首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Unmanned aerial vehicles (UAVs) and structure-from-motion photogrammetry enable detailed quantification of geomorphic change. However, rigorous precision-based change detection can be compromised by survey accuracy problems producing systematic topographic error (e.g. ‘doming’), with error magnitudes greatly exceeding precision estimates. Here, we assess survey sensitivity to systematic error, directly correcting topographic data so that error magnitudes align more closely with precision estimates. By simulating conventional grid-style photogrammetric aerial surveys, we quantify the underlying relationships between survey accuracy, camera model parameters, camera inclination, tie point matching precision and topographic relief, and demonstrate a relative insensitivity to image overlap. We show that a current doming-mitigation strategy of using a gently inclined (<15°) camera can reduce accuracy by promoting a previously unconsidered correlation between decentring camera lens distortion parameters and the radial terms known to be responsible for systematic topographic error. This issue is particularly relevant for the wide-angle cameras often integrated into current-generation, accessible UAV systems, frequently used in geomorphic research. Such systems usually perform on-board image pre-processing, including applying generic lens distortion corrections, that subsequently alter parameter interrelationships in photogrammetric processing (e.g. partially correcting radial distortion, which increases the relative importance of decentring distortion in output images). Surveys from two proglacial forefields (Arolla region, Switzerland) showed that results from lower-relief topography with a 10°-inclined camera developed vertical systematic doming errors > 0·3 m, representing accuracy issues an order of magnitude greater than precision-based error estimates. For higher-relief topography, and for nadir-imaging surveys of the lower-relief topography, systematic error was < 0·09 m. Modelling and subtracting the systematic error directly from the topographic data successfully reduced error magnitudes to values consistent with twice the estimated precision. Thus, topographic correction can provide a more robust approach to uncertainty-based detection of event-scale geomorphic change than designing surveys with small off-nadir camera inclinations and, furthermore, can substantially reduce ground control requirements. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd  相似文献   

2.
The availability of high‐resolution, multi‐temporal, remotely sensed topographic data is revolutionizing geomorphic analysis. Three‐dimensional topographic point measurements acquired from structure‐from‐motion (SfM) photogrammetry have been shown to be highly accurate and cost‐effective compared to laser‐based alternatives in some environments. Use of consumer‐grade digital cameras to generate terrain models and derivatives is becoming prevalent within the geomorphic community despite the details of these instruments being largely overlooked in current SfM literature. A practical discussion of camera system selection, configuration, and image acquisition is presented. The hypothesis that optimizing source imagery can increase digital terrain model (DTM) accuracy is tested by evaluating accuracies of four SfM datasets conducted over multiple years of a gravel bed river floodplain using independent ground check points with the purpose of comparing morphological sediment budgets computed from SfM‐ and LiDAR‐derived DTMs. Case study results are compared to existing SfM validation studies in an attempt to deconstruct the principle components of an SfM error budget. Greater information capacity of source imagery was found to increase pixel matching quality, which produced eight times greater point density and six times greater accuracy. When propagated through volumetric change analysis, individual DTM accuracy (6–37 cm) was sufficient to detect moderate geomorphic change (order 100 000 m3) on an unvegetated fluvial surface; change detection determined from repeat LiDAR and SfM surveys differed by about 10%. Simple camera selection criteria increased accuracy by 64%; configuration settings or image post‐processing techniques increased point density by 5–25% and decreased processing time by 10–30%. Regression analysis of 67 reviewed datasets revealed that the best explanatory variable to predict accuracy of SfM data is photographic scale. Despite the prevalent use of object distance ratios to describe scale, nominal ground sample distance is shown to be a superior metric, explaining 68% of the variability in mean absolute vertical error. Published 2016. This article is a U.S. Government work and is in the public domain in the USA  相似文献   

