首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Research on tsunami-induced coarse-clast transport is a field of rising interest since such deposits have been identified as useful proxies for extreme-wave events (tsunamis, storm waves) that provide crucial information for coastal hazard assessment. Physical experiments are, beside in-situ observations, the foundation of our understanding of how boulders are transported by tsunamis and provide clues to the development of empirical equations and numerical models describing the processes and fundamental mechanics. Nevertheless, investigating tsunami-induced boulder transport is a comparatively young discipline and only a few experimental studies focusing on this topic have been published so far. To improve the knowledge on nearshore tsunami hydrodynamics, physical experiments utilizing real-world boulder shapes have been carried out simulating three different shore types in a wave flume. Crucial insights were gained into boulder transport hydrodynamics and data resulting from the experiments were analysed in an empirical, statistical, quantitative and qualitative manner. The regular cuboid boulder – one of the specific shapes used in the experiments – showed the longest transport distances compared to a complex, natural boulder and a flat cuboid boulder, but also significant fluctuations regarding the total transport distance. The experiments indicate a strong influence of the shore shape on boulder transport behaviour. Experimental setups of increased mean transport distances also led to a higher spreading of results. This spreading was further amplified between the idealized-shaped cuboid and the complex-shaped boulder, which is associated with a lower drag coefficient. Due to the highly sensitive boulder reaction to divergent experimental setups, the need to recognize boundary conditions overcoming commonly considered parameters (e.g. roughness or Flatness Index) in field studies and numerical models is underlined. Beside the strong influence of initial boulder submergence and alignment, both the boulder shape and shore type influence the boulder transport pattern, increasing the total transport distance by more than 350% in some cases. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd  相似文献   

2.
Boulder transport is an area of growing interest to coastal scientists as a means of improving our understanding of the complex interactions between extreme wave activity and the evolution of rocky coasts. However, our knowledge of the response of intertidal boulder deposits to contemporary storm events remains limited due to a lack of quantifiable field-based evidence. We address this by presenting a methodology incorporating Radio Frequency Identification (RFID) tagging and Differential Global Positioning Navigation Satellite System (DGNSS) technology to monitor and accurately quantify the displacement of RFID tagged boulders resulting from storm wave activity. Based on preliminary findings we highlight the suitability of the technology and methodology to better understand the spatial and temporal response of intertidal boulders to contemporary storm events. We inserted RFID tags in 104 limestone boulders (intermediate axes from 0.27 to 2.85 m) across a range of morphogenic settings at two sites on the intertidal shore platforms at Bembridge, Isle of Wight (UK). Fifteen topographic surveys were conducted between July 2015 and May 2017 to relocate and record tagged boulder locations (tag recovery rate: 91%). The relocated boulder coordinate data from both sites identified 164 individual transport events in 63% of the tagged boulder array amounting to 184.6 m of transport, including the displacement of a boulder weighing more than 10 tonnes. Incidents of boulder quarrying and overturning during transport were also recorded, demonstrating that despite the relatively sheltered location, intertidal boulders are created and regularly transported under moderate storm conditions. This suggests that contemporary storm events have a greater propensity to mobilise boulders in the intertidal range than has previously been realised. Consequently, by documenting our methodology we provide guidance to others and promote further use of RFID technology to enable new hypotheses on boulder transport to be tested in a range of field settings and wave regimes. © 2018 John Wiley & Sons, Ltd.  相似文献   

3.
