fine inputs (DR < 1), but very high ratios of QR to FR also promote degradation. Both aggrading and degrading junctions can lead to a change in mainstream bed grain size well below the junction, with higher ratios of QR to FR producing a coarser distal bed. The effect of a tributary reflects the interplay between additional bed load and additional discharge to transport it. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
Depositional environments along the tidal river downstream of Óbidos have been proposed as important sinks for up to one third of the sediment discharge from the Amazon River. However, the morphology of the intertidal floodplain and the dynamics of sediment exchange along this reach have yet to be described. River-bank surveys in five regions along the Amazon tidal river reveal a distinct transition in bank morphology between the upper, central and lower reaches of the tidal river. The upper tidal-river floodplain is defined by prominent natural levees that control the transfer of water and sediment between the mainstem Amazon River and its floodplain. Greater tidal influence in the central tidal river suppresses levee development, and tidal currents increase sediment transport into the distal parts of the floodplain. In the lower tidal river, the floodplain morphology closely resembles marine intertidal environments (e.g. mud flats, salt marshes), with dendritic tidal channels incising elevated vegetated flats. Theory, morphology and geochronology suggest that the dynamics of sediment delivery to the intertidal floodplain of the Amazon tidal river vary along its length due to the relative influence and coupling of fluvial and tidal dynamics. © 2018 John Wiley & Sons, Ltd.  相似文献   

12.
The rates and styles of channel adjustments following an abrupt and voluminous sediment pulse are investigated in the context of site and valley characteristics and time‐varying sediment transport regimes. Approximately 10.5 x 106 m3 of stored gravel and sand was exposed when Barlin Dam failed during Typhoon WeiPa in 2007. The dam was located on the Dahan River, Taiwan, a system characterized by steep river gradients, typhoon‐ and monsoon‐driven hydrology, high, episodic sediment supply, and highly variable hydraulic conditions. Topography, bulk sediment samples, aerial photos, and simulated hydraulic conditions are analyzed to investigate temporal and spatial patterns in morphology and likely sediment transport regimes. Results document the rapid response of the reservoir and downstream channel, which occurred primarily through incision and adjustment of channel gradient. Hydraulic simulations illustrate how the dominant sediment transport regime likely varies between study periods with sediment yield and caliber and with the frequency and duration of high flows. Collectively, results indicate that information on variability in sediment transport regime, valley configuration, and distance from the dam is needed to explain the rate and pattern of morphological changes across study periods. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
Cosmogenic 7Be is a natural tracer of short‐term hydrological processes, but its distribution in upland fluvial environments over different temporal and spatial scales has not been well described. We measured 7Be in 450 sediment samples collected from perennial channels draining the middle of the Connecticut River Basin, an environment that is predominantly well‐sorted sand. By sampling tributaries that have natural and managed fluctuations in discharge, we find that the 7Be activity in thalweg sediments is not necessarily limited by the supply of new or fine‐grained sediment, but is controlled seasonally by atmospheric flux variations and the magnitude and frequency of bed mobilizing events. In late winter, 7Be concentrations in transitional bedload are lowest, typically 1 to 3 Bq kg?1 as 7Be is lost from watersheds via radioactive decay in the snowpack. In mid‐summer, however, 7Be concentrations are at least twice as high because of increased convective storm activity which delivers high 7Be fluxes directly to the fluvial system. A mixed layer of sediment at least 8 cm thick is maintained for months in channels during persistent low rainfall and flow conditions, indicating that stationary sediments can be recharged with 7Be. However, bed mobilizing rain on snowmelt events in late Spring can ‘reset’ 7Be amounts and concentrations in the channel as previously buried ‘old’ sediment with low 7Be is mixed into the thalweg. We conclude that given proper temporal and spatial sampling, 7Be is a valuable tracer of seasonal‐timescale mass transport and exchange in coarse‐grained fluvial systems. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
This paper explores changes in suspended sediment transport and fine sediment storage at the reach and patch scale associated with the reintroduction of partial large wood (LW) jams in an artificially over‐widened lowland river. The field site incorporates two adjacent reaches: a downstream section where LW jams were reintroduced in 2010 and a reach immediately upstream where no LW was introduced. LW pieces were organized into ‘partial’ jams incorporating several ‘key pieces’ which were later colonized by substantial stands of aquatic and wetland plants. Reach‐scale suspended sediment transport was investigated using arrays of time‐integrated suspended sediment samplers. Patch‐scale suspended sediment transport was explored experimentally using turbidity sensors to track the magnitude and velocity of artificially generated sediment plumes. Fine sediment storage was quantified at both reach and patch scales by repeat surveys of fine sediment depth. The results show that partial LW jams influence fine sediment dynamics at both the patch and reach scale. At the patch‐scale, introduction of LW led to a reduction in the concentration and increase in the time lag of released sediment plumes within the LW, indicating increased diffusion of plumes. This contrasted with higher concentrations and lower time lags in areas adjacent to the LW; indicating more effective advection processes. This led to increased fine sediment storage within the LW compared with areas adjacent to the LW. At the reach‐scale there was a greater increase in fine sediment storage through time within the restored reach relative to the unrestored reach, although the changes in sediment transport responsible for this were not evident from time‐integrated suspended sediment data. The results of the study have been used to develop a conceptual model which may inform restoration design. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

15.