3.
Uncrewed aerial systems (UAS), combined with structure-from-motion photogrammetry, has already proven to be very powerful for a wide range of geoscience applications and different types of UAS are used for scientific and commercial purposes. However, the impact of the UAS used on the accuracy of the point clouds derived is not fully understood, especially for the quantitative analysis of geomorphic changes in complex terrain. Therefore, in this study, we aim to quantify the magnitude of systematic and random error in digital elevation models derived from four commonly used UAS (XR6/Sony α6000, Inspire 2/X4s, Phantom 4 Pro+, Mavic Pro) following different flight patterns. The vertical error of each elevation model is evaluated through comparison with 156 GNSS reference points and the normal distribution and spatial correlation of errors are analysed. Differences in mean errors (−0.4 to −1.8 cm) for the XR6, Inspire 2 and Phantom 4 Pro are significant but not relevant for most geomorphological applications. The Mavic Pro shows lower accuracies with mean errors up to 4.3 cm, thus showing a higher influence of random errors. QQ plots revealed a deviation of errors from a normal distribution in almost all data. All UAS data except Mavic Pro exhibit a pure nugget semivariogram, suggesting spatially uncorrelated errors. Compared to the other UAS, the Mavic Pro data show trends (i.e. differences increase with distance across the survey—doming) and the range of semivariances is 10 times greater. The lower accuracy of Mavic Pro can be attributed to the lower GSD at the same flight altitude and most likely, the rolling shutter sensor has an effect on the accuracy of the camera calibration. Overall, our study shows that accuracies depend highly on the chosen data sampling strategy and that the survey design used here is not suitable for calibrating all types of UAS camera equally.  相似文献   

4.
Topographic surveys inevitably contain error, introducing uncertainty into estimates of volumetric or mean change based on the differencing of repeated surveys. In the geomorphic community, uncertainty has often been framed as a problem of separating out real change from apparent change due purely to error, and addressed by removing measured change considered indistinguishable from random noise from analyses (thresholding). Thresholding is important when quantifying gross changes (i.e. total erosion or total deposition), which are systematically biased by random errors in stable parts of a landscape. However, net change estimates are not substantially influenced by those same random errors, and the use of thresholds results in inherently biased, and potentially misleading, estimates of net change and uncertainty. More generally, thresholding is unrelated to the important process of propagating uncertainty in order to place uncertainty bounds around final estimates. Error propagation methods for uncorrelated, correlated, and systematic errors are presented. Those equations demonstrate that uncertainties in modern net change analyses, as well as in gross change analyses using reasonable thresholds, are likely to be dominated by low-magnitude but highly correlated or systematic errors, even after careful attempts to reduce those errors. In contrast, random errors with little to no correlation largely cancel to negligible levels when averaged or summed. Propagated uncertainty is then typically insensitive to the precision of individual measurements, and is instead defined by the relative mean error (accuracy) over the area of interest. Given that real-world mean elevation changes in many landscape settings are often similar in magnitude to potential mean errors in repeat topographic analyses, reducing highly correlated or systematic errors will be central to obtaining accurate change estimates, while placing uncertainty bounds around those results provides essential context for their interpretation. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

5.
The 2011 Tohoku-oki tsunami caused large-scale topographic changes along the Pacific coast of northeastern Japan. More than 10 years have passed since the tsunami waves struck the area. Today, because of reconstruction work, very few places exist where natural post-tsunami topographic changes can be monitored continuously. For this study, the authors investigated topographic changes caused not only by the 2011 tsunami but also by natural and artificial activities during the 50 years before and after the tsunami based on aerial photographs, excavations and subsurface explorations using ground-penetrating radar at the Osuka coast in Aomori prefecture, Japan. The site is rare because it is a protected area with few and superficial engineering activities, making it suitable for continuous observation of pre-tsunami, syn-tsunami and post-tsunami topographic changes. The findings indicate that the 2011 tsunami waves generated large topographic changes: depositional and erosional features produced by the tsunami can be recognized, respectively, as tsunami deposits and erosional channels across the sand dunes. During the post-tsunami phase, the sand volume at the coast quickly recovered naturally. Tsunami deposits and the erosional channels were well preserved underground even at 10 years after the event. However, dynamic movement of the dunes started after the tsunami. The shifting was attributable to the artificial clearing of coastal forests rather than the tsunami effects on the coast. Our results first indicate not only that the sedimentary features of paleo-tsunamis but also the erosional features have some probability of being preserved in the subsurface of the beach and sand dunes at tsunami-affected areas. Also, artificial activities such as deforestation are much more crucially undermining of the stability of the coastal geomorphology than the tsunami effects: the coast is now reaching a different status from its pre-tsunami situation.  相似文献   

