共查询到20条相似文献,搜索用时 15 毫秒
1.
Alexander N. Gorr Luke A. McGuire Ann M. Youberg Rebecca Beers Tao Liu 《地球表面变化过程与地形》2024,49(2):622-641
Burned slopes are susceptible to runoff-generated debris flows in the years following wildfire due to reductions in vegetation cover and soil infiltration capacity. Debris flows can pose serious threats to downstream communities, so quantifying variations in flow properties along debris-flow runout paths is needed to improve both conceptual and quantitative models of debris-flow behaviour to help anticipate and mitigate the risk associated with these events. Changes in flow properties along the runout paths of the runoff-generated debris flows that follow fire may be particularly dramatic, since they initiate when a water-dominated flow rapidly entrains sediment and later transition back to a water-dominated flow once they reach greater drainage areas and lower slopes. Here, we study the properties of a debris flow that initiated 1 month following the 2022 Pipeline Fire in northern Arizona, USA. We categorized flow type into two classes, granular debris flow and muddy debris flow, along the 7-km runout path and examined how flow properties varied between the phases. Changes in channel gradient and confinement likely facilitated the transition between the flow phases, which were characterized by significant differences in maximum clast size, but similar clay content and fine fractions. We also found that the volume and runout distance of the debris flow were 28 and six times greater, respectively, than that of a debris flow that initiated in the same watershed following a fire 12 years earlier. We attribute these differences to the combined effects of two high-severity fires, suggesting that consideration of recent fire history could improve post-fire debris-flow hazard assessments. Results of this study provide quantitative constraints on changes in post-fire debris-flow properties along a runout path. Data collected in this study add to a small number of debris-flow inundation datasets that can be used to test runout models in post-fire settings. 相似文献
2.
Incorporating spatially heterogeneous infiltration capacity into hydrologic models with applications for simulating post‐wildfire debris flow initiation 下载免费PDF全文
Luke A. McGuire Francis K. Rengers Jason W. Kean Dennis M. Staley Benjamin B. Mirus 《水文研究》2018,32(9):1173-1187
Soils in post‐wildfire environments are often characterized by a low infiltration capacity with a high degree of spatial heterogeneity relative to unburned areas. Debris flows are frequently initiated by run‐off in recently burned steeplands, making it critical to develop and test methods for incorporating spatial variability in infiltration capacity into hydrologic models. We use Monte Carlo simulations of run‐off generation over a soil with a spatially heterogenous saturated hydraulic conductivity (Ks) to derive an expression for an aerially averaged saturated hydraulic conductivity ( ) that depends on the rainfall rate, the statistical properties of Ks, and the spatial correlation length scale associated with Ks. The proposed method for determining is tested by simulating run‐off on synthetic topography over a wide range of spatial scales. Results provide a simplified expression for an effective saturated hydraulic conductivity that can be used to relate a distribution of small‐scale Ks measurements to infiltration and run‐off generation over larger spatial scales. Finally, we use a hydrologic model based on to simulate run‐off and debris flow initiation at a recently burned catchment in the Santa Ana Mountains, CA, USA, and compare results to those obtained using an infiltration model based on the Soil Conservation Service Curve Number. 相似文献
3.
Comparison of the responses of three drainage basins burned by the Dome fire of 1996 in New Mexico is used to identify the hillslope, channel and fire characteristics that indicate a susceptibility specifically to wildfire‐related debris flow. Summer thunderstorms generated three distinct erosive responses from each of three basins. The Capulin Canyon basin showed widespread erosive sheetwash and rilling from hillslopes, and severe flooding occurred in the channel; the North Tributary basin exhibited extensive erosion of the mineral soil to a depth of 5 cm and downslope movement of up to boulder‐sized material, and at least one debris flow occurred in the channel; negligible surface runoff was observed in the South Tributary basin. The negligible surface runoff observed in the South Tributary basin is attributed to the limited extent and severity of the fire in that basin. The factors that best distinguish between debris‐flow producing and flood‐producing drainages are drainage basin morphology and lithology. A rugged drainage basin morphology, an average 12 per cent channel gradient, and steep, rough hillslopes coupled with colluvium and soil weathered from volcaniclastic and volcanic rocks promoted the generation of debris flows. A less rugged basin morphology, an average gradient of 5 per cent, and long, smooth slopes mantled with pumice promoted flooding. Flood and debris‐flow responses were produced without the presence of water‐repellent soils. The continuity and severity of the burn mosaic, the condition of the riparian vegetation, the condition of the fibrous root mat, accumulations of dry ravel and colluvial material in the channel and on hillslopes, and past debris‐flow activity, appeared to have little bearing on the distinctive responses of the basins. Published in 2000 by John Wiley & Sons, Ltd. 相似文献
4.
