共查询到20条相似文献,搜索用时 15 毫秒
1.
Effect of natural restoration time of abandoned farmland on soil detachment by overland flow in the Loess Plateau of China 总被引:7,自引:0,他引:7
Bing Wang Guang‐hui Zhang Yang‐yang Shi X.C. Zhang Zong‐ping Ren Liang‐jun Zhu 《地球表面变化过程与地形》2013,38(14):1725-1734
Vegetation restoration has significant effects on soil properties and vegetation cover and thus affects soil detachment by overland flow. Few studies have been conducted to evaluate this effect in the Loess Plateau where a Great Green Project was implemented in the past decade. This study was carried out to quantify the effects of age of abandoned farmland under natural vegetation restoration on soil detachment by overland flow and soil resistance to erosion as reflected by soil erodibility and critical shear stress. The undisturbed soil samples were collected from five abandoned farmlands with natural restoration age varying from 3 to 37 years. The samples were subjected to flow scouring in a 4.0 m long by 0.35 m wide hydraulic flume under six different shear stresses ranging from 5.60 to 18.15 Pa. The results showed that the measured soil detachment capacities in currently cultivated farmland were 24.1 to 35.4 times greater than those of the abandoned farmlands. For the abandoned farmlands, soil detachment capacities fluctuated greatly due to the complex effects of root density and biological crust thickness, and could be simulated well by flow shear stress and biological crust thickness with a power function (NSE = 0.851). Soil erodibility of abandoned farmlands decreased gradually with restoration age and reached a steady stage when restoration age was greater than 28 years. The critical shear stress of the natural abandoned farmlands declined when restoration age was less than 18 years and then increased due to the episodic influences of vegetation recovery and biological crust development. More studies in the Loess Plateau are necessary to quantify the relationship between soil detachment capacity and biological crust thickness for better understanding the mechanism of soil detachment under natural vegetation restoration. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
2.
Evapotranspiration of much planted vegetation exceeds precipitation, and this can deplete soil water and cause a deep dry
layer in the soil profile, which is a serious obstacle to sustainable land use on the Loess Plateau, China. This study aimed
to determine water depletion depth of planted grassland, shrub, and forest in a semiarid area on the Loess Plateau. Soil moisture
of five vegetation types was measured to >20 m in depth. The vegetation types were crop, natural grasse, seven-year-old planted
alfalfa (Medicago sativa L.), 23-year-old planted caragana (Caragana microphylla Lam.) shrub, and 23-year-old planted pine (Pinus tabulaeformis L) forest land. Through comparing moisture of planted alfalfa grass, caragana shrub, and pine forest to crop and natural
grassland, the depth and amount of soil water consumed by grassland, caragana brush and pine forest was determined. The depth
of soil water depleted by alfalfa, caragana brush, and pine forest reached 15.5, 22.4 and 21.5 m, respectively.
Supported by National Basic Research Program of China (Grant No. 2007CB407204) and National Natural Science Foundation of
China (Grant No. 40471082) 相似文献
3.
On the Chinese Loess Plateau, serious slope and gully erosion have caused a decrease in soil water capacity and fertility, which has resulted in vegetation degradation and a reduction in agricultural productivity. Great efforts have been made to restore vegetation to control soil erosion, but the efficiency of artificial revegetation is not satisfactory. Natural revegetation is an alternative. However, while soil seed banks are an essential source for natural revegetation, their composition and distribution on eroded slopes remains unknown. In addition, whether or not seed loss during soil erosion limits vegetation colonization is also unknown. In this work, soil seed bank composition and distribution were studied in three situations. Specifically, three main microsites were selected as sampling plots: fish‐scale pits, as artificial deposited micro‐topography; under tussocks, as trap microsites; and open areas, as eroded areas. Soil samples were collected at depths of 0–2 cm, 2–5 cm and 5–10 cm. The soil seed bank was identified using germination experiments, and a total of 34 species were identified. The dominant species in the soil seed bank were annual/biennial herbs with an average proportion more than 90% and density reaching 19,000 seeds m‐2. The pioneer species Artemisia scoparia was especially abundant. The dominant later successional species, such as Lespedeza davurica, Artemisia giraldii, Artemisia gmelinii, Stipa bungeana and Bothriochloa ischcemum, were present in the soil at a density that ranged from 38 to 1355 seeds m‐2. Compared with the eroded open areas, the fish‐scale pits retained a higher density of seeds, and the tussocks retained a larger number of species. However, there was no serious reduction of the soil seed bank in the erosion areas. The present study indicates that, on these eroded slopes, the soil seed bank is not the key factor limiting the colonization of natural vegetation. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
4.