The transfer of sediment through a highly regulated large fluvial system (lower Ebro River) was analysed during two consecutive floods by means of sediment sampling. Suspended sediment and bedload transport were measured upstream and downstream of large reservoirs. The dams substantially altered flood timing, particularly the peaks, which were advanced downstream from the dams for flood control purposes. The suspended sediment yield upstream from the dams was 1 700 000 tonnes, which represented nearly 99 per cent of the total solid yield. The mean concentrations were close to 0·5 g l?1. The sediment yield downstream from the dams was an order of magnitude lower (173 000 tonnes), showing a mean concentration of 0·05 g l?1. The dams captured up to 95 per cent of the fine sediment carried in suspension in the river channel, preventing it from reaching the lowermost reaches of the river and the delta plain. Total bedload transport upstream from the dams was estimated to be about 25 000 tonnes, only 1·5 per cent of the total load. The median bedload rate was 100 gms?1. Below the dams, the river carried 178 000 tonnes, around 51 per cent of the total load, at a mean rate of 250 g ms?1. The results of sediment transport upstream and downstream from the large dams illustrate the magnitude of the sediment deficit in the lower Ebro River. The river mobilized a total of 350 000 tonnes in the downstream reaches, which were not replaced by sediment from upstream. Therefore, sediment was necessarily entrained from the riverbed and channel banks, causing a mean incision of 33 mm over the 27 km long study reach, altogether a significant step towards the long‐term degradation of the lower Ebro River. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
As with most Italian rivers, the Reno River has a long history of human modification, related also to morphological changes of the lower Po River since Roman times, but in the last decades, significant land use changes in the headwaters, dam construction, torrent control works and extensive bed material mining have caused important channel morphology and sediment budget changes. In this paper, two main types of channel adjustment, riverbed incision and channel narrowing, are analysed. Riverbed degradation is discussed by comparing four different longitudinal profiles surveyed in 1928, 1951, 1970 and 1998 in the 120 km long reach upstream of the outlet. The analysis of channel narrowing is carried out by comparing a number of cross‐sections surveyed in different years across the same downstream reach. Field sediment transport measurements of seven major floods that occurred between 2003 and 2006 are compared with the bedload transport rates predicted by the most renowned equations. The current low bedload yield is discussed in terms of sediment supply limited conditions due to land use changes, erosion‐control works and extensive and out of control bed material mining that have affected the Reno during the last decades. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
A high‐magnitude flash flood, which took place on 25 October 2011 in the Magra River catchment (1717 km2), central‐northern Italy, is used to illustrate some aspects of the geomorphic response to the flood. An overall methodological framework is described for using interlinked observations and analyses of the geomorphic impacts of an extreme event. The following methods and analyses were carried out: (i) hydrological and hydraulic analysis of the event; (ii) sediment delivery by event landslide mapping; (iii) identification and estimation of wood recruitment, deposition, and budgeting; (iv) interpretation of morphological processes by analysing fluvial deposits; (v) remote sensing and geographic information system (GIS) analysis of channel width changes. In response to the high‐magnitude hydrological event, a large number of landslides occurred, consisting of earth flows, soil slips, and translational slides, and a large quantity of wood was recruited, in most part deriving from floodplain erosion caused by bank retreat and channel widening. The most important impact of the flood event within the valley floor was an impressive widening of the overall channel bed and the reactivation of wide portions of the pre‐event floodplain. Along the investigated (unconfined or partly confined) streams (total investigated length of 93.5 km), the channel width after the flood was up to about 20 times the channel width before the event. The study has shown that a synergic use of different methods and types of evidence provides fundamental information for characterizing and understanding the geomorphic effects of intense flood events. The prediction of geomorphic response to a flood event is still challenging and many limitations exist; however a robust geomorphological analysis can contribute to the identification of the most critical reaches. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
From July 2003 to July 2004, samples were collected on Chongming Island east tidal flat every two months. The research showed that the nitrous oxide (N2O) production rate was very low in the water, Chongming east tidal flat (CM) sediment was the N2O source of the water. Sediment N2O natural production rate was between -0.08 and 1.74 μmolN·m-2·h-1. N2O natural production rate was higher in the summer. The difference of the N2O natural production rate in the different tidal flats, the correlation between the N2O natural production rate and the denitrification rate, and those with the temperature and DO indicate that middle tidal flat sediment denitrification was the main process of the N2O production, while in the low tidal flat sediment, the production of the N2O came from several processes of the nitrogen cycling. Tidal flat sediment denitrification reaction was stronger in summer and winter but relatively lower in the late autumn and early spring. Seasonal change of the sediment denitrification rate was wide, from 1.12 to 33.34 μmolN·m-2·h-1. Temperature, DO and the coactions of them had the prominent effect on the tidal flat sediment denitrification.  相似文献   

19.