Wildfires represent one of the largest disturbances in watersheds of the Intermountain West. Yet, we lack models capable of predicting post-wildfire impacts on downstream ecosystems and infrastructure. Here we present a novel modeling framework that links new and existing models to simulate the post-wildfire sediment cascade, including spatially explicit predictions of debris flows, storage of debris flow sediment within valleys, delivery of debris flow sediment to active channels, and the downstream routing of sediment through river networks. We apply the model to sediment dynamics in Clear Creek watershed following the 2010 Twitchell Canyon Fire in the Tushar Mountains of southern Utah. The debris flow generation model performed well, correctly predicting 19 out of 20 debris flows from the largest catchments, with only four false positives and two false negatives at observed rainfall intensities. In total, the model predicts the occurrence of 160 post-wildfire debris flows across the Clear Creek watershed, generating more than 650 000 m3 of sediment. Our new storage and delivery model predicts the vast majority of this sediment is stored within valleys, and only 13% is delivered to the river network. The sediment routing model identifies numerous sediment bottlenecks within the network, which alter transport dynamics and may be hotspots for aggradation and aquatic habitat alteration. The volume of sediment exported from the watershed after seven years of simulation totals 17% of that delivered, or 2% of the total generated debris flow sediment. In the case of the Twitchell Canyon Fire, this highlights that significant post-wildfire sediment volumes can be stored in valleys (87%) and within the stream network (11%). Finally, we discuss useful insights that can be gleaned from the model framework, as well as the limitations and need for more monitoring and theory development in order to better constrain essential inputs, process rates, and morphodynamics. © 2019 John Wiley & Sons, Ltd. 相似文献
5.
Debris flow is one of the dominant processes distributing large wood (LW) within mountainous catchments. However, little has been reviewed on wood-laden debris flow (WLDF), presumably owing to limited reviewable works. This article, therefore, navigates the international readers through 40 years of WLDF studies, most of which have been published only in Japanese. Firstly, we reviewed the historical development of Japanese WLDF particularly focusing on the 1980s and the 1990s. A series of post-disaster fieldworks from the July 1982 Nagasaki flood to the July 1990 Kumamoto flood provided 32 catchment-scale wood budgeting data; empirical relationships among drainage area, dominant tree species, sediment yield, and wood loads associated with single debris flow disasters were illustrated. Secondly, the characteristics of WLDF were summarized based on relevant previous studies on the recruitment, transport, and deposition processes of LW during debris flows. Thirdly, we discussed the connectivity between those Japanese WLDF studies and international LW studies by relating/contrasting their research approaches and spatiotemporal scales. In contrast to global LW research trends, Japanese WLDF studies have almost exclusively regarded LW as hazardous materials (i.e., “driftwood” or “woody debris”) that need to be retained upstream of the inhabited areas. Those practice-oriented WLDF studies were concentrated on drainage areas of 10−2 to 100 km2, representing 1–6 orders of magnitude smaller spatial scales than those generally covered by existing international LW studies. Strongly motivated by engineering requirements, “dynamic” interactions between debris flows and LW during floods have also been physically presented, mainly based on unique laboratory experiments involving steep flume (> 0.05) and mobile bed conditions. Finally, some future works for WLDF were briefly stated from practical and scientific perspectives. By “rediscovering” those WLDF studies domestically developed in Japanese debris flow channels since the 1980s, a more comprehensive understanding of LW dynamics in the river system may be achieved. 相似文献
6.
Oldrich Hungr 《地球表面变化过程与地形》2000,25(5):483-495
Coarse debris flows develop surges with distinct longitudinal sorting. Although highly unsteady, such flow often appears to attain a steady‐state condition, moving over long distances with approximately constant velocity and maximum depth. Typically, a steep, bouldery front is followed by an accumulation of liquid slurry, which in turn decays into a dilute tail. Such sorting has long been recognized by field workers, but its influence on the dynamic behaviour of debris flow surges has not yet been fully clarified by analysis. A simple model is presented, using the theory of uniformly progressive flow and incorporating zoned longitudinal variation in rheology. It is shown that non‐homogeneity can cause very significant magnification of the peak discharge, depending on the slope angle and on the length of the frontal boulder concentration. The shape of the surge flow profiles is determined not only by the rheology of the retained material, but by the longitudinal variation of material characteristics. As a result, excessive reliance on laboratory‐derived rheological constitutive relationships is not advisable. Models of debris flow surges should be non‐homogeneous and able to incorporate zones of contrasting rheology. Copyright © 2000 John Wiley & Sons, Ltd. 相似文献
7.