Soil moisture is essential for vegetation restoration in arid and semi-arid regions. Ascertaining the vertical distribution and transportation of soil moisture under different vegetation types has a profound effect on the ecological construction. In this study, the soil moisture at a depth of 500 cm for four typical vegetation types, including Robinia pseudoacacia, Caragana korshinskii, Stipa bungeana, and corn, were investigated and compared in the Zhifanggou watershed of the Loess plateau. Additionally, hydrogen and oxygen stable isotopes were detected to identify the transport mechanism of soil moisture. The results showed vertical distribution and transportation of soil moisture were different under different vegetation types. Depth-averaged soil moisture under S. bungeana and corn generally increased along the profile, while C. korshinskii and R. pseudoacacia showed weakly increasing and relatively stable after an obvious decreasing trend (0–40 cm). The soil moisture under R. pseudoacacia was lower than that under other vegetation types, especially in deep layer. However, the effect of R. pseudoacacia on soil moisture in the topsoil (< 30 cm) could be positive. For R. pseudoacacia (160–500 cm), C. korshinskii (0–500 cm), and S. bungeana (0–100 cm), the soil moisture declined with increased in vegetation age. Planting arbor species such as R. pseudoacacia intensified the decline of soil moisture on the Loess Plateau. The capacity of evaporation fractionation of soil moisture followed the sequence: corn > S. bungeana > R. pseudoacacia > C. korshinskii. The δ18O values in soil water fluctuated across the profile. The δ18O values changed sharply in upper layer and generally remained stable in deep layer. However, in middle layer, the vertical distribution characteristics of the δ18O values were different under different vegetation types. We estimated that piston flow was the main mode of precipitation infiltration, and the occurrence of preferential flow was related to vegetation types. These results were helpful to improve the understanding of the response of deep soil moisture to vegetation restoration and inform practices for sustainable water management. 相似文献
5.
Temporal variation in soil detachment under different land uses in the Loess Plateau of China 总被引:9,自引:0,他引:9
Measurements of temporal variations in soil detachability under different land uses are badly needed to develop new algorithms or evaluate the existing ones for temporal adjustment of soil detachability in continuous soil erosion models. Few studies have been conducted in the Loess Plateau to quantify temporal variations in detachment rate of runoff under different land uses. The objectives of this study were to investigate the temporal variations of soil detachment rate under different land uses and to further identify the potential factors causing the change in detachment rate in the Loess Plateau. Undisturbed soil samples were collected in the fields of arable land (millet, soybean, corn, and potato), grassland, shrub land, wasteland, and woodland and tested in a laboratory flume under a constant hydraulic condition. The measurements started in mid‐April and ended in early October, 2006. The results showed that soil detachment rate of each land use fluctuated considerably over time. Distinctive temporal variation in detachment rate was found throughout the summer growing season of measurement in each land use. The maximum detachment rates of different land uses varied from 0·019 to 0·490 kg m–2 s–1 and the minimum detachment rates ranged from 0·004 to 0·092 kg m–2 s–1. Statistical analysis using a paired‐samples t‐test indicated that variations in soil detachment rate differed significantly at the 0·05 level between land uses in most cases. The major factors responsible for the temporal variation of soil detachment were tillage operations (such as planting, ploughing, weeding, harvesting), soil consolidation, and root growth. The influence of tillage operations on soil detachment depended on the degree of soil disturbance caused by the operations. The consolidation of the topsoil over time after tillage was reflected by increases in soil bulk density and soil cohesion. As soil bulk density and cohesion increased, detachment rate decreased. The impact of root density was inconclusive in this study. Further studies are needed to quantify the effects of root density on temporal variations of soil detachment. This work provides useful information for developing temporal adjustments to soil detachment rate in continuous soil erosion models in the Loess Plateau. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
6.
