首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
While 1992 marked the first major dam – Manwan – on the main stem of the Mekong River, the post-2010 era has seen the construction and operationalisation of mega dams such as Xiaowan (started operations in 2010) and Nuozhadu (started operations in 2014) that were much larger than any dams built before. The scale of these projects implies that their operations will likely have significant ecological and hydrological impacts from the Upper Mekong Basin to the Vietnamese Delta and beyond. Historical water level and water discharge data from 1960 to 2020 were analysed to examine the changes to streamflow conditions across three time periods: 1960–1991 (pre-dam), 1992–2009 (growth) and 2010–2020 (mega-dam). At Chiang Saen, the nearest station to the China border, monthly water discharge in the mega-dam period has increased by up to 98% during the dry season and decreased up as much as −35% during the wet season when compared to pre-dam records. Similarly, monthly water levels also rose by up to +1.16 m during the dry season and dropped by up to −1.55 m during the wet season. This pattern of hydrological alterations is observed further downstream to at least Stung Treng (Cambodia) in our study, showing that Mekong streamflow characteristics have shifted substantially in the post-2010 era. In light of such changes, the 2019–2020 drought – the most severe one in the recent history in the Lower Mekong Basin – was a consequent of constructed dams reducing the amount of water during the wet season. This reduction of water was exacerbated by the decreased monsoon precipitation in 2019. Concurrently, the untimely operationalisation of the newly opened Xayaburi dam in Laos coincided with the peak of the 2019–2020 drought and could have aggravated the dry conditions downstream. Thus, the mega-dam era (post-2010) may signal the start of a new normal of wet-season droughts.  相似文献   

3.
In this article the relative roles of precipitation and soil moisture in influencing runoff variability in the Mekong River basin are addressed. The factors controlling runoff generation are analysed in a calibrated macro‐scale hydrologic model, and it is demonstrated that, in addition to rainfall, simulated soil moisture plays a decisive role in establishing the timing and amount of generated runoff. Soil moisture is a variable with a long memory for antecedent hydrologic fluxes that is influenced by soil hydrologic parameters, topography, and land cover type. The influence of land cover on soil moisture implies significant hydrologic consequences for large‐scale deforestation and expansion of agricultural land. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
The general nature of bulk flow within bedrock single‐channel reaches has been considered by several studies recently. However, the flow structure of a bedrock‐constrained, large river with a multiple channel network has not been investigated previously. The multiple channel network of the Siphandone wetlands in Laos, a section of the Mekong River, was modelled using a steady one‐dimensional hydraulic model. The river network is characterized by a spatially‐varying channel‐form leading to significant changes in the bulk flow properties between and along the channels. The challenge to model the bulk flow in such a remote region was the lack of ideal boundary conditions. The flow models considered both low flow, high inbank and overbank flows and were calibrated using SPOT satellite sensor imagery and limited field data concerning water levels. The application of the model highlighted flow characteristics of a large multi‐channel network and also further indicated the field data that would be required to properly characterize the flow field empirically. Important results included the observation that adjacent channels within the network had different water surface slopes for the same moments in time; thus calibration data for modelling similar systems needs to account for these significant local differences. Further, the in‐channel hydraulic roughness coefficient strongly varied from one cross‐section to the next (Manning's ‘n’ range: 0·01 to 0·10). These differences were amplified during low flow but persisted in muted form during high discharges. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
The Mekong Basin in southeast Asia is facing rapid development, impacting its hydrology and sediment dynamics. Although the understanding of the sediment transport rates in the Mekong is gradually growing, the sediment dynamics in the lower Mekong floodplains (downstream from Kratie) are poorly understood. The aim of this study is to conduct an analysis to increase the understanding of the sediment dynamics at the Chaktomuk confluence of the Mekong River, and the Tonle Sap River in the Lower Mekong River in Cambodia. This study is based on the data from a detailed field survey over the three hydrological years (May 2008–April 2011) at the two sites (the Mekong mainstream and the Tonle Sap River) at the Chaktomuk confluence. We further compared the sediment fluxes at Chaktomuk to an upstream station (i.e. Mukdahan) with longer time series. Inflow sediment load towards the lake was lower than that of the outflow, with a ratio on average of 84%. Although annually only a small amount of sediment load from the Tonle Sap contributes to the delta (less than 15%), its share is substantial during the February–April period. The annual sediment load transport from the confluence to the delta in 2009 and 2010 accounted for 54 and 50 Mt, respectively. This was on average only 55% of the sediment fluxes measured at Mukdahan, a more upstream station. Furthermore when compared to sediment loads further downstream at the Cambodia–Vietnam border, we found that the suspended sediment flux continued to decline towards the South China Sea. Our findings thus indicate that the sediment load to the South China Sea is much lower than the previous estimate 150–160 Mt/yr. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
Projecting changes in the frequency and intensity of future precipitation and flooding is critical for the development of social infrastructure under climate change. The Mekong River is among the world's large-scale rivers severely affected by climate change. This study aims to define the duration of precipitation contributing to peak floods based on its correlation with peak discharge and inundation volume in the Lower Mekong Basin (LMB). We assessed the changes in precipitation and flood frequency using a large ensemble Database for Policy Decision-Making for Future Climate Change (d4PDF). River discharge in the Mekong River Basin (MRB) and flood inundation in the LMB were simulated by a coupled rainfall-runoff and inundation (RRI) model. Results indicated that 90-day precipitation counting backward from the day of peak flooding had the highest correlation with peak discharge (R2 = .81) and inundation volume (R2 = .81). The ensemble mean of present simulation of d4PDF (1951–2010) showed good agreement with observed extreme flood events in the LMB. The probability density of 90-day precipitation shifted from the present to future climate experiments with a large variation of mean (from 777 to 900 mm) and SD (from 57 to 96 mm). Different patterns of sea surface temperature significantly influence the variation of precipitation and flood inundation in the LMB in the future (2051–2110). Extreme flood events (50-year, 100-year, and 1,000-year return periods) showed increases in discharge, inundation area, and inundation volume by 25%–40%, 19%–36%, and 23%–37%, respectively.  相似文献   