6.
This study evaluated four possible cases of comparing radar and rain gauge rain rate for the detection of mean‐field bias. These four cases, or detection designs, consider in this study are: (1) design 1‐uses all the data sets available, including zero radar rain rate and zero rain gauge rain rate, (2) design 2—uses the data sets of positive radar rain rate and zero or positive rain gauge rain rate, (3) design 3—uses the data sets of zero or positive radar rain rate and positive rain gauge rain rate and (4) design 4—uses the data sets of positive radar rain rate and positive rain gauge rain rate. A theoretical review of these four detection designs showed that only the design 1 causes no design bias, but designs 2, 3 and 4 can cause positive, negative and negative design biases, respectively. This theoretical result was also verified by applying these four designs to the rain rate field generated by a multi‐dimensional rain rate model, as well as to that of the Mt Gwanak radar in Korea. The results from both applications showed that especially the design 4, which is generally used for the detection of mean‐field bias of radar rain rate, causes a serious design bias; therefore, is inappropriate as a design for detecting the mean‐field bias of radar rain rate. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
为评估全国地震重点监视防御区制度的实施现状、成效,课题组对相关问题进行了定性和定量研究,定量研究以系列问卷调查为主,包括政府、社区和公众问卷等。本文重点说明了系列问卷调查的设计、抽样以及回收情况,并对问卷调查发现的问题做了简单介绍。  相似文献   

8.
An erratum has been published for this article in Earth Surface Processes and Landforms 27(7) 2002, 795. Estimates of scour and fill in rivers that are derived by differencing topographic surfaces are known to be negatively biased by local compensation of scour and fill between surveys but the magnitude of bias is not well known. This study examines the effect of survey frequency on volumes of scour and fill over a period of active channel braiding in a small‐scale river model. A 100 min, high temporal resolution time series of digital elevation models is artificially coarsened by selectively removing models. The resulting four overlapping time series have survey intervals of 10 min, 20 min, 50 min and 100 min. Cumulative scour and fill volumes for the 100 min period are compared between the four series. It is concluded that the decay in measured volumes of scour and fill with increased survey interval can be described using inverse functions. Cumulative scour–fill volumes are approximately 420 per cent greater over the study period for 10 min survey intervals than for a 100 min interval. After the 100 min period of competent flow, nearly 65 per cent of the channel area experienced significant compensation of scour and fill. Several compensation mechanisms were identified in association with braided channel kinetics, including lateral channel migration, the migration of bed forms, and channel avulsion. It is demonstrated that by negatively biasing scour, fill and net estimates, this error significantly affects morphological approaches to the estimation of bed load sediment transport. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