Sediment yields from the rolling hills area of the Loess Plateau in northern China (10000–25000 t km−2 yr−1) are amongst the highest in the world. The sediment is believed to derive from both the deep gullies that dissect the rolling plateau and the steep cultivated fields on the slopes of the mounds between the gullies. However, there are few reliable data for erosion rates on the cultivated fields and it is suspected that current estimates (10000–16000 t km−2 yr−1) based on empirical relationships (derived from erosion plot studies) exceed the true values. This study sought to address the need for more information concerning erosion of the cultivated fields through derivation of erosion rates from measurements of rill volume and caesium-137 (137Cs) inventories for typical fields near the village of Ansai, Shaanxi Province. The derived erosion rates are discussed and compared with estimates based on empirical relationships derived from erosion plot data. Where erosion rate estimates based on both rill volume data and 137Cs inventories are available, they show good agreement in the pattern of downslope variation. Both show a sharp decline in erosion rates at a slope length of c. 50 m. This is tentatively attributed to a change from transport-limited to detachment-limited conditions, where rill incision reaches the undisturbed loess at the base of the plough layer. No such decline is visible in the predictions based on empirical relationships derived from erosion plot data. Further evidence is presented that supports the suggestion that these empirical relationships overestimate erosion rates at slope lengths in excess of c. 50 m. It is tentatively suggested that the rates of soil erosion from sloping cultivated fields in the rolling hills area are more likely to lie in the range 8000–10000 t km−2 yr−1 than in the higher range suggested by the empirical relationships. © 1998 John Wiley & Sons, Ltd. 相似文献
7.
Spatial variation in soil resistance to flowing water erosion along a regional transect in the Loess Plateau 总被引:4,自引:0,他引:4 下载免费PDF全文
The factors influencing soil erosion may vary with scale. It remains unclear whether the spatial variation in soil erosion resistance is controlled by regional variables (e.g. precipitation, temperature, and vegetation zone) or by local specific variables (e.g. soil properties, root traits, land use, and farming operations) when the study area enlarges from a hillslope or catchment to the regional scale. This study was performed to quantify the spatial variations in soil erosion resistance to flowing water under three typical land uses along a regional transect on the Loess Plateau and to identify whether regional or local specific variables are responsible for these changes. The results indicated that the measured soil detachment capacities (Dc) of cropland exhibited an irregular trend along the regional transect. The Dc of grassland increased with mean annual precipitation, except for two sites (Yijun and Erdos). The measured Dc of woodland displayed an inverted ‘U’ shape. The changes in rill erodibility (Kr) of three land uses were similar to Dc, whereas no distinguishable trend was found for critical shear stress (τc). No significant correlation was detected between Dc, Kr and τc, and the regional variables. The spatial variation in soil erosion resistance could be explained reasonably by changes in soil properties, root traits, land use, and farming operations, rather than regional variables. The adjustment coefficient of Kr for grassland and woodland could be well simulated by soil cohesion and root mass density (R2 = 0.70, P < 0.01), and the adjustment coefficient of critical shear stress could be estimated with aggregate stability (R2 = 0.57, P < 0.01). The results are helpful for quantifying the spatial variation in soil detachment processes by overland flow and to develop process‐based erosion model at a regional scale. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
8.
《国际泥沙研究》2020,35(4):408-416
The magnitude of soil erosion and sediment load reduction efficiency of check dams under extreme rainstorms is a long-standing concern. The current paper aims to use check dams to deduce the amount of soil erosion under extreme rainstorms in a watershed and to identify the difference in sediment interception efficiency of different types of check dams. Based on the sediment deposition at 12 check dams with 100% sediment interception efficiency and sub-catchment clustering by taking 12 dam-controlled catchments as clustering criteria, the amount of soil erosion resulting from an extreme rainstorm event on July 26, 2017 (named “7·26” extreme rainstorm) was estimated in the Chabagou watershed in the hill and gully region of the Loess Plateau. The differences in the sediment interception efficiency among the check dams in the watershed were analyzed according to field observations at 17 check dams. The results show that the average erosion intensity under the “7–26” extreme rainstorm was approximately 2.03 × 104 t/km2, which was 5 times that in the second largest erosive rainfall in 2017 (4.15 × 103 t/km2) and 11–384 times that for storms in 2018 (0.53 × 102 t/km2 - 1.81 × 103 t/km2). Under the “7–26” extreme rainstorm, the amount of soil erosion in the Chabagou watershed above the Caoping hydrological station was 4.20 × 106 t. The sediment interception efficiency of the check dams with drainage canals (including the destroyed check dams) and with drainage culverts was 6.48 and 39.49%, respectively. The total actual sediment amount trapped by the check dams was 1.11 × 106 t, accounting for 26.36% of the total amount of soil erosion. In contrast, 3.09 × 106 t of sediment were input to the downstream channel, and the sediment deposition in the channel was 2.23 × 106 t, accounting for 53.15% of the total amount of soil erosion. The amount of sediment transport at the hydrological station was 8.60 × 105 t. The Sediment Delivery Ratio (SDR) under the “7·26” extreme rainstorm was 0.21. The results indicated that the amount of soil erosion was huge, and the sediment interception efficiency of the check dams was greatly reduced under extreme rainstorms. It is necessary to strengthen the management and construction technology standards of check dams to improve the sediment interception efficiency and flood safety in the watershed. 相似文献
9.