Hydrologic recovery after wildfire is critical for restoring the ecosystem services of protecting of human lives and infrastructure from hazards and delivering water supply of sufficient quality and quantity. Recovery of soil‐hydraulic properties, such as field‐saturated hydraulic conductivity (Kfs), is a key factor for assessing the duration of watershed‐scale flash flood and debris flow risks after wildfire. Despite the crucial role of Kfs in parameterizing numerical hydrologic models to predict the magnitude of postwildfire run‐off and erosion, existing quantitative relations to predict Kfs recovery with time since wildfire are lacking. Here, we conduct meta‐analyses of 5 datasets from the literature that measure or estimate Kfs with time since wildfire for longer than 3‐year duration. The meta‐analyses focus on fitting 2 quantitative relations (linear and non‐linear logistic) to explain trends in Kfs temporal recovery. The 2 relations adequately described temporal recovery except for 1 site where macropore flow dominated infiltration and Kfs recovery. This work also suggests that Kfs can have low hydrologic resistance (large postfire changes), and moderate to high hydrologic stability (recovery time relative to disturbance recurrence interval) and resilience (recovery of hydrologic function and provision of ecosystem services). Future Kfs relations could more explicitly incorporate processes such as soil‐water repellency, ground cover and soil structure regeneration, macropore recovery, and vegetation regrowth. 相似文献
8.
The main purpose of this study is to develop a new type of artificial neural network based model for constructing a debris flow warning system. The Chen‐Eu‐Lan river basin, which is located in Central Taiwan, is assigned as the study area. The creek is one of the most well‐known debris flow areas where several damaging debris flows have been reported in the last two decades. The hydrological and geological data, which might have great influence on the occurrence of debris flows, are first collected and analysed, then, the shared near neighbours neural network (SNN + NN) is presented to construct the debris flow warning system for the watershed. SNN is an unsupervised learning method that has the advantage of dealing with non‐globular clusters, besides presenting computational efficiency. By using SNN, the compiled hydro‐geological data set can easily and meaningfully be clustered into several categories. These categories can then be identified as ‘occurrence’ or ‘no‐occurrence’ of debris flows. To improve the effectiveness of the debris flow warning system, a neural network framework is designed to connect all the clusters produced by the SNN method, whereas the connected weights of the network are adjusted through a supervised learning method. This framework is used and its applicability and practicability for debris flow warning are investigated. The results demonstrate that the proposed SNN + NN model is an efficient and accurate tool for the development of a debris flow warning system. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
9.
Post-fire debris flows represent one of the most erosive consequences associated with increasing wildfire severity and investigations into their downstream impacts have been limited. Recent advances have linked existing hydrogeomorphic models to predict potential impacts of post-fire erosion at watershed scales on downstream water resources. Here we address two key limitations in current models: (1) accurate predictions of post-fire debris flow volumes in the absence of triggering storm rainfall intensities and (2) understanding controls on grain sizes produced by post-fire debris flows. We compiled and analysed a novel dataset of depositional volumes and grain size distributions (GSDs) for 59 post-fire debris flows across the Intermountain West (IMW) collected via fieldwork and from the literature. We first evaluated the utility of existing models for post-fire debris flow volume prediction, which were largely developed for Southern California. We then constructed a new post-fire debris flow volume prediction model for the IMW using a combination of Random Forest modelling and regression analysis. We found topography and burn severity to be important variables, and that the percentage of pre-fire soil organic matter was an essential predictor variable. Our model was also capable of predicting debris flow volumes without data for the triggering storm, suggesting that rainfall may be more important as a presence/absence predictor, rather than a scaling variable. We also constructed the first models that predict the median, 16th percentile, and 84th percentile grain sizes, as well as boulder size, produced by post-fire debris flows. These models demonstrate consistent landscape controls on debris flow GSDs that are related to land cover, physical and chemical weathering, and hillslope sediment transport processes. This work advances our ability to predict how post-fire sediment pulses are transported through watersheds. Our models allow for improved pre- and post-fire risk assessments across diverse ranges of watersheds in the IMW. 相似文献
10.
