首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Analysis of the shape of sedimentary particles can provide information about their transport history and aid facies differentiation and the characterization of depositional environments. Triangular (Sneed and Folk) diagrams, employing ratios of the three orthogonal particle axes, have been advocated as the most appropriate method for unbiased presentation of primary particle shape data. A spreadsheet method for the production of these diagrams is described. Clast data‐sets from a range of environments are presented using this method. An alternative use of the spreadsheet for the presentation of sedimentary fabric shape is suggested. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

2.
3.
4.
Sedimentation – including erosion, transport, and deposition of coarse-grained particles – is a primary and growing environmental, engineering, and agricultural issue around the world. Soil erosion occurs when the hydrodynamic force induced by flowing water exceeds the geotechnical resistance of soils, as measured by critical shear stress for initiation of soil-particle motion. Even though various quantitative methods have been suggested with respect to different types of soil, the most widely accepted formula to estimate critical shear stress for coarse-grained soil is a direct function of the median grain size of the soil particles; however, the erosion resistance of soils also varies with other geotechnical properties, such as packing density, particle shape, and uniformity coefficient. Thus, in this study, a combined rolling–lift model for particle detachment was derived based on theoretical analysis. A series of experimental flume tests were conducted with specimens prepared with standard soil types, as well as laboratory-prepared mixtures of coarse-grained soil to validate the theoretical model and determine the effect of other geotechnical properties on the erosion characteristics of coarse grains, coupled with the effect of median particle size. The results indicated that the median grain size is the primary variable determining the resistance of coarse grains, but the critical shear stress also varies with the packing density of the soil matrix. In addition, angular particles show more erosion resistance than rounded particles, and the erosion potential of a soil decreased when the grain is well graded (higher value of uniformity coefficient). Additionally, regression analysis was performed to quantify the effect of each parameter on the critical shear stress of coarse grains. © 2020 John Wiley & Sons, Ltd.  相似文献   

5.
模糊-统计分析方法在新西兰地震危险性估计中的应用   总被引:2,自引:0,他引:2  
把模糊聚类分析、模糊地震活动平静异常识别、模糊分维、b值谱分析等方法应用于新西兰南、北两区的地震危险性估计当中.结果表明,这5种方法在此处均可得到有效的应用.  相似文献   

6.
通过会昌台数字与模拟地震记录到的多个地震事件进行对比分析,认为前者在记录带宽、获取更多的地震动物理量、记录波形能力及可操作性等方面具有显著的优势,数字观测完全可以取代模拟观测;对两种记录计算的地震震级进行了对比与统计分析,发现数字记录近震的震级比远震的偏差要大,远震震级可直接与全国地震目录接轨。  相似文献   

7.
Fabric ‘shape’, based on the relative values of three eigenvalues calculated from fabric data, has been used to differentiate sediment facies and infer deformation histories. The eigenvalues are based on samples drawn from parent populations, and as such are subject to statistical variance due to sampling effects. In this paper, the degree of statistical variance in fabric data for two types of subglacial till from Breidamerkurjøkull, Iceland, is investigated using ‘bootstrapping’ techniques, in which empirical ‘confidence regions’ are built up by repeated resampling of the original data. The experiments show that, for each till type, the observed between‐sample variability in the fabrics lies within the boundaries associated with random variations, indicating that the observed range of fabric shapes within each till type is likely to be entirely the product of sampling effects. Differences in fabric shape between till types are generally greater than that associated with random variations, indicating that their fabric shape characteristics, as measured by eigenvalues, are significantly different. Nevertheless, the results suggest that great care should be exercised when using a‐axis fabric data to differentiate sedimentary facies, or to infer subtle differences in physical processes or conditions. Copyright © 2001 John Wiley & ­Sons, Ltd.  相似文献   

8.
高纬磁层顶位形统计分析   总被引:1,自引:0,他引:1       下载免费PDF全文
本文收集了1226个来自Cluster、Geotail、GOES、IMP8、Interball、LANL、Polar、TC1、THEMIS和Wind卫星磁层顶穿越事例,并主要利用时间推移使上游行星际磁场clock angle或等离子体变化特征与磁鞘中的相吻合方法为这些数据配对上来自ACE或Wind卫星5 min平均值太阳风数据.通过对这些数据以及网上公布的1482个Hawkeye卫星磁层顶穿越点数据分析研究,发现:(1)高纬磁层顶在极隙区存在内凹结构,其内凹范围比较大;(2)磁层顶内凹位置明显受地磁偶极倾角控制,最内凹点所对应的天顶角和地磁偶极倾角大致呈线性关系,这种关系在南北半球大致呈反对称;(3)磁层顶内凹深度、内凹范围以及内凹中心不变纬度基本不受地磁偶极倾角影响.  相似文献   