7.
Mangrove forests dominate many tropical coastlines and are one of the most bio‐diverse and productive environments on Earth. However, little is known of the large‐scale dynamics of mangrove canopies and how they colonize intertidal areas. Here we focus on a fringe mangrove forest located in the Mekong River Delta, Vietnam; a fast prograding shoreline where mangroves are encroaching tidal flats. The spatial and temporal evolution of the mangrove canopy is studied using a time series of Landsat images spanning two decades as well as Shuttle Radar Topography Mission (SRTM) elevation data. Our results show that fast mangrove expansion is followed by an increase in Normalized Difference Vegetation Index (NDVI) in the newly established canopy. We observe three different dynamics of the mangrove fringe: in the southwest part of the fringe, near a deltaic distributary where the fringe boundary is linear, the canopy expands uniformly on the tidal flats with a high colonization rate and high NDVI values. In the northeast part of the fringe, near another distributary, the canopy expands at a much lower rate with low NDVI values. In the fringe center, far from the river mouths, the fringe boundary is highly irregular and mangroves expansion in characterized by sparse vegetated patches displaying low NDVI values. We ascribe these different dynamics to wave action and southwest longshore transport triggered by energetic northeasterly monsoons during winter. We further link the large‐scale dynamics of the fringe to small‐scale physical disturbances (waves, erosion and deposition) that might prevent the establishment of mangrove seedlings. Based on these results, we include mangrove encroachment in an already published conceptual model of progradation of the Mekong River Delta. We conclude that high NDVI values and a constantly linear vegetation–water interface are indicative of stable mangrove canopies undergoing fast expansion, probably triggered by sediment availability at the shore. Our results can be applied more generally to mangrove forests growing in minerogenic and high tidal range environments with high sediment inputs. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
As the population and economy boom, more and more dams are being built in the Mekong River basin. Previous studies have revealed that Manwan Dam had little influence on the runoff–SSC (suspended sediment concentration) relationship, and the sediment load was relatively stable over the past 40 years. However, little is known at present on the relationship among monsoons, El Niño Southern Oscillation (ENSO), precipitation, runoff, and the impact of dams on the delta dynamics. A comprehensive hydropower GIS database covering the entire Mekong basin is presented in this study. Mann–Kendall trend analysis showed no significant change in precipitation and runoff over the past 50 years. Spectral analysis showed that the runoffs of the middle to lower reach of Mekong River are correlated with the Indian Monsoon, where as the East Asian Monsoon's influence is mainly on the lower reach. With another 200 new dams to be added to the basin in the next couple of decades, changes are expected in both hydrological regime and delta dynamics. On one hand, the runoff showed a closer connection with the regional precipitation and ENSO in the post‐dam period (1993–2005) than in the pre‐dam period (1950–1993). Such a relationship is expected to be even closer when more dams are completed. On the other hand, both daily maximum and minimum water levels on the delta plain have shown an abrupt drop since the end of 1994. This reduced water‐level gradient between the river and sea inevitably weakens the sediment discharge to the coast, which might intensify the ongoing coastal erosion on the eastern part of the delta plain. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
Bed topography and grain size are predicted for steady, uniform flow in circular bends by consideration of the balance of fluid, gravity and frictional forces acting on bed load particles. Uniform flow pattern is adequately described by conventional hydraulic equations, with bed shear defined as that effectively acting on bed load grains. This analysis is used as a basis to predict bed topography and grain size for steady, non-uniform flow in non-circular bends (represented by a ‘sine-generated’ curve). The non-uniform flow pattern is calculated using the method of Engelund (1974a). Equilibrium bed form, hence sedimentary structure, is found by comparison of existing flow conditions with one of the schemes describing the hydraulic stability limits of the various bed forms. The model was compared with bankfull flow observations from a channel bend on the River South Esk, Scotland. Theoretical bed topography and velocity distribution were very close to the observed data. However, bed shear stress showed only a broad agreement, probably because of the use a constant friction coefficient value. Mean grain size distribution showed good agreement, but theory did not account adequately for gravel sizes in the talweg region and on the upstream, inner part of the bar, possibly due to theoretical underestimation of effective bed shear. Bed form and sedimentary structure are predicted well using the familiar stream power-grain size scheme. The behaviour of the model under unsteady uniform flow conditions in circular bends was analyzed, and suggests that any variation of grain size and bed topography with stage is likely to be limited to deeper parts of the channel.  相似文献   