9.
Different high‐resolution techniques can be employed to obtain information about the three‐dimensional (3D) surface of glaciers. This is typically carried out using efficient, but also expensive and logistically demanding, light detection and ranging (LiDAR) technologies, such as airborne scanners and terrestrial laser scanners. Recent technological improvements in the field of image analysis and computer vision have prompted the development of a low‐cost photogrammetric approach, which is referred to as ‘structure‐from‐motion’ (SfM). Combined with dense image‐matching algorithms, this method has become competitive for the production of high‐quality 3D models. However, several issues typical of this approach should be considered for application in glacial environments. In particular, the surface morphology, the different substrata, the occurrence of sharp contrast from solar shadows and the variable distance from the camera positions can negatively affect the image texture, and reduce the possibility of obtaining a reliable point cloud from the images. The objective of this study is to test the structure‐from‐motion multi view stereo (SfM‐MVS) approach in a small debris‐covered glacier located in the eastern Italian Alps, using a consumer‐grade reflex camera and the computer vision‐based software PhotoScan. The quality of the 3D models produced by the SfM‐MVS process was assessed via the comparison with digital terrain models obtained from terrestrial laser scanning (TLS) surveys that were performed at the same epochs. The effect of different terrain gradients and different substrata (debris, snow and firn) was also evaluated in terms of the accuracy of the reconstruction by SfM‐MVS versus TLS. Our results show that the quality of this new photogrammetric approach is similar to the quality of TLS and that point cloud densities are comparable or even higher compared with TLS. However, special care should be taken while planning the SfM survey geometry, to optimize the 3D model quality and spatial coverage. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
The nature and rates of fluvial and slope processes change over time and space as urbanized areas replace forested land in Singapore. Storm-based and time-based data, from undisturbed rainforests, heavily disturbed construction sites, urban grass-covered slopes and an experimental plot, are collected to observe the impact of rainwater on the soil moisture conditions, surface microtopography, runoff generation, sediment movement, and ground lowering in the three different categories of land use. The undisturbed forested environment is characterized by high throughfall (58% of total rainfall) and frequent negative soil moisture suctions. The slow and unconcentrated overland flow during heavy storms is restricted by the forest floor microtopography. No rills develop. Ground lowering is recorded as 3·2–3·4 mm a?1. But sediment movement is episodic and suspended sediment concentrations in overland flow are 172–222 mg l?1. During urban construction, gully development is rapid on the bare slopes, runoff generation, voluminous, and sediment-laden discharges (5200–75498 mg l?1) lead to sediment plumes at channel mouths. Ground lowering rates are measured at 132·4 mm a?1. Once grass-covered, runoff carries less suspended sediment (800 mg l?1) and ground lowering rates are reduced, but depend on the condition of the cover, ranging from 0·2 to 8·2 mm a?1. As urban development continues, environments are altered both in time as well as spatially.  相似文献   

11.
高精度重力测量在金矿采空区探测中的应用研究   总被引:3,自引:1,他引:3       下载免费PDF全文
为了确定金矿采空区的位置,对其隐患进行治理,首次应用高精度重力方法.在研究区布设了两条比例尺为1∶100的高精度重力测量剖面,使用加拿大Scintrex公司的CG-5AutoGrav型重力仪, 测取重力异常数据,并采用欧拉反褶积方法实施反演解释,确定了采空塌陷区域及稳定地段.研究结果表明:高精度重力测量应用于金矿采空区探测是行之有效的,用欧拉反褶积方法解释重力异常数据是一种快速、高效、人为干预少的好方法.  相似文献   

12.
Roads have been widely studied as sources of runoff and sediment and identified as pollutant production sources to receiving waters. Despite the wealth of research on logging roads in forested, upland settings, little work has been conducted to examine the role of extensive networks of rural, low‐volume, unpaved roads on water quality degradation at the catchment scale. We studied a network of municipal unpaved roads in the northeastern US to identify the type and spatial extent of ‘hydro‐geomorphic impairments’ to water quality. We mapped erosional and depositional features on roads to develop an estimate of pollutant production. We also mapped the type and location of design interventions or best management practices (BMPs) used to improve road drainage and mitigate water quality impairment. We used statistical analyses to identify key controls on the frequency and magnitude of erosional features on the road network, and GIS to scale up from the survey results to the catchment scale to identify the likely importance of unpaved roads as a pollutant source in this setting. An average of 21 hydro‐geomorphic impairments were mapped per kilometer of road, averaging 0.3 m3 in volume. Road gradient and slope position were key controls on the occurrence of these features. The presence of BMPs effectively reduced erosion frequency. Scaled up to the watershed and using a conservative estimate of road–stream connectivity, our results for the Winooski River watershed in the northeastern US suggest that roughly 16% and 6% of the average annual sediment and phosphorus flux, respectively, of the Winooski River may be derived from unpaved roads. Our study identifies an under‐appreciated source of water quality degradation in rural watersheds, provides insights into identifying ‘hot spots’ of pollutant production associated with these networks, and points to effectiveness of design interventions in mitigating these adverse impacts on water quality. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