9.
Research on tsunami-induced coarse-clast transport is a field of rising interest since such deposits have been identified as useful proxies for extreme-wave events (tsunamis, storm waves) that provide crucial information for coastal hazard assessment. Physical experiments are, beside in-situ observations, the foundation of our understanding of how boulders are transported by tsunamis and provide clues to the development of empirical equations and numerical models describing the processes and fundamental mechanics. Nevertheless, investigating tsunami-induced boulder transport is a comparatively young discipline and only a few experimental studies focusing on this topic have been published so far. To improve the knowledge on nearshore tsunami hydrodynamics, physical experiments utilizing real-world boulder shapes have been carried out simulating three different shore types in a wave flume. Crucial insights were gained into boulder transport hydrodynamics and data resulting from the experiments were analysed in an empirical, statistical, quantitative and qualitative manner. The regular cuboid boulder – one of the specific shapes used in the experiments – showed the longest transport distances compared to a complex, natural boulder and a flat cuboid boulder, but also significant fluctuations regarding the total transport distance. The experiments indicate a strong influence of the shore shape on boulder transport behaviour. Experimental setups of increased mean transport distances also led to a higher spreading of results. This spreading was further amplified between the idealized-shaped cuboid and the complex-shaped boulder, which is associated with a lower drag coefficient. Due to the highly sensitive boulder reaction to divergent experimental setups, the need to recognize boundary conditions overcoming commonly considered parameters (e.g. roughness or Flatness Index) in field studies and numerical models is underlined. Beside the strong influence of initial boulder submergence and alignment, both the boulder shape and shore type influence the boulder transport pattern, increasing the total transport distance by more than 350% in some cases. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd  相似文献   

10.
This paper presents a simple method for shape and depth determination of a buried structure from residual gravity anomalies along profile. The method utilizes the anomaly values of the origin and characteristic points of the profile to construct a relationship between the shape factor and depth of the causative source. For fixed points, the depth is determined for each shape factor. The computed depths are then plotted against the shape factor representing a continuous monotonically increasing curve. The solution for the shape and depth of the buried structure is then read at the common intersection point of the depth curves. This method is applied to synthetic data with and without random errors. Finally, the validity of the method is tested on two field examples from the USA.  相似文献   

11.
The calculated nonlinear structural responses of a building can vary greatly, even if recorded ground motions are scaled to the same spectral acceleration at a building's fundamental period. To reduce the variation in structural response at a particular ground‐motion intensity, this paper proposes an intensity measure (IMcomb) that accounts for the combined effects of spectral acceleration, ground‐motion duration, and response spectrum shape. The intensity measure includes a new measure of spectral shape that integrates the spectrum over a period range that depends on the structure's ductility. The new IM is efficient, sufficient, scalable, transparent, and versatile. These features make it suitable for evaluating the intensities of measured and simulated ground motions. The efficiency and sufficiency of the new IM is demonstrated for the following: (i) elastic‐perfectly plastic single‐degree‐of‐freedom (SDOF) oscillators with a variety of ductility demands and periods; (ii) ductile and brittle deteriorating SDOF systems with a variety of periods; and (iii) collapse analysis for 30 previously designed frames. The efficiency is attributable to the inclusion of duration and to the ductility dependence of the spectral shape measure. For each of these systems, the transparency of the intensity measure made it possible to identify the sensitivity of structural response to the various characteristics of the ground motion. Spectral shape affected all structures, but in particular, ductile structures. Duration only affected structures with cyclic deterioration. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
Viscoelastic (VE) dampers are sensitive to temperature, excitation frequency, and strain level. As they dissipate the kinetic energy from earthquake or wind-induced structural vibrations, their temperature increases from the heat generated, consequently softening their VE materials and lowering their dynamic mechanical properties. Temperature increase can be significant for long-duration loading, but can be limited by heat conduction and convection which depend on damper configuration. The writers analytically explored such effect on the six different dampers by using their previously proposed three-dimensional finite-element analysis method. Results provided better understanding of how heat is generated within the VE material, conducted and stored in different damper parts, and dispersed to the surrounding air. These results also led to characterization of both local (e.g., temperatures, properties, and strain energy density) and global (e.g., hysteresis loops, and stiffness) behavior of VE dampers, and provided a framework for a new simplified one-dimensional (1D) modeling approach for time-history analysis. This new proposed 1D method greatly improves the computation time of the previously proposed long-duration method coupling fractional time-derivatives VE constitutive rule with 1D heat transfer analysis. Unlike the previous method, it idealizes uniform shear strain and VE material property distributions for computational efficiency, but still simulating non-uniform temperature distribution along the thickness direction of the VE material. Despite the approximations, it accurately predicts VE damper global responses.  相似文献   