A remarkable accumulation of marine boulders located above the present spring tide level has occurred in two coastal lowlands of the Algarve (Portugal). The size‐interval of the particles studied here is seldom reported in the literature in association with extreme events of coastal inundation, thus making this study of relevance to many other coasts worldwide. The spreads of boulders extend several hundred meters inland and well beyond the present landward limit of storm activity. The marine origin of the boulders is demonstrated by well‐developed macro‐bioerosion sculpturing and in situ skeletal remains of endolithic shallow marine bivalves. The good state preservation of the fossils within the boulders indicates that abrasion during transport and redeposition was not significant. We envisage boulder deposition as having taken place during the Lisbon tsunami of ad 1755 through the simultaneous landward entrainment of coarse particles from nearshore followed by rapid shoreward suspended‐dominated transport and non‐graded redeposition that excluded significant sorting by weight or boulder dimensions. We use numerical hydrodynamic modeling of tsunami (and storm) waves to test the observational data on boulder dimensions (density, size, distribution) on the most likely processes of sediment deposition. This work demonstrates the effectiveness of the study of boulder deposits in tsunami reconstruction. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
Extreme storm events are known to produce, entrain, transport and deposit sizable boulders along rocky coastlines. However, the extent to which these processes occur under moderate, fetch-limited wave conditions is seldom considered. In this study we quantify boulder transport at a relatively sheltered location subject to high-frequency, low-magnitude storm activity. This was achieved by deploying radio frequency identification (RFID) tags within 104 intertidal limestone boulders ranging in size from fine to very coarse (intermediate axis: 0.27–2.85 m). The study was conducted over 3 years (July 2015–July 2018) and encompassed numerous storm events. Tagged boulders were relocated during 17 field surveys and their positions recorded using a differential global positioning navigation satellite system (DGNSS). On completion, we identified boulder displacement in 69% of the tagged array. The accrued boulder transport distance amounted to 233.0 m from 195 incidents of displacement, including the movement of a boulder weighing an estimated 11.9 t. Transport was not confined to autumn and winter storms alone, as displacement was also recorded during summer months (April–September), despite the seasonally reduced wave magnitude. Boulder production by wave quarrying was documented in three tagged clasts, confirming observations that the shore platform is actively eroding. Incidents of overturning during transport were also recorded, including multiple overturning of clasts weighing up to 5 t. We further identify a statistically significant difference (maximum p-value ≤ 0.03) between the transport distances attributed to constrained and unconstrained boulders, suggesting that the pre-transport morphological setting exerts considerable control over boulder transport potential. The findings establish low to moderate storm waves as a key component in the evolution of the study site. More broadly, we claim that high-frequency, low-magnitude storms regularly modify these overlooked rocky coastal locations, suggesting that the hydrodynamic capability at such sites may previously have been underestimated. © 2020 John Wiley & Sons, Ltd.  相似文献   

5.
Extreme wave events in coastal zones are principal drivers of geomorphic change. Evidence of boulder entrainment and erosional impact during storms is increasing. However, there is currently poor time coupling between pre‐ and post‐storm measurements of coastal boulder deposits. Importantly there are no data reporting shore platform erosion, boulder entrainment and/or boulder transport during storm events – rock coast dynamics during storm events are currently unexplored. Here, we use high‐resolution (daily) field data to measure and characterize coastal boulder transport before, during and after the extreme Northeast Atlantic extra‐tropical cyclone Johanna in March 2008. Forty‐eight limestone fine‐medium boulders (n = 46) and coarse cobbles (n = 2) were tracked daily over a 0.1 km2 intertidal area during this multi‐day storm. Boulders were repeatedly entrained, transported and deposited, and in some cases broken down (n = 1) or quarried (n = 3), during the most intense days of the storm. Eighty‐one percent (n = 39) of boulders were located at both the start and end of the storm. Of these, 92% were entrained where entrainment patterns were closely aligned to wave parameters. These data firmly demonstrate rock coasts are dynamic and vulnerable under storm conditions. No statistically significant relationship was found between boulder size (mass) and net transport distance. Graphical analyses suggest that boulder size limits the maximum longshore transport distance but that for the majority of boulders lying under this threshold, other factors influence transport distance. Paired analysis of 20 similar sized and shaped boulders in different morphogenic zones demonstrates that geomorphological control affects entrainment and transport distance – where net transport distances were up to 39 times less where geomorphological control was greatest. These results have important implications for understanding and for accurately measuring and modelling boulder entrainment and transport. Coastal managers require these data for assessing erosion risk. © 2016 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

6.