13.
Abstract

Laboratory experiments concerning azimuthal jets in two-layer rotating systems in the absence and presence of bottom topography aligned along the jets have been conducted. The jets were forced by the selective withdrawal of fluid from the upper layer of a two-fluid system contained in a circular dishpan geometry. The principal parameters measured in the experiments were the jet Rossby number, Ro, and a stratification parameter F = r 1/(λ1λ2)1/2 where r 1 is the radius of the circular disc used for the selective withdrawal (i.e., r 1 is the approximate radius of curvature of the jet) and λ12 are the internal Rossby radii of deformation in the upper and lower fluids, respectively.

The no-topography experiments show that for a sufficiently small F, the particular value depending on Ro, the jet is stable for the duration of the experiment. For sufficiently large F, again as a function of Ro, the jet becomes unstable, exhibiting horizontal wave disturbances from modes three to seven. An Ro against F flow regime diagram is presented.

Experiments are then conducted in the presence of a bottom topography having constant cross-section and extending around a mid-radius of the dishpan. The axis of the topography is in the vicinity of the jet axis forced in the no-topography experiments and the crest of the topography is in the vicinity of the interface between the two fluids (i.e., the front associated with the jet). The experiments show that in all cases investigated the jet tends to be stabilized by the bottom topography. Experiments with the topography in place, but with the interface between the fluids being above the topography crest, are shown to be unstable but more irregular than their no-topography counterparts.

Various quantitative measurements of the jet are presented. It is shown, for example, that the jet Rossby number defined in terms of the fluid withdrawal rate from the tank. Q, can be well correlated with a dimensionless vorticity gradient, VG , across the upper layer jet. This allows for an assessment of the stability characteristics of a jet based on a knowledge of VG (which can be estimated given a jet profile) and F.  相似文献   

14.
A comprehensive framework for the assessment of water and salt balance for large catchments affected by dryland salinity is applied to the Boorowa River catchment (1550 km2), located in south‐eastern Australia. The framework comprised two models, each focusing on a different aspect and operating on a different scale. A quasi‐physical semi‐distributed model CATSALT was used to estimate runoff and salt fluxes from different source areas within the catchment. The effects of land use, climate, topography, soils and geology are included. A groundwater model FLOWTUBE was used to estimate the long‐term effects of land‐use change on groundwater discharge. Unlike conventional salinity studies that focus on groundwater alone, this study makes use of a new approach to explore surface and groundwater interactions with salt stores and the stream. Land‐use change scenarios based on increased perennial pasture and tree‐cover content of the vegetation, aimed at high leakage and saline discharge areas, are investigated. Likely downstream impacts of the reduction in flow and salt export are estimated. The water balance model was able to simulate both the daily observed stream flow and salt load at the catchment outlet for high and low flow conditions satisfactorily. Mean leakage rate of about 23·2 mm year?1 under current land use for the Boorowa catchment was estimated. The corresponding mean runoff and salt export from the catchment were 89 382 ML year?1 and 38 938 t year?1, respectively. Investigation of various land‐use change scenarios indicates that changing annual pastures and cropping areas to perennial pastures is not likely to result in substantial improvement of water quality in the Boorowa River. A land‐use change of about 20% tree‐cover, specifically targeting high recharge and the saline discharge areas, would be needed to decrease stream salinity by 150 µS cm?1 from its current level. Stream salinity reductions of about 20 µS cm?1 in the main Lachlan River downstream of the confluence of the Boorowa River is predicted. The FLOWTUBE modelling within the Boorowa River catchment indicated that discharge areas under increased recharge conditions could re‐equilibrate in around 20 years for the catchment, and around 15 years for individual hillslopes. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
Large-scale earth movements in the Maratea valley involving the inhabited area (Basilicata, Italy) have already been the object of scientific studies. These dislocate the outcropping clayey formations and the superimposed masses made up of detritus, carbonate units and large blocks, especially on the left side of the valley. Initial data on earth movements were obtained by the variation in distances monitored by an infrared distance-meter instrument (EDM), between 1983 and 1996.The present study brings out the results obtained by three successive high precision GPS monitoring campaigns undertaken between 1997 and 2000, on a grid of approximately 50 bench-marks. This process was supplemented by EDM monitoring carried out on a wider network of bench-marks than previously imposed. A comparison of different maps and other historical measurements complete the picture.The presence of sustained movements in correspondence with the outcropping clays in the lower part of the valley was confirmed, while such movements are drastically reduced on the detritus and large dislocated carbonate units and blocks, which occupy almost uninterruptedly the left side and the upper parts of the valley. Overall, the arrangement of the vectors allows us to achieve a first model of the on-going gravitational processes in the valley which appear to be attributable to a composite landslide: a spreading evolving lower-down into a large and deep flow. These processes should affect the dislocation of Carbonate Units on the so-called Sackung of Maratea, whose instability and causes are still being studied.  相似文献   