13.
On the basis of experiment and theory, we expect rocks to deform in a linear fashion when diffusive processes control deformation, and nonlinearly in most other situations. The geometric characteristics of buckle folds in layered materials are dependent on rheological parameters, and in particular depend strongly on the stress exponent,n L , of the stiff layers involved. Thus, information about the deformation rocks have undergone and their rheological state during deformation can be obtained by studying fold shapes and strain distributions. This is important because there is uncertainty in extrapolating laboratory-derived flow laws to the very slow natural strain rates and large strains found in nature.We have studied the development of buckle folds in linear and nonlinear materials using finite-element modeling, and interpolated the numerical results to construct plots relating several geometric parameters to variations in power-law exponent,n L , and viscosity ratio,m, of layer to matrix. Such plots allow for a comparison of the results of numerical models with data for many natural and experimentally-produced folds, and there is consistency among the data for folds produced in physical models, using both linear and nonlinear materials and the numerical simulations. data for folds from the Appalachian Mountains, the Alps and elsewhere, however, suggest high values ofn L in the flow laws for a number of rock types. The unexpectedly high estimates ofn L suggest that other factors, such as strain softening or anisotropy, may influence fold shape, and thus complicate the estimation of the rheological properties of rocks.  相似文献   

14.
A spatially distributed representation of basin hydrology and transport processes in hydrologic models facilitates the identification of critical source areas and the placement of management and conservation measures. Floodplains are critical landscape features that differ from neighbouring uplands in terms of their hydrological processes and functions. Accordingly, an important step in watershed modelling is the representation of floodplain and upland areas within a watershed. The aim of this study is (1) to evaluate four floodplain–upland delineation methods that use readily available topographic data (topographic wetness index, slope position, uniform flood stage, and variable flood stage) with regard to their suitability for hydrological models and (2) to introduce an evaluation scheme for the delineated landscape units. The methods are tested in three U.S. watersheds ranging in size from 334 to 629 km2 with different climatic, hydrological, and geomorphological characteristics. Evaluation of the landscape delineation methods includes visual comparisons, error matrices (i.e. cross‐tabulations of delineated vs reference data), and geometric accuracy metrics. Reference data were obtained from the Soil Survey Geographic (SSURGO) database and Federal Emergency Management Agency (FEMA) flood maps. Results suggest that the slope position and the variable flood stage method work very well in all three watersheds. Overall percentages of floodplain and upland areas allocated correctly were obtained by comparing delineated and reference data. Values range from 83 to 93% for the slope position and from 80 to 95% for the variable flood stage method. Future studies will incorporate these two floodplain–upland delineation methods into the subwatershed‐based hydrologic model Soil and Water Assessment Tool (SWAT) to improve the representation of hydrological processes within floodplain and upland areas. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
Topographic models provide a useful tool for understanding gully occurrence in the landscape but require reliable estimates of gully head drainage areas. Modern high-resolution topography data (collected using structure from motion photogrammetry or light detection and ranging) is increasingly used for topographic studies of gullies, but little work has been done to assess the variability of gully head drainage area estimates using different methods. This study evaluated alternative approaches to using high-resolution digital elevation models (DEMs) so that gully topographic models can be more readily applied to any area with suitably high-resolution data. Specifically, we investigated the impact of single- or multiple-direction flow routing algorithms, DEM hydrologic-enforcement procedures and spatial resolution on gully head drainage area estimation. We tested these methods on a 40 km2 site centred on Weany Creek, a low-relief semi-arid landscape draining towards the Great Barrier Reef, Australia. Using a subroutine to separate gully heads into those with divergent or convergent flow patterns upslope, we found that divergent flow conditions occurred at half of 484 studied gullies. Drainage areas estimated by different flow routing algorithms were more variable in these divergent cases than for convergent cases. This variation caused a significant difference between topographic threshold parameters (slope b and intercept k) derived from single- or multiple-direction flow routing algorithms, respectively. Different methods of hydrologic enforcement (filling or breaching) also affected threshold analysis, resulting in estimates of the exponent b being ~188% higher if the DEM was filled than if breached. The testing of the methods to date indicates that a finer resolution (≤2 m) DEM and a multiple-direction flow routing algorithm achieve the most realistic drainage area estimates in low-relief landscapes. For Weany Creek we estimated threshold parameters k = 0.033 and b = 0.189, indicating that it is highly susceptible to gully erosion.  相似文献   