This study investigates the distribution of boulders at Miyara Bay of Ishigaki Island, Japan. These boulders were deposited on a reef flat extending approximately 400–1300 m in width. Most boulders were rectangular to ellipsoidal, without sharp broken edges. They are reef and coral rock fragments estimated as <335 m3 (<633 t). Locally in the bay, the relationship between the boulder weight and position shows that boulders of a given weight have a clear limit on seaward distribution on the reef flat. For example, more than 1, 10, and 100 tons of boulders were deposited, respectively, more than 500, 300, and 100 m from the reef edge. The line is consistent with the possible landward transport limit by maximum storm waves at the Ryukyu Islands, suggesting that the line was formed by the reworking of some boulders by maximally strong storm waves, although we can not exclude the possibility that the line was formed by tsunamis. Furthermore, 68% of boulders at the bay are deposited beyond this line. Therefore, the presence of these boulders at their present positions is difficult to explain solely by storm waves, implying the possible tsunami origin of these boulders. The boulders are characteristically concentrated along the high‐tide line, suggesting the drastic reduction of the tsunami hydraulic force along the line. Previous studies using radiocarbon age dating, as well as our study, imply that at least 69 boulders at Miyara Bay were probably deposited at their present positions by the 1771 Meiwa tsunami, although some of these boulders might have been emplaced and displaced on the reef flat by prior tsunami or storm surges.  相似文献   

7.
A 1200 m-long river segment of Carmel River (California) was constructed to bypass trapped reservoir sediment when San Clemente Dam was removed from the Carmel River in 2015. Hundreds of large boulders were used to construct 53 steps in an 800 m-long reach of the project. Nearly all the boulders were scattered to new locations in high flows of 2017, and have been relatively stable since that time. We analysed the causes of incipient motion and distance travelled for 226 randomly selected large boulders (0.5–1.8 m) impacted by a flood event in winter of 2019. Channel width, water depth, and isolation from neighbouring boulders were the main variables controlling individual large boulder incipient motion during a 10-year peak flow event in the ‘auto-naturalized’ constructed step-pool river in 2019. There is weak statistical evidence that a combination of shear stress and the presence of boulders located laterally downstream of the subject boulder controlled the distance the boulder moved. Frequentist statistics and Akaike information criterion model comparison determined that boulder size, boulder shape, boulder roundness, and local thalweg slope were not good predictors of large boulder incipient motion or distance transported. Average dimensionless critical shear value for the four largest mobilized boulders (1.5–1.6 m) was 0.014. We describe the geomorphic history of the site and use our results to discuss potential causes of unanticipated large boulder transport at the site that occurred in a <2-year peak flow of winter 2016 soon after step construction. © 2020 John Wiley & Sons, Ltd.  相似文献   

8.
Tsunami boulders deposited along the coast constitute important geological evidence for paleotsunami activity. However, boulders can also be deposited by large storm waves. Although several sedimentological and theoretical methods have been proposed to differentiate tsunami and storm wave affected boulders, no appropriate numerical method exists for their differentiation. Therefore, we developed a new numerical scheme to differentiate tsunami and storm wave boulders for coastal boulders on Ishigaki Island, Japan. In this area, tsunami and storm waves have emplaced numerous boulders on the reef and the coast. By conducting numerical calculations of storm waves in this region, we estimated the size of a storm wave that can explain the maximum clast size distribution of boulders on the reef. Consequently, we showed that a wave with a combination of 8 m in initial wave height and 10 s period can satisfy the above conditions when we assume mean sea level. In contrast to the boulders on the reef, all boulders deposited along the shore are heavier than the calculated possible maximum clast size distribution by the storm wave. Therefore, we confirmed these boulders as being of tsunami origin. Results of previous studies showed that they were most likely deposited or reworked by the 1771 Meiwa tsunami. Then, using the tsunami boulders, we numerically estimated the wave period and amplitude of the 1771 Meiwa tsunami, which should have had a 4–5 min period and 5.6–5.9, 6.3–7.0 m amplitude, respectively. Using the proposed scheme, it is possible to differentiate tsunami and storm wave boulders and estimate the size of past storm waves and tsunami waves, although it is noteworthy that there are exceptions for which the scheme cannot be applied.  相似文献   

9.