Soil surface crusts are widely reported to favour Hortonian runoff, but are not explicitly represented in most rainfall‐runoff models. The aim of this paper is to assess the impact of soil surface crusts on infiltration and runoff modelling at two spatial scales, i.e. the local scale and the plot scale. At the local scale, two separate single ring infiltration experiments are undertaken. The first is performed on the undisturbed soil, whereas the second is done after removal of the soil surface crust. The HYDRUS 2D two‐dimensional vertical infiltration model is then used in an inverse modelling approach, first to estimate the soil hydraulic properties of the crust and the subsoil, and then the effective hydraulic properties of the soil represented as a single uniform layer. The results show that the crust hydraulic conductivity is 10 times lower than that of the subsoil, thus illustrating the limiting role the crust has on infiltration. Moving up to the plot scale, a rainfall‐runoff model coupling the Richards equation to a transfer function is used to simulate Hortonian overland flow hydrographs. The previously calculated hydraulic properties are used, and a comparison is undertaken between a single‐layer and a double‐layer representation of the crusted soil. The results of the rainfall‐runoff model show that the soil hydraulic properties calculated at the local scale give acceptable results when used to model runoff at the plot scale directly, without any numerical calibration. Also, at the plot scale, no clear improvement of the results can be seen when using a double‐layer representation of the soil in comparison with a single homogeneous layer. This is due to the hydrological characteristics of Hortonian runoff, which is triggered by a rainfall intensity exceeding the saturated hydraulic conductivity of the soil surface. Consequently, the rainfall‐runoff model is more sensitive to rainfall than to the subsoil's hydrodynamic properties. Therefore, the use of a double‐layer soil model to represent runoff on a crusted soil does not seem necessary, as the increase of precision in the soil discretization is not justified by a better performance of the model. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
11.
The effect of the small fraction of clays on the rheological behaviour of alpine debris flow is poorly understood. This is partly due to the complexity of the debris flow mineralogy and the broad particle size distribution. This study has investigated this issue by simulating an alpine debris flow with a mixture of well characterized fractions and then varying the clay fraction composition. Four samples were tested, ranging from a clay fraction made up of only kaolinite (1:1 type clay) to samples where 80 per cent of the kaolinite is replaced by bedeillite (a 2:1 type clay similar to smectite). Changing the content of 2:1 type clay has a strong influence on the behaviour of the whole material, despite its low weight fraction of around 2 per cent. The tests carried out on these reconstituted materials were compared with the results obtained for natural debris flow materials and showed some common trends: in particular, the rheological parameters for materials with and without 2:1 clays with respect to yield stress as a function of solid content. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献
12.
The front part of the flow is very important and complex in the case of debris flow where there is an accumulation of large boulders. It is important to control or dampen the energy of the frontal part of a debris flow for the safety of the downstream area because the impact pressure of debris flow is much greater than that of clear fluid. The main objective of this study is to analyze the hydraulic characteristics of the proposed dam (i.e. closed-type dam with flap). The vertical pressure distribution of this type is compared with conventional dam types. In the experiments, the total pressure associated with major debris flows was recorded in real time by a system consisting of four dynamic pressure sensors installed on different types of dam. The results from experimental data clearly show that the dam with the flap has advantages of capturing the debris flow with large boulders and controls the total pressure by flow circulation due to presence of the flap structure compared to a closed-type dam without flap. Further-more, the empirical coefficients of hydrodynamic and solid collision models were proposed and com-pared with available coefficients. 相似文献
13.
Debris flow frequency and magnitude were determined for 33 basins in southwest British Columbia. Basins were first classified as either weathering-limited or transport-limited using a discriminant function based on debris-contributing area, an area-weighted terrain stability number, and drainage density. Multiple regression was used to predict magnitude, peak discharge, frequency and activity (frequency times magnitude) within each group of basins. Model performance was improved by stratifying the total sample of debris flow basins into weathering-and transport-limited groups. Explained variance increased by an average of 15 per cent in the transport-limited sample, indicating that sediment supply conditions in the more active basins are fundamental in predicting debris flow activity. An independent test of the regression models with 11 basins yielded generally good results for debris flow magnitude and peak discharge. Prediction of debris flow frequency proved problematical in weathering-limited basins. The methods developed here provide estimates of debris flow attributes in basins for which few data on past events are available. Copyright © 1999 John Wiley & Sons, Ltd. 相似文献
14.