ZHAO ShiWei ZHAO YongGang & WU JinShui State Key Laboratory of Soil Erosion Dryl Farming on the Loess Plateau 《中国科学:地球科学(英文版)》2010,(4)
Soil pore is a key attribute of the soil structure that affects soil reservoir under natural vegetation recovery on the Loess Plateau.This study is to quantitatively analyze soil pore parameters,measured with Computed Tomography(CT) at 15-57 mm depths under five different vegetation succession stages using a concept of substituting space for time in the Ziwuling Forest Region of the Loess Plateau.The results showed that the soil pore parameters,such as pore number,porosity,circularity,and fractal dimension,... 相似文献
10.
Effects of biological crust coverage on soil hydraulic properties for the Loess Plateau of China 总被引:5,自引:0,他引:5 下载免费PDF全文
Biological soil crusts (BSCs) are ubiquitous living covers that have been allowed to grow on abandoned farmlands over the Loess Plateau because the “Grain for Green” project was implemented in 1999 to control serious soil erosion. However, few studies have been conducted to quantify the effects of BSC coverage on soil hydraulic properties. This study was performed to assess the effects of BSC coverage on soil hydraulic properties, which are reflected by the soil sorptivity under an applied pressure of 0 (S 0 ) and ?3 (S 3 ) cm, saturated hydraulic conductivity (K s ), wetting front depth (WFD ), and mean pore radius (λ m ), for the Loess Plateau of China. Five classes of BSC coverage (i.e., 1–20%, 20–40%, 40–60%, 60–80%, and 80–100%) and a bare control were selected at both cyanobacteria‐ and moss‐covered sites to measure soil hydraulic properties using a disc infiltrometer under 2 consecutive pressure heads of 0 and ?3 cm, allowing the direct calculation of S 0 , S 3 , K s , and λ m . The WFD was measured onsite using a ruler immediately after the experiments of infiltration. The results indicated that both cyanobacteria and moss crusts were effective in changing the soil properties and impeding soil infiltration. The effects of moss were greater than those of cyanobacteria. Compared to those of the control, the S 0 , S 3 , K s , WFD , and λ m values of cyanobacteria‐covered soils were reduced by 13.7%, 11.0%, 13.3%, 10.6%, and 12.6% on average, and those of moss‐covered soils were reduced by 27.6%, 22.1%, 29.5%, 22.2%, and 25.9%, respectively. The relative soil sorptivity under pressures of 0 (RS 0 ) and ?3 (RS 3 ) cm, the relative saturated hydraulic conductivity (RK s ), the relative wetting front depth (RWFD ), and the relative mean pore radius (Rλ m ) decreased exponentially with coverage for both cyanobacteria‐ and moss‐covered soils. The rates of decrease in RS 0 , RS 3 , RK s , RWFD , and Rλ m of cyanobacteria were significantly slower than those of moss, especially for the coverage of 0–40%, with smaller ranges. The variations of soil hydraulic properties with BSC coverage were closely related to the change in soil clay content driven by the BSC coverage on the Loess Plateau. The results are useful for simulating the hydraulic parameters of BSC‐covered soils in arid and semiarid areas. 相似文献
11.