16.
对2000年1月15日姚安6.5级地震极震区(Ⅷ度)及姚安、大姚、南华和牟定等县城内的建筑物与结构物的震害做了系统的调研。本作为系列研究之二,分析了各类建筑物的地震破坏现象与相关设计,以及地震的破坏机理,讨论了地震区城镇建设中防震减灾应引起重视的有关问题;提出了在设计与施工中出现的若干问题及在这次地震灾害中获取的经验与教训。对今后多震区的城市规划、建筑物设计有一定的参考价值。  相似文献   

17.
地磁日变化记录准确度标定结果分析   总被引:1,自引:1,他引:0  
为了定量考察地磁相对记录仪器记录到的地磁日变化的准确程度,对我国地磁台网中7个地磁台站2009年度的日变化准确度标定基线值数据的精度和稳定性进行分析,并选取成都、喀什2个台站2009年、2010年的数据,研究标定基线值随地磁日变化的变化情况.结果表明,在整个观测时段,D、H、Z三分量基线值的变化幅度及测量误差很小,在选...  相似文献   

18.
针对超限高层建筑结构抗震设计,提出了基于性能设计方法的性能目标,通过结构在小震、中震、大震作用下的弹性、弹塑性静力和动力时程分析,对三水准地震作用下结构构件进行了承载力定量分析。从理论上证明了结构性能可以达到“小震不坏,中震可修,大震不倒”的抗震设防目标,同时进行了1:20模型的结构振动台试验,确证了实际结构设计的安全性。  相似文献   

19.
本文将基于能力的设计原理引入转换层结构设计,提出了“强转换弱上部”思想,给出了转换构件的能力设计公式。考虑了转换结构刚度和质量变化以及抗震设防烈度和转换层设置高度的不同对转换结构所受罕遇地震作用的影响,从工程应用的角度给出适用各类转换形式的能力设计简化公式,给出转换层结构能力设计的具体步骤。通过工程算例,对运用能力设计方法、我国现行规范方法以及在工程界应用的水平地震作用增大系数法(G βE)进行对比,并对转换层结构的能力设计方法应用提出了建议。  相似文献   

20.
天津汉沽隐伏断裂属于滨海平原区隐伏断裂。本文采用化探、浅层地震勘探和联合钻孔剖面探测等方法,并结合年代样品测试对汉沽断裂进行了综合探测研究,首次查明了汉沽断裂的准确空间位置和晚第四纪活动性。探测结果表明,汉沽隐伏断裂最新上断点埋深25. 8m,断距为2. 15m。结合光释光年代样品测试结果,推断其最新活动时代为49. 3ka ~ 65kaBP,属晚更新世中期活动断裂。由于该断层是与主断层倾向相反的次级断层,可能并不是震源断层错动在地表的直接反映,同时汉沽断裂晚更新世早期以来的平均滑动速率为0. 063mm / a,明显低于海河断裂东段晚更新世以来0. 141mm / a 的平均滑动速率,这都表明汉沽隐伏断裂的活动强度并不是很大,应是一具有中等活动强度的活动断裂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号