The Amazon Macrotidal Mangrove Coast (AMMC) is a large (~7500 km2) contiguous mangrove fringe eastwards from the Amazon River mouth. It encompasses dozens of interconnected bays intercalated with mangrove peninsulas. Mud accumulates on the mangrove flats, whereas the bed of the bays and channels is generally sandy. In this study we investigated the circulation, sediment transport and deposition in a central site at one of these mangrove peninsulas. The study was undertaken during the dry period, when there is no influence of the Amazon River plume and minimum local freshwater inflow. Current and suspended-sediment concentration were monitored in a feeder channel on the mangrove flat along a ~1000 m section oriented along the peninsula axis. Sediment deposition was also measured on the flat. Our results show there was a strong exchange between the neighboring bays. Channel currents were flood dominant, reaching up to >1 m s−1, with residual water and sediment transport westwards. Suspended sediment concentration (SSC) in the channel was directly related to velocity magnitude, ranging between 50 and 350 mg L−1. The flat was flooded in a way that indicated the tidal wave evolves westwards, nearly parallel to the AMMC shoreline. Currents on the flats were much slower than those in the channel and showed slight ebb dominance. However, SSC was higher during the flood than ebb, clearly indicating settling during the current deceleration and limited erosion during the following ebb–flow acceleration. The net sediment transport across the section was 60 tons westwards for the period of the experiment (~4 days). The mean deposition rate was 0.006 kg m−2 s−1 (or 1.4 kg m−2 per tide), which was higher than rates from other reported assessments in mangroves. The set of results indicate very large internal sediment reworking in the AMMC. © 2019 John Wiley & Sons, Ltd.  相似文献   

20.
Sediment transport and channel morphology in mountainous hillslope-coupled streams reflect a mixture of hillslope and channel processes. However, the influence of lithology on channel form and adjustment and sediment transport remains poorly understood. Patterns of channel form, grain size, and transport capacity were investigated in two gravel-bed streams with contrasting lithology (basalt and sandstone) in the Oregon Coast Range, USA, in a region in which widespread landslides and debris flows occurred in 1996. This information was used to evaluate threshold channel conditions and channel bed adjustment since 1996. Channel geometry, slope, and valley width were measured or extracted from LiDAR and sediment textures were measured in the surface and subsurface. Similar coarsening patterns in the first few kilometres of both streams indicated strong hillslope influences, but subsequent downstream fining was lithology-dependent. Despite these differences, surface grain size was strongly related to shear stress, such that the ratio of available to critical shear stress for motion of the median surface grain size at bankfull stage was around one over most of the surveyed lengths. This indicated hydraulic sorting of supplied sediment, independent of lithology. We infer a cycle of adjustment to sediment delivered during the 1996 flooding, from threshold conditions, to non-alluvial characteristics, to threshold conditions in both basins. The sandstone basin can also experience complete depletion of the gravel-size alluvium to sand size, leading to bedrock exposure because of high diminution rates. Although debris flows being more frequent in a basalt basin, this system will likely display threshold-like characteristics over a longer period, indicating that the lithologic control on channel adjustment is driven by differences in rock competence that control grain size and available gravel for bed load transport. © 2020 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号