Low altitude flights by a micro‐drone were made in 2012 and 2013 over two boulder beaches in north‐western Spain. Geographical information system software was used to map the data. Boulder outlines from the first flight were recorded on 4796 clasts at Laxe Brava and 2508 clasts at Oia. Changes in location were identified by overlaying these outlines on the 2013 images. About 17.5% of the boulders (mean surface area 0.32 m2) moved at Laxe Brava and about 53% (mean surface area 0.23 m2) at Oia. Most movement on both beaches was between the mid‐tide to about 2 m above the high tidal level. The location and elevation of the highest points were also recorded on the 2012 images on 4093 boulders at Laxe Brava and 3324 boulders at Oia. These elevations were compared with the elevations at the same locations in 2013. The occurrence and scale of the elevational changes were generally consistent with changes in the boulder outlines. The study confirmed that boulder beaches can be cheaply and effectively monitored using high resolution, micro‐drone technology. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
Coastal cliff erosion is caused by a combination of marine forcing and sub-aerial processes, but linking cliff erosion to the environmental drivers remains challenging. One key component of these drivers is energy transfer from wave–cliff interaction. The aim of this study is to directly observe cliff ground motion in response to wave impacts at an individual wave scale. Measurements are described from two coastal cliff sites: a 45-minute pilot study in southern California, USA and a 30-day deployment in Taranaki, New Zealand. Seismometers, pressure sensors and video are used to compare cliff-top ground motions with water depth, significant wave height (Hs) and wave impact types to examine cliff ground motion response. Analyses of the dataset demonstrate that individual impact events can be discriminated as discrete events in the seismic signal. Hourly mean ground motion increases with incident Hs, but the largest hourly peak ground motions occurred across a broad range of incident Hs (0.9–3.7 m), including during relatively calm conditions. Mean hourly metrics therefore smooth the short-term dynamics of wave–cliff interaction; hence, to fully assess wave impact energy transfer to cliffs, it is important also to consider peak ground motion. Video analyses showed that the dominant control on peak ground motion magnitude was wave impact type rather than incident Hs. Wave–cliff impacts where breaking occurs directly onto the cliff face consistently produced greater ground motion compared to broken or unbroken wave impacts: breaking, broken and unbroken impacts averaged peak ground motion of 287, 59 and 38 μm s−1, respectively. The results illustrate a novel link between wave impact forcing and cliff ground motion response using individual wave field measurements, and highlight the influence of wave impact type on peak energy transfer to coastal cliffs. © 2019 John Wiley & Sons, Ltd. © 2019 John Wiley & Sons, Ltd.  相似文献   

11.