10.
Deposition and erosion play a key role in the determination of the sediment budget of a river basin, as well as for floodplain sedimentation. Floodplain sedimentation, in turn, is a relevant factor for the design of flood protection measures, productivity of agro‐ecosystems, and for ecological rehabilitation plans. In the Mekong Delta, erosion and deposition are important factors for geomorphological processes like the compensation of deltaic subsidence as well as for agricultural productivity. Floodplain deposition is also counteracting the increasing climate change induced hazard by sea level rise in the delta. Despite this importance, a sediment database of the Mekong Delta is lacking, and the knowledge about erosion and deposition processes is limited. In the Vietnamese part of the Delta, the annually flooded natural floodplains have been replaced by a dense system of channels, dikes, paddy fields, and aquaculture ponds, resulting in floodplain compartments protected by ring dikes. The agricultural productivity depends on the sediment and associated nutrient input to the floodplains by the annual floods. However, no quantitative information regarding their sediment trapping efficiency has been reported yet. The present study investigates deposition and erosion based on intensive field measurements in three consecutive years (2008, 2009, and 2010). Optical backscatter sensors are used in combination with sediment traps for interpreting deposition and erosion processes in different locations. In our study area, the mean calculated deposition rate is 6.86 kg/m2 (≈ 6 mm/year). The key parameters for calculating erosion and deposition are estimated, i.e. the critical bed shear stress for deposition and erosion and the surface constant erosion rate. The bulk of the floodplain sediment deposition is found to occur during the initial stage of floodplain inundation. This finding has direct implications on the operation of sluice gates in order to optimize sediment input and distribution in the floodplains. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
Suspended sediment is the primary source for a sustainable agro‐ecosystem in the Mekong Delta by providing nutrient input for the subsequent cropping season. In addition, the suspended sediment concentration (SSC) plays an important role in the erosion and deposition processes in the Delta; that is, it influences the morphologic development and may counteract the deltaic subsidence and sea level rise. Despite this importance, little is known about the dynamics of suspended sediment in the floodplains of the Mekong Delta. In particular, quantitative analyses are lacking mainly because of data scarcity with respect to the inundation processes in the floodplains. In 2008, therefore, a comprehensive in situ system to monitor the dynamics of suspended sediment in a study area located in the Plain of Reeds was established, aiming at the characterization and quantification of suspended sediment dynamics in the deeply inundated parts of the Vietnamese part of the Mekong Delta. The monitoring system was equipped with seven water quality–monitoring stations. They have a robust design and autonomous power supply suitable for operation on inundated floodplains, enabling the collection of reliable data over a long period of time with a high temporal resolution. The data analysis shows that the general seasonal dynamics of suspended sediment transport in the Delta is controlled by two main mechanisms: the flood wave of the Mekong River and the tidal backwater influences from the coast. In the channel network, SSC decreases exponentially with distance from the Mekong River. The anthropogenic influence on SSC could also be identified for two periods: at the start of the floodplain inundation and at the end of the flood period, when subsequent paddy rice crops are prepared. Based on the results, we recommend an operation scheme for the sluice gates, which intends to distribute the sediment and thus the nutrients equally over the floodplain. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
How rock resistance or erodibility affects fluvial landforms and processes is an outstanding question in geomorphology that has recently garnered attention owing to the recognition that the erosion rates of bedrock channels largely set the pace of landscape evolution. In this work, we evaluate valley width, terrace distribution, and bedload provenance in terms of reach scale variation in lithology in the study reach and discuss the implications for landscape evolution in a catchment with relatively flat‐lying stratigraphy and very little uplift. A reach of the Buffalo National River in Arkansas was partitioned into lithologic reaches and the mechanical and chemical resistance of the main lithologies making up the catchment was measured. Valley width and the spatial distribution of terraces were compared among the different lithologic reaches. The surface grain size and provenance of coarse (2–90 mm) sediment of both modern gravel bars and older terrace deposits that make up the former bedload were measured and defined. The results demonstrate a strong impact of lithology upon valley width, terrace distribution, and bedload provenance and therefore, upon landscape evolution processes. Channel down‐cutting through different lithologies creates variable patterns of resistance across catchments and continents. Particularly in post‐tectonic and non‐tectonic landscapes, the variation in resistance that arises from the exhumation of different rocks in channel longitudinal profiles can impact local base levels, initiating responses that can be propagated through channel networks. The rate at which that response is transmitted through channels is potentially amplified and/or mitigated by differences between the resistance of channel beds and bedload sediment loads. In the study reach, variation in lithologic resistance influences the prevalence of lateral and vertical processes, thus producing a spatial pattern of terraces that reflects rock type rather than climate, regional base level change, or hydrologic variability. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