Carbon isotopic composition of modern soil and paleosol as a response to vegetation change on the Chinese Loess Plateau 总被引:7,自引:0,他引:7
LIU Weiguo NING Youfeng AN Zhisheng WU Zhenghai LU Huayu & CAO Yunning State Key Laboratory of Loess Quaternary Geology IEE Chinese Academy of Sciences Xi''''an China Northwest Sci-Tech University of Agriculture Forest Yangling China 《中国科学D辑(英文版)》2005,48(1):93-99
The relationship between the carbon isotopic composition of paleosols and pale-ovegetation on the Loess Plateau is still unclear. One of the main reasons is that we are short of knowledge about the characteristics of the carbon isotopic composition of modern soil in this area. A preliminary investigation of the carbon isotopic compositions of the modern soil and the loess/paleosol sequence on the Loess Plateau shows that the carbon isotopic composition of modern soil is consistent with the distribution of modern plants on the Loess Plateau, where the ecosystem is dominated by a mixture of C4 and C3 plants. Comparing the δ13C values of modern soil and loess-paleosol sequences from the Xunyi profile, we conclude that C3 plants dominated the landscape during loess sediment stages, while C4 plants expanded during paleosol stages. 相似文献
12.
YAN YunXia & XU JiongXin Institute of Geographical Sciences Natural Resources Research Chinese Academy of Sciences Key Laboratory of Water Cycle Related Land Surface Processes Chinese Academy of Sciences Beijing China 《中国科学D辑(英文版)》2007,50(1):102-112
Based on data from 148 hydrometric stations in the Yellow River Basin, an analysis of regional scale relationship, or the relationship between specific sediment yield and drainage basin area, has been undertaken in the study area of the Loess Plateau. For different regions, scale relationship in log-log ordinate can be fitted by two types of lines: straight and parabola, and for each line, a function was fitted using regression analysis. The different scale relationships have been explained in terms of the difference in surface material distribution and landforms. To offset the scale-induced influence, calcu-lation has been done based on the fitted functions, in order to adjust the data of specific sediment yield to a common standard area. Based on the scaled data, a map of specific sediment yield was con-structed using Kriging interpolation. For comparison, a map based on the un-scaled data of specific sediment yield was also constructed using the same method. The two maps show that the basic pattern of specific sediment yield was basically the same. The severely eroded areas (Ys >10000 t km-2a-1) were at the same locations from Hekouzhen to Longmen in the middle Yellow River Basin. However, after the adjustment to a common standard area, the very severely eroded area (Ys >20000 t km-2a-1) became much enlarged because after the adjustment, all the values of Ys in the lower river basin in those regions became much larger than before. 相似文献
13.
Soil moisture is a key process in the hydrological cycle. During ecological restoration of the Loess Plateau, soil moisture status has undergone important changes, and infiltration of soil moisture during precipitation events is a key link affecting water distribution. Our study aims to quantify the effects of vegetation cover, rainfall intensity and slope length on total infiltration and the spatial variation of water flow. Infiltration data from the upper, middle and lower slopes of a bare slope, a natural grassland and an artificial shrub grassland were obtained using a simulated rainfall experiment. The angle of the study slope was 15° and rainfall intensity was set at 60, 90, 120, 150, and 180 mm/hr. The effect these factors have on soil moisture infiltration was quantified using main effect analysis. Our results indicate that the average infiltration depth (ID) of a bare slope, a grassland slope and an artificial shrub grassland slope was 46.7–73.3, 60–80, and 60–93.3 cm, respectively, and average soil moisture storage increment was 3.5–5.7, 5.0–9.4, and 5.7–10.2 mm under different rainfall intensities, respectively. Heavy rainfall intensity and vegetation cover reduced the difference of soil infiltration in the 0–40 cm soil layer, and rainfall intensity increased surface infiltration differences on the bare slope, the grassland slope and the artificial shrub grassland slope. Infiltration was dominated by rainfall intensity, accounting for 63.03–88.92%. As rainfall continued, the contribution of rainfall intensity to infiltration gradually decreased, and the contribution of vegetation cover and slope length to infiltration increased. The interactive contribution was: rainfall intensity * vegetation cover > vegetation cover * slope length > rainfall * slope length. In the grass and shrub grass slopes, lateral flow was found at a depth of 23–37 cm when the slope length was 5–10 m, this being related to the difference in soil infiltration capacity between different soil layers formed by the spatial cross-connection of roots. 相似文献
14.