Bed scour by debris flows: experimental investigation of effects of debris‐flow composition 下载免费PDF全文
Debris flows can grow greatly in size by entrainment of bed material, enhancing their runout and hazardous impact. Here, we experimentally investigate the effects of debris‐flow composition on the amount and spatial patterns of bed scour and erosion downstream of a fixed to erodible bed transition. The experimental debris flows were observed to entrain bed particles both grain by grain and en masse, and the majority of entrainment was observed to occur during passage of the flow front. The spatial bed scour patterns are highly variable, but large‐scale patterns are largely similar over 22.5–35° channel slopes for debris flows of similar composition. Scour depth is generally largest slightly downstream of the fixed to erodible bed transition, except for clay‐rich debris flows, which cause a relatively uniform scour pattern. The spatial variability in the scour depth decreases with increasing water, gravel (= grain size) and clay fraction. Basal scour depth increases with channel slope, flow velocity, flow depth, discharge and shear stress in our experiments, whereas there is no correlation with grain collisional stress. The strongest correlation is between basal scour and shear stress and discharge. There are substantial differences in the scour caused by different types of debris flows. In general, mean and maximum scour depths become larger with increasing water fraction and grain size, and decrease with increasing clay content. However, the erodibility of coarse‐grained experimental debris flows (gravel fraction = 0.64) is similar on a wide range of channel slopes, flow depths, flow velocities, discharges and shear stresses. This probably relates to the relatively large influence of grain‐collisional stress to the total bed stress in these flows (30–50%). The relative effect of grain‐collisional stress is low in the other experimental debris flows (<5%), causing erosion to be largely controlled by basal shear stress. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
15.
Post-fire catchment and water utility managers throughout the world use predictive models to estimate potential erosion risks to aid in evaluating downstream impacts of increased runoff and erosion, and to target critical areas within a fire for applying mitigation practices. Erosion prediction can be complicated by forest road networks. Using novel GIS technology and soil erosion modelling, this study evaluated the effect of roads on surface runoff, erosion and sediment yields following a wildfire and determined that the predictive models were providing reasonable results. The GeoWEPP model was used to simulate onsite erosion and offsite sediment delivery before and after fire disturbance using a 2-m resolution DEM as the terrain layer. Erosion rates in excess of 4 Mg ha−1 year−1 were predicted mainly from steep moderate and high severity burn areas. Roads influenced surface runoff flow path distributions and sub-catchment delineations, affecting the spatial distribution of sediment detachment and transport. Roads tended to reduce estimated erosion on slopes below the roads but increases in erosion rates were estimated for road fillslopes. Estimated deposition amounts on roads and in sediment basins were similar to measured amounts. The results confirm that road prisms, culverts and road ditches influence sedimentation processes after wildfire, and they present opportunities to detain eroded sediments. 相似文献
16.
The characteristics of two recent (AD 1994) debris flows in upper Leirdalen, Jotunheimen, Norway, suggest deposition controlled by fluid loss into the underlying, highly permeable, coarse talus. The evidence comprises: (1) drainage holes (sieveholes) up to 44 cm wide and 125 cm deep in the debris‐flow channel floors, which remained open throughout the debris‐flow event; (2) marked channel narrowing, with reduced cross‐sectional areas and termination of the debris flows in flat‐topped, clast‐dominated lobes within a relatively short distance after crossing the junction between impermeable and permeable substrate; (3) the presence of fines deposited in the sieveholes demonstrating the passage of transported matrix; and (4) the absence of substantial lateral drainage through (or dissection of) the levées or the terminal lobes. The term ‘sieve deposition’ is considered particularly well suited to this process involving drainage through the substrate, which is likely to be most effective where debris flows traverse coarse talus either for the first time or only infrequently. Copyright © 2002 John Wiley & Sons, Ltd. 相似文献
17.