13.
Intensive human activity has caused significant changes in the river morphology and hydrological characteristics of the Pearl River Delta. Particularly, in-channel mining and dam construction have induced remarkable levels of downward riverbed incision. Although strict control measures have been implemented for in-channel sand mining, it remains unclear how the river has evolved since the abandonment of high-intensity mining and its impact on flow diversion at the downstream confluence. This study presents the hydrological and morphological adjustments in the lower Beijiang River, the second largest tributary of the Pearl River, under the impacts of human interventions. A hydrodynamic model was developed to reveal the impacts of riverbed deformation on the flow diversion ratio at Sixianjiao, the confluence of the Beijaing River and the Xijiang River. The results showed that construction of cascade reservoirs upstream reach did not strongly influence run-off, whereas incoming sediment loads were decreased. Because of upstream damming and in-channel sand mining, a dramatic downward incision was observed in the lower Beijiang River, with a degradation volume of approximately 239.8 million m3 from 1999 to 2012. Particularly, in the upper reach, the incision depth was typically larger than 8 m. Riverbed incision caused continuous changes in the water stage–discharge relationship, and discharge increased remarkably under the same water level at the three hydrometric stations. During 2012–2020, because in-channel sand mining was strictly controlled, rapid degradation was alleviated, deposition occurred in some cross-sections and the deformation volume decreased by approximately 90% compared to that in the last period. A fast downward incision induced a change in flow exchange between the two rivers, and the flow diversion ratio of the Beijiang River increased from an average of 17% before 1998 to more than 21%.  相似文献   

14.
The planform dynamics of meandering rivers produce a complex array of meander forms, including elongated meander loops. Thus far, few studies have examined in detail the flow structure within meander loops and the relation of flow structure to patterns of planform change. This field‐based investigation examines relations between three‐dimensional fluid motion and channel change within an elongated, asymmetrical meander loop containing multiple pool–riffle structures. The downstream velocity field is characterized by a high‐velocity core that shifts slightly outward as flow moves through individual lobes of the loop. For some of the measured flows this core becomes submerged below the water surface downstream of the lobe apexes. Vectors of cross‐stream/vertical velocities indicate that skew‐induced helical motion develops within the pools near lobe apexes and decays over riffles where channel curvature is less pronounced. Maximum rates of bank retreat generally occur near lobe apexes where impingement of the flow on the outer channel bank is greatest. However, maximum rates and loci of bank retreat differ for upstream and downstream lobes of the loop, leading to increasing asymmetry of loop geometry over time—a finding consistent with experimental investigations of loop evolution. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