Soil containing calcic nodules is widely present on the northern Loess Plateau of China owing to soil genesis under local climate conditions. In most studies, little attention is payed to the effect of calcic nodules on soil evaporation and ecoenvironment, resulting in inaccurate evaporation estimation in this kind of soil and further improper field water management measures and irrigation effects. In this paper, soil column experiments were conducted in order to investigate evaporation process in soil containing calcic nodules and the effect of calcic nodules on soil evaporation was determined. The results indicated that evaporation reduction was positively related to calcic nodule content (CNC = mass of calcic nodules/total mass), and could be estimated by the experiential equation: Esoil = E0 (1 – 0.4 CNC) (Esoil = actual evaporation, E0 = theory evaporation in soil without calcic nodules). When CNC was below 0.2, the impact could be neglected. While, as CNC exceeded 0.2, the impact needed to be considered during soil evaporation estimation. As CNC reached 0.5, soil evaporation could be reduced by 7.5 mm, accounting for around 10% of the total soil water. Water balance calculation in soil columns showed that water absorbed by calcic nodules was partially available to evaporation. Water available to evaporation was positively related to CNC, and this water could not exceed 63% of the water absorbed by calcic nodules. Generally, evaporation behavior was dominated by calcic nodule quantity and its water absorption. These results provide new ideas for irrigation measures in arid areas of the globe. 相似文献
15.
The spatial scale effect on sediment concentration in runoff has received little attention despite numerous studies on sediment yield or sediment delivery ratio in the context of multiple spatial scales. We have addressed this issue for hilly areas of the Loess Plateau, north China where fluvial processes are mainly dominated by hyperconcentrated flows. The data on 717 flow events observed at 17 gauging stations and two runoff experimental plots, all located in the 3906 km2 Dalihe watershed, are presented. The combination of the downstream scour of hyperconcentrated flows and the downstream dilution, which is mainly caused by the base flow and is strengthened as a result of the strong patchy storms, determines the spatial change of sediment concentration in runoff during flood events. At the watershed scale, the scouring effect takes predominance first but is subordinate to the downstream dilution with a further increase in spatial scale. As a result, the event mean sediment concentration first increases following a power function with drainage basin area and then declines at the drainage basin area of about 700 km2. The power function in combination with the proportional model of the runoff‐sediment yield relationship we proposed before was used to establish the sediment‐yield model, which is neither the physical‐based model nor the regression model. This model, with only two variables (runoff depth and drainage basin area) and two parameters, can provide fairly accurate prediction of event sediment yield with model efficiency over 0·95 if small events with runoff depth lower than 1 mm are excluded. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
16.
On the relationship between environmental aridization of the Loess Plateau and soil water in loess 总被引:6,自引:0,他引:6
The similarity between loess palaeo- environment and geographic distribution of modem bioclimatic zones is taken as a starting
point; the relationship between the environmental aridization and soil water in loess ia discussed from the point view of
the soil water energy status and their soil water physical characteristics of modem lcessial soils on the Loess Plateau. The
soil water content becomes less and less from southeast to northwest, which not only provides favorable conditions for dust
production by wind of loess origin, but also reveals that there is obviously a directional change in the environmental drought
intensity of the Loess Plateau.
Project supported by the key pmject (KZ951-B1-211) of ecological and environmental study of the Chinese Academy of Sciences 相似文献
17.
Afforestation has been suggested as a means of improving soil and water conservation in north‐western China, especially on the Loess Plateau. Understanding of the hydrological responses to afforestation will help us develop sustainable watershed management strategies. A study was conducted during the period of 1956 to 1980 to evaluate runoff responses to afforestation in a watershed on the Loess Plateau with an area of 1·15 km2, using a paired watershed approach. Deciduous trees, including locust (locusta L.), apricot (praecox L.) and elm (ulmus L.), were planted on about 80% of a treated watershed, while a natural grassland watershed remained unchanged. It was estimated that cumulative runoff yield in the treated watershed was reduced by 32% as a result of afforestation. A significant trend was also observed that shows annual runoff reduction increases with the age of the trees planted. Reduction in monthly runoff occurred mainly from June to September, which was ascribed to greater rainfall and utilization by trees during this period. Afforestation also resulted in reduction in the volume and peak flow of storm runoff events in the treated watershed with greater reduction in peak flow. Copyright © 2003 John Wiley & Sons, Ltd. 相似文献
18.