16.
As mineral magnetism is used as a tracer for sourcing river and dam sediments, changes in the magnetic properties that may occur during transport between the source and sink must be considered. Abrasion and breakage of particles will occur during transport. These processes were examined in simulation experiments with a granitic and a sedimentary soil. The effects of these processes on the magnetic properties of a granitic and a sedimentary soil were examined using a simulated breakage/abrasion experiment. Breakage and/or abrasion had substantial effects on the magnetic properties of both soils. All particle sizes were affected, but the magnitude varied through the size range of derived particles. The major effect was on the concentration of magnetic minerals, with differences between the concentrations in particle sizes of the original material and those generated by the experiments being as much as 20 times. The effect on the granite soil was to reduce the concentrations, i.e. derived material was less than original material; whereas for the sedimentary soil the derived particles had higher concentrations. The effect on magnetic grain size, as indicated by the magnetic ratios, was less than the effect on the mass magnetic properties, but still substantial for some ratios for some sizes. © 1998 John Wiley & Sons, Ltd.  相似文献   

17.
《国际泥沙研究》2016,(3):244-250
The equilibrium scour depth at uniform single bridge piers depends on a large number of variables,including the pier horizontal cross-section shape and its alignment angle towards the flow direction.The influence of these variables has been studied by only a few researchers,mostly,on the basis of tests that were far from approaching equilibrium.This experimental study aims at revisiting the influence of piers' shape and alignment on local scouring for length-width ratios smaller than or equal to 4,by increasing the experimental evidence.Fifty five long-duration laboratory tests were run under steady,clear-water flow,close to the threshold for initiation of sediment motion.Five pier shapes were considered:circular,rectangular square-nosed,rectangular round-nosed,oblong,and zero-spacing(packed) pile-groups;the tested skew-angles were 0°,30°,45°,60°,and 90°.It was concluded that i) the shape factor can be taken as 1.0,for rectangular round-nosed and oblong cross-section piers,and as 1.2,for rectangular squarenosed and packed pile-group cross-section piers,ii) the shape factor does not vary significantly with the duration of tests,this way confirming the robustness of the shape factors reported to date,iii) the effect of shape is present at skewed piers although the associated coefficients remain in the narrow range of1.0-1.2,and iv) for length-width ratios smaller than 4,the shape factor is of the same order of magnitude as the skew angle factor and should not be neglected.  相似文献   

18.
本文对一种新型形状记忆合金阻尼器——锥形形状记忆合金阻尼器的性能进行了数值分析和试验研究。基于形状记忆合金的超弹性双线型本构模型,利用非线性有限元方法分析了锥形形状记忆合金阻尼器的滞回性能,并且用大型能用程序ANSYS进行了验证,得出锥形形状记忆合金阻尼器的滞回模型可简化为分段线性滞回模型,试验包括形状记忆合金丝的本构试验、疲劳试验阳阻尼器的性能试验.试验结果与数值分析结果基本吻合,形状记忆合金表现出良好的超弹性。  相似文献   

19.
The determination of the critical particle size between solid and fluid phases, i.e., the suspension competence, is fundamental for debris flow. A method for determining suspension competence based on particle size analysis is presented in this paper. Suspension competence of static experimental water-debris mixtures prepared with the sediment of Jiangjia Gully is -0.025 mm if the bulk density is less than 1,800 kg m-3 and it increases with bulk density of more concentrated mixtures. Suspension competence of natural debris flows in Jiangjia Gully increases exponentially with the bulk density. These two data sets are compared in order to understand the suspension mechanism. It is concluded that turbulence may play a leading role in particle suspension in non-viscous and sub-viscous debris flows, while in viscous debris flows both matrix strength and excess pore water pressure play important roles.  相似文献   

20.
ABSTRACT

The aims of this study are to investigate the influence of large-scale atmospheric circulation quantified by indices such as the North Atlantic Oscillation index (NAOI), the Greenland-Balkan Oscillation index (GBOI) and blocking-type indices on the Lower Danube discharge. We separately analysed each season for the 1948–2000 period. In addition to the statistical linear procedure, we applied methods to quantify nonlinear connections between variables, as mutual information between predictors and predictand, using Shannon’s information entropy theory. The nonlinear correlation information between climate indices and discharge is higher than that obtained from the linear measure, providing more insight into real connections. Also, the non-stationarity of the link between variables is highlighted by spectral coherence based on wavelet analysis. For the physical interpretation, we analyse composite maps over the Atlantic-European region. The most significant influence on the discharge of the Lower Danube Basin is given by the GBOI and blocking-type atmospheric circulation over Europe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号