15.
Small-volume pyroclastic density currents (PDCs) are generated frequently during explosive eruptions with little warning. Assessing their hazard requires a physical understanding of their transport and sedimentation processes which is best achieved by the testing of experimental and numerical models of geophysical mass flows against natural flows and/or deposits. To this end we report on one of the most detailed sedimentological studies ever carried out on a series of pristine small-volume PDC deposits from the 1975 eruption of Ngauruhoe volcano, whose emplacement were also witnessed during eruption. Using high-resolution GPS surveys, a series of lateral excavations across the deposits, and bulk sedimentological analysis we constrained the geomorphology, internal structure and texture of the deposits with respect to laterally varying modes of deposition.  相似文献   

16.
Three electromagnetic current meter probes were deployed in a Canadian gravel-bed river to obtain simultaneous records at 10 Hz of streamwise (u) and vertical (v) velocity components at three heights above the bed. By looking at the positive and negative signs of the instantaneous fluctuations from the time-average values of each velocity component at each height, the fluctuating velocity profile of u or v can be treated as a Markov chain with eight states and its statistical properties can be tested against null hypotheses based on the absence of spatial structure. We report results of this novel approach. The most common states of the u profile were those with either higher-than-average or lower-than-average velocities at all heights; these ‘high speed’ and ‘low speed’ states persisted for up to 3 s. The most common v profiles were all-upwards or all-downwards, but these persisted for shorter times than the high speed and low speed u profiles. Analysis of transition probabilities shows statistically significant tendencies for acceleration from the low speed u profile, and change from all-upwards to all-downwards v profile, to take place progressively from the uppermost probe downwards, in a sweep-like way. Deceleration from the high speed to low speed u profile and change from all-downwards to all-upwards v profile (burst-like behaviour) do not show such clear patterns. The results are interpreted in terms of the advection of inverted wedges of relatively high-momentum fluid, followed by more chaotic structures. A separate set of flow visualization experiments over a mixed gravel bed in a flume supports the presence of advected wedge structures, the decelerating part of the sequence corresponding to irregular ejections of near-bed fluid.  相似文献   

17.
ABSTRACT

This research examined the influences of outflow characteristics affecting riverbank stability. The 130-km stretch of the Lower Osage River downstream from Bagnell Dam (Missouri, USA) provided an excellent case study for this purpose. The integrated BSTEM model with the HEC-RAS model was accurately calibrated and validated with data from the US Geological Survey. Then, the outflow characteristics (peak flow duration, flow drawdown rate, and low flow duration) were investigated individually. The results of this study showed that: (1) riverbank stability is little affected by the duration time of the peak flow, especially on the reaches far from the dam; (2) sudden flow drawdown significantly reduces riverbank stability; however, the impact of the drawdown rate decreases with distance from the dam; and (3) the duration of the low flow after peak flow influences the riverbank stability value proportional to the distance from the dam. The time of low flow before failure increases as the distance from the dam increases.  相似文献   

18.
Thefinevelocitystructureofsediment┐base┐mentlayerintheThree┐GorgesRegionoftheChangjiangRiver(YangtzeRiver)HONG-XIANGHU(胡鸿翔),...  相似文献   

19.
Analysis of the refracted arrivals on a seismic reflection profile recorded along the wall of a tunnel at an iron mine near Thabazimbi, South Africa, shows variations in P-wave velocity in dolomite away from the de-stressed zone that vary between 4.4 and 7.2 km/s, though values greater than 5.8 km/s predominate along most of the profile. The seismic velocities at the tunnel wall, however, vary between 4.2 and 5.2 km/s. Time–depth terms are in the range from 0.1 to 0.9 ms, and yield thicknesses of the zone disturbed by the tunnel excavations of between 2 and 9 m. The very low seismic velocities away from the tunnel wall in two regions are associated with alcoves or ‘cubbies’ involving offsets in the wall of up to 10 m. The large variations in seismic velocity resolved over distances less than 15 m with signals of wavelength around 6–9 m are attributed to variations in the sizes and concentrations of fracture systems and cracks, and in the degree of groundwater saturation of the fracture systems. The results suggest that seismic velocity variations from reflection surveys may also assist modelling studies of the stress regime in deep mines, particularly if both P and S wave velocity variations can be determined. The seismic velocity variations inferred also show that application of refraction static corrections in the processing of ‘in-mine’ seismic reflection profiles is as important as in surface surveys, because of the higher frequencies of the seismic energy recorded in the deep mine environment.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号