Sediment concentrations in run‐off varying with spatial scale in an agricultural subwatershed of the Chinese Loess Plateau 下载免费PDF全文
Information is scarce on the spatial‐scale effect on sediment concentrations in run‐off. This study addressed this issue within an agricultural subwatershed of the Chinese Loess Plateau, using data observed at a hilltop plot, three nested hillslope plots, two entire‐slope plots (a combination of hillslope and valley side slope) and the subwatershed outlet. Dominated by the splash and sheet erosions, the hilltop plot has a minimum Cae (mean sediment concentration for all recorded events) of 45 kg m?3. Unexpectedly, the high sediment concentrations at the hilltop do not occur at high rainfall intensities or large run‐off events because of the protection of surface soils by relatively thick sheet flows. Because of the emergence of rills, Cae is as high as 310 kg m?3 even on the most upper hillslope. Downslope, both Cae and ESC (extreme large values of recorded sediment concentrations) increase; such a slope length effect attenuates with increasing slope length and event magnitude as a result of insufficient sediment availability associated with rill development. Active mass wastings ensure sufficient sediment supply and thus a spatially invariant Cae (approximately 700 kg m?3) and ESC (approximately 1000 kg m?3) at the scale of the entire slope and subwatershed. Detailed examination shows that most small events experience a decrease in sediment concentrations when moving from the entire slope to the subwatershed, indicating that the spatially invariant sediment concentration is valid only for large run‐off events. This study highlights the control of the spatial scale, which determines the dominant erosional process, on erosional regime. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
19.
Streamflow regimes of the Yanhe River under climate and land use change,Loess Plateau,China 总被引:1,自引:0,他引:1 下载免费PDF全文
Peng Gao Guantao Jiang Yongping Wei Xingmin Mu Fei Wang Guangju Zhao Wenyi Sun 《水文研究》2015,29(10):2402-2413
Soil and water conservation measures including terracing, afforestation, construction of sediment‐trapping dams, and the ‘Grain for Green Program’ have been extensively implemented in the Yanhe River watershed, of the Loess Plateau, China, over the last six decades, and have resulted in large‐scale land use and land cover changes. This study examined the trends and shifts in streamflow regime over the period of 1953–2010 and relates them to changes in land use and soil and water conservation and to the climatic factors of precipitation and air temperature. The non‐parametric Mann–Kendall test and the Pettitt test were used to identify trends and shifts in streamflow and base flow. A method based on precipitation and potential evaporation was used to evaluate the impacts of climate variability and changes in non‐climate factors changes on annual streamflow. A significant decrease (p = 0.01) in annual streamflow was observed related to a significant change point in 1996, mostly because of significant decreases in streamflow (p = 0.01) in the July to September periods in subsequent years. The annual base flow showed no significant trend from 1953 to 2010 and no change point year, mostly because there were no significant seasonal trends, except for significant decreases (p = 0.05) in the July to September periods. There was no significant trend for precipitation over the studied time period, and no change point was detected. The air temperature showed a significant increasing trend (p < 0.01), and 1986 (p < 0.01) was the change point year. The climate variability, as measured by precipitation and temperature, and non‐climate factors including land use changes and soil and water conservation were estimated to have contributed almost equally to the reduction in annual streamflow. Soil and water conservation practices, including biological measures (e.g. revegetation, planting trees and grass) and engineering measures (such as fish‐scale pits, horizontal trenches, and sediment‐trapping dams) play an important role in reduction of the conversion of rainfall to run‐off. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
20.
Hydrological responses to conservation practices in a catchment of the Loess Plateau,China 总被引:2,自引:0,他引:2
Since the late 1950s a series of soil conservation practices have been implemented in the Loess Plateau. It is important to assess the impact of these practices on hydrology at the catchment scale. The Jialuhe River catchment, a tributary of the Yellow River, with a drainage area of 1117 km2 in the Loess Plateau, was chosen to investigate the hydrological responses to conservation practices. Parametric and non‐parametric Mann–Kendall tests were utilized to detect trends in hydrological variables or their residuals. Relationships between precipitation and hydrological variables were developed to remove the impact of precipitation variability. Significant linear decreasing trends in annual surface runoff and baseflow were identified during the treated period from 1967 to 1989, and the rate of reduction was 1·30 and 0·48 mm/year, respectively. As result, mean annual surface runoff and baseflow decreased by 32% over the period of 1967 to 1989. Seasonal runoff also decreased during the treated period with the greatest reduction occurring in summer and the smallest reduction in winter. The response of high and low daily flow to conservation practices was greater than average flows. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献