Few studies of wave processes on shore platforms have addressed the hydrodynamic thresholds that control wave transformation and energy dissipation, especially under storm conditions. We present results of a field experiment conducted during a storm on a sub‐horizontal shore platform on the east coast of Auckland, New Zealand. Small (<0.5 m) locally generated waves typically occur at the field site, whereas during the experiment the offshore wave height reached 2.3 m. Our results illustrate the important control that platform morphology has on wave characteristics. At the seaward edge of the platform a scarp abruptly descends beneath low tide level. Wave height immediately seaward of the platform was controlled by the incident conditions, but near the cliff toe wave height on the platform was independent of incident conditions. Results show that a depth threshold at the seaward platform edge > 2.5 times the gravity wave height (0.05–0.33 Hz) is necessary for waves to propagate onto the platform without breaking. On the platform surface the wave height is a direct function of water depth, with limiting maximum wave height to water depth ratios of 0.55 and 0.78 at the centre of the platform and cliff toe, respectively. A relative ‘platform edge submergence’ (water depth/water height ratio) threshold of 1.1 is identified, below which infragravity (<0.05 Hz) wave energy dominates the platform energy spectra, and above which gravity waves are dominant. Infragravity wave height transformation across the platform is governed by the relative platform edge submergence. Finally, the paper describes the first observations of wave setup on a shore platform. During the peak of the storm, wave setup on the platform at low tide (0.21 m) is consistent with measurements from planar sandy beaches, but at higher tidal stages the ratio between incident wave height and maximum setup was lower than expected. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
Many boulders are located around the coastal cliffs with height of below 5 m made of coral limestone at Kuro‐shima, Okinawa, Japan. The origin of the boulders appears to be coral limestone cliffs which show developed notches. We undertook stability analysis, involving the wave pressure due to tsunamis, of wave‐induced collapse of the cliffs. We find that extreme waves are capable of inducing cliff collapse, as observed in circumstances where gravity is insufficient. Copyright © 2010 John Wiley and Sons, Ltd.  相似文献   

13.
Coarse clastic sediments (boulders) on coastlines have seen a groundswell in geomorphic research interest over recent years, associated in part with the potential of boulder evidence for interpreting characteristics of high‐energy wave processes. Yet, the fundamental property of boulder volume is normally difficult to measure accurately owing to complex clast morphology and irregular surface texture. To tackle this problem, this paper concentrates on creating precise, measurable and textured three‐dimensional (3D) models of coastal boulders without physical contact with the object, based on multi‐view image measurement techniques. This method has several advantages over traditional measurements that are inaccurate or alternative solutions using costly techniques such as terrestrial laser scanning. Our methods propose the use of low‐cost equipment (digital cameras) that can be used in various coastal environments to easily acquire numerous images of the object of interest. Initial results can be rapidly assessed in the field for immediate quality control. Resulting 3D models, built from overlapping multi‐view digital photographs, allow the reconstruction of realistic‐looking and textured boulder surfaces. A particular interest in this task is the family of algorithms known as structure from motion (SFM). The work presents analysis of SFM techniques by examining 3D models of boulders observed at a coastal field site on Lu Dao Island in south‐eastern Taiwan. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
We challenge the notion of steady‐state equilibrium in the context of progressive cliff retreat on micro‐tidal coasts. Ocean waves break at or close to the abrupt seaward edge of near‐horizontal shore platforms and then rapidly lose height due to turbulence and friction. Conceptual models assume that wave height decays exponentially with distance from the platform edge, and that the platform edge does not erode under stable sea‐level. These assumptions combine to a steady‐state view of Holocene cliff retreat. We argue that this model is not generally applicable. Recent data show that: (1) exponential decay in wave height is not the most appropriate conceptual model of wave decay; (2) by solely considering wave energy at gravity wave frequencies the steady‐state model neglects a possible formative role for infragravity waves. Here we draw attention to possible mechanisms through which infragravity waves may drive cliff retreat over much greater distances (and longer timescales) than imaginable under the established conceptual model. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