Direct measurements of the hydrological conditions for the occurrence of debris flows and of flow behaviour are of the outmost importance for developing effective flow prevention techniques. An automated and remotely controlled monitoring system was installed in Acquabona Creek in the Dolomites, Italian Eastern Alps, where debris flows occur every year. Its present configuration consists of three on‐site stations, located in the debris‐flow initiation area, in the lower channel and in the retention basin. The monitoring system is equipped with sensors for measuring rainfall, pore‐water pressure in the mobile channel bottom, ground vibrations, debris flow depth, total normal stress and fluid pore‐pressure at the base of the flow. Three video cameras take motion pictures of the events at the initiation zone, in the lower channel and in the deposition area. Data from the on‐site stations are radio‐transmitted to an off‐site station and stored in a host PC, from where they are telemetrically downloaded and used by the Padova University for the study of debris flows. The efficiency of the sensors and of the whole monitoring system has been verified by the analysis of data collected so far. Examples of these data are presented and briefly discussed. If implemented at the numerous debris‐flow sites in the Dolomitic Region, the technology used, derived from the development of this system, will provide civil defence and warn residents of impending debris flows. Copyright © 2003 John Wiley & Sons, Ltd. 相似文献
18.
A miniaturized flume experiment was carried out to measure impact forces of viscous debris flow. The flow depth (7.2–11.2 cm), velocity (2.4–5.2 m/s) and impact force were recorded during the experiment. The impact process of debris flow can be divided into three phases by analyzing the variation of impact signals and flow regime. The three phases are the sudden strong impact of the debris flow head, continuous dynamic pressure of the body and slight static pressure of the tail. The variation of impact process is consistent with the change in the flow regime. The head has strong–rapid impact pressure, which is shown as a turbulent‐type flow; the body approximates to steady laminar flow. Accordingly, the process of debris flows hitting structures was simplified to a triangle shape, ignoring the pressure of the tail. In order to study the distribution of the debris flow impact force at different depths and variation of the impact process over time, the impact signals of slurry and coarse particles were separated from the original signals using wavelet analysis. The slurry's dynamic pressure signal appears to be a smooth curve, and the peak pressure is 12–34 kPa when the debris flow head hits the sensors, which is about 1.54 ± 0.36 times the continuous dynamic pressure of the debris flow body. The limit of application of the empirical parameter α in the hydraulic formula was also noted. We introduced the power function relationship of α and the Froude number of debris flows, and proposed a universal model for calculating dynamic pressure. The impact pressure of large particles has the characteristic of randomness. The mean frequency of large particles impacting the sensor is 210 ± 50–287 ± 29 times per second, and it is 336 ± 114–490 ± 69 times per second for the debris flow head, which is greater than that in the debris flow body. Peak impact pressure of particles at different flow depths is 40–160 kPa, which is 3.2 ± 1.5 times the impact pressure of the slurry at the bottom of the flow, 3.1 ± 0.9 times the flow in the middle, and 3.3 ± 0.9 times the flow at the surface. The differences in impact frequency indicate that most of the large particles concentrate in the debris flow head, and the number of particles in the debris flow head increases with height. This research supports the study of solid–liquid two phase flow mechanisms, and helps engineering design and risk assessment in debris flow prone areas. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
19.
Jia‐Jyun Dong Chyi‐Tyi Lee Yu‐Hsiang Tung Chia‐Nan Liu Kuang‐Ping Lin Jiin‐Fa Lee 《地球表面变化过程与地形》2009,34(12):1612-1624
This study proposes a sediment‐budget model to predict the temporal variation of debris volume stored in a debris‐flow prone watershed. The sediment‐budget is dominated by shallow landslides and debris outflow. The basin topography and the debris volume stored in the source area of the debris‐flow prone watershed help evaluating its debris‐flow susceptibility. The susceptibility model is applied to the Tungshih area of central western Taiwan. The importance of the debris volume in predicting debris‐flow susceptibility is reflected in the standardized coefficients of the proposed statistical discriminant model. The high prediction rate (0·874) for the occurrence of debris flows justifies the capability of the proposed susceptibility models to predict the occurrence of debris flows. This model is then used to evaluate the temporal evolution of the debris‐flow susceptibility index. The analysis results show that the numbers of watershed which are classified as a debris‐flow group correspond well to storage of sediment at different time periods. These numbers are 10 before the occurrence of Chi‐Chi earthquake, 13 after the occurrence of Chi‐Chi earthquake, 16 after the occurrence of landslides induced by Typhoon Mindulle (Typhoon M), and 14 after the occurrence of debris flows induced by Typhoon M. It indicates that the occurrence of 7·6 Chi‐Chi earthquake had significant impact on the debris flow occurrence during subsequent typhoons. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献