Sediment transport of four boulder bed rivers is studied using lichenometry. The presence of lichens on boulders in the river channel is used to date the last mobilization of the blocks. Using size frequency diagrams and regional growth curves calibrated with dated reference points it is possible to determine the flood event responsible for the last mobilization of each boulder with lichens present. The specific stream power of flood events over the last 60 years is then calculated, and thresholds of sediment transport based on the sediment size are calculated. The results from the four studied rivers are compared to similar relationships in the literature. Sediment motion thresholds appear to be very variable within the same type of river (mountainous boulder bed rivers). The critical specific stream power necessary to mobilize a particle of a given diameter may vary by up to 10 times from one river to the next. Bed sediment size and river slope may explain this large range of stream powers. Calculation of the relative size of the transported particles (Di/D50) also shows that both hiding and protrusion effects, as well as channels slope, are important factors in sediment transport. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Coarse‐gravel beaches are common features along the eastern margin of Tasman Bay, at the north end of South Island, New Zealand. Although these features have traditionally been interpreted as spits, contemporary incident wave energy appears too small to transport boulders and cobbles persistently along the beaches and platforms by longshore drift. An alternative explanation suggests that boulder beaches are essentially derived in situ from resistant bedrock, which lies seaward and was buried by gravel during the Holocene sea level rise. Wind, wave and clast size data from Cable Bay and the Nelson Boulder Bank were used to resolve this problem. Wave and wind data indicate that waves reaching these areas are derived locally in Tasman Bay, and are limited in size and energy. Hindcasting predicts a 4·7 m wave could propagate from Tasman Bay. However, during Cyclone Yalli, the most intense storm in nearly 40 years of wind records, the largest wave measured in the nearby area of Cable Bay was only 2·7 m high. Maximum orbital velocity on the seabed beneath a 4·7 m is calculated to be 2·9 m s?1, which cannot initiate transport of clasts greater than 0·15 m in diameter. Clasts on the gravel platforms have average diameters greater than this, but some clasts may be as large as 1·0 m in diameter. By comparison, a swash run‐up method predicts that a wave 4·7 m high can transport clasts no larger than 0·3 m in diameter. These data and approximate calculations strongly suggest that the present wave environment in eastern Tasman Bay is not capable of consistently transporting clasts on the boulder platforms by longshore drift. Reduced sea levels in the pre‐Holocene period would further reduce wave energies available in Tasman Bay. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
Concurrent observations of waves at the base of a southern California coastal cliff and seismic cliff motion were used to explore wave–cliff interaction and test proxies for wave forcing on coastal cliffs. Time series of waves and sand levels at the cliff base were extracted from pressure sensor observations programmatically and used to compute various wave impact metrics (e.g. significant cliff base wave height). Wave–cliff interaction was controlled by tide, incident waves, and beach sand levels, and varied from low tides with no wave–cliff impacts, to high tides with continuous wave–cliff interaction. Observed cliff base wave heights differed from standard Normal and Rayleigh distributions. Cliff base wave spectra levels were elevated at sea swell and infragravity frequencies. Coastal cliff top response to wave impacts was characterized using microseismic shaking in a frequency band (20–45 Hz) sensitive to wave breaking and cliff impacts. Response in the 20–45 Hz band was well correlated with wave–cliff impact metrics including cliff base significant wave height and hourly maximum water depth at the cliff base (r2 = 0.75). With site‐specific calibration relating wave impacts and shaking, and acceptable anthropogenic (traffic) noise levels, cliff top seismic observations are a viable proxy for cliff base wave conditions. The methods presented here are applicable to other coastal settings and can provide coastal managers with real time coastal conditions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
The southwest coast of England was subjected to an unusually energetic sequence of Atlantic storms during the 2013/2014 winter, with the 8‐week period from mid‐December to mid‐February representing the most energetic period since at least 1953. A regional analysis of the hydrodynamic forcing and morphological response of these storms along the SW coast of England highlighted the importance of both storm‐ and site‐specific conditions. The key factor that controls the Atlantic storm wave conditions along the south coast of southwest England is the storm track. Energetic inshore wave conditions along this coast require a relatively southward storm track which enables offshore waves to propagate up the English Channel relatively unimpeded. The timing of the storm in relation to the tidal stage is also important, and coastal impacts along the macro‐tidal southwest coast of England are maximised when the peak storm waves coincide with spring high tide. The role of storm surge is limited and rarely exceeds 1 m. The geomorphic storm response along the southwest coast of England displayed considerable spatial variability; this is mainly attributed to the embayed nature of the coastline and the associated variability in coastal orientation. On west‐facing beaches typical of the north coast, the westerly Atlantic storm waves approached the coastline shore‐parallel, and the prevailing storm response was offshore sediment transport. Many of these north coast beaches experienced extensive beach and dune erosion, and some of the beaches were completely stripped of sediment, exposing a rocky shore platform. On the south coast, the westerly Atlantic storm waves refract and diffract to become southerly inshore storm waves and for the southeast‐facing beaches this results in large incident wave angles and strong eastward littoral drift. Many south coast beaches exhibited rotation, with the western part of the beaches eroding and the eastern part accreting. © 2015 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

19.
We investigate how waves are transformed across a shore platform as this is a central question in rock coast geomorphology. We present results from deployment of three pressure transducers over four days, across a sloping, wide (~200 m) cliff‐backed shore platform in a macrotidal setting, in South Wales, United Kingdom. Cross‐shore variations in wave heights were evident under the predominantly low to moderate (significant wave height < 1.4 m) energy conditions measured. At the outer transducer 50 m from the seaward edge of the platform (163 m from the cliff) high tide water depths were 8+ m meaning that waves crossed the shore platform without breaking. At the mid‐platform position water depth was 5 m. Water depth at the inner transducer (6 m from the cliff platform junction) at high tide was 1.4 m. This shallow water depth forced wave breaking, thereby limiting wave heights on the inner platform. Maximum wave height at the middle and inner transducers were 2.41 and 2.39 m, respectively, and significant wave height 1.35 m and 1.34 m, respectively. Inner platform high tide wave heights were generally larger where energy was up to 335% greater than near the seaward edge where waves were smaller. Infragravity energy was less than 13% of the total energy spectra with energy in the swell, wind and capillary frequencies accounting for 87% of the total energy. Wave transformation is thus spatially variable and is strongly modulated by platform elevation and the tidal range. While shore platforms in microtidal environments have been shown to be highly dissipative, in this macro‐tidal setting up to 90% of the offshore wave energy reached the landward cliff at high tide, so that the shore platform cliff is much more reflective. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

20.
Erosion of volcanic islands ultimately creates shallow banks and guyots, but the ways in which erosion proceeds to create them over time and how the coastline retreat rate relates to wave conditions, rock mass strength and other factors are unclear. The Capelinhos volcano was formed in 1957/58 during a Surtseyan and partly effusive eruption that added an ~2.5 km2 tephra and lava promontory to the western end of Faial Island (Azores, central North Atlantic). Subsequent coastal and submarine erosion has reduced the subaerial area of the promontory and created a submarine platform. This study uses historical information, photos and marine geophysical data collected around the promontory to characterize how the submarine platform developed following the eruption. Historical coastline positions are supplemented with coastlines interpreted from 2004 and 2014 Google Earth images in order to work out the progression of coastline retreat rate and retreat distance for lava- and tephra-dominated cliffs. Data from swath mapping sonars are used to characterize the submarine geometry of the resulting platform (position of the platform edge, gradient and morphology of the platform surface). Photographs collected during SCUBA and ROV dives on the submarine platform reveal a rugged surface now covered with boulders. The results show that coastal retreat rates decreased rapidly with time after the eruption and approximately follow an inverse power-law relationship with coastal retreat distance. We develop a finite-difference model for wave attenuation over dipping surfaces to predict how increasing wave attenuation contributed to this trend. The model is verified by reproducing the wave height variation over dipping rock platforms in the UK (platform gradient 1.2° to 1.8°) and Ireland (1.8°). Applying the model to the dipping platform around Capelinhos, using a diversity of cliff resistance predicted from known lithologies, we are able to predict erosion rate trends for some sectors of the edifice. We also explore wider implications of these results, such as how erosion creates shallow banks and guyots in reef-less mid-oceanic archipelagos like the Azores. © 2019 John Wiley & Sons, Ltd. © 2019 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号