首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Landsliding induced by earthquakes and rainstorms in montane regions is not only a sculptor for shaping the landscape, but also a driver for delivering sediments and above‐ground biomass downstream. However, the terrain attributes of earthquake‐ and rainstorm‐induced landslides are less discussed comprehensively in Taiwan. As part of an island‐wide inventory, we here compare and contrast the landslide terrain attributes resulting from two catastrophic events: the Chi‐Chi earthquake (M w = 7.6, September 1999) and typhoon Morakot (rainfall >2500 mm, August 2009). Results show that the earthquake‐induced landslides are relatively small, round‐shaped and prone to occur primarily in middle and toe of slopes. In contrast, the rainstorm‐induced landslides are larger, horseshoe‐shaped and preferentially occurring in slope toes. Also, earthquake‐induced landslides, particularly large landslides, are usually found at steeper gradients, whereas rainstorm‐induced landslides aggregate at gradients between 25° and 40°. Lithologic control plays a secondary role in landsliding. From an island‐wide perspective, high landslide density locates in the region of earthquake intensity ≥ VI or one‐day rainfall ≥600 mm day?1. Through the landslide patterns and their terrain attributes, our retrospective approach sheds light on accessing the historical and remote events for close geophysical investigations. Finally, we should bear in mind that the landslide location, size, and terrain attributes varying with triggers may affect the landscape evaluation or biogeochemical processes in landslide‐dominated regions. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

2.
We examined the characteristics of landslides triggered by the 2016 Kumamoto earthquake (Mw = 7.0: focal depth=10.0 km) in forests and grasslands within two affected watersheds (Tokosegawa: 6.9 km2 and Nigorigawa: 6.1 km2) in southwestern Japan. We identified 190 landslides using aerial photographs and analyzed their sizes by geographic information system (GIS). Field investigations were conducted to obtain landslide depth, volume and residual sediment for 38 selected landslides (21 in forests and 17 in grasslands). The minimum area of detected landslides in grasslands (400 m2) was smaller than in forests (1000 m2), probably because of reduced detectability of landslides under tree cover. The ratio of total area occupied by landslides for a given range of slope gradient in the watersheds increased from 3.2% on gentle grassland slopes (10–15°) to 15.5% on steep (>45°) slopes, whereas the maximum landslide-area ratio in forest sites (7.4%) occurred on relatively gentle slopes (25–30°). Estimated landslide volume ranged from 27 to 9622 m3, based on mean depth of each landslide measured around individual landslide scars. Moreover, the volumetric ratio of landslide deposit volume to total landslide volume exceeded 100% for 48% of the landslides within forests and 35% of the landslides within grasslands. Our findings show that land cover had extensive and recognizable effects on the characteristics of landslides and resulting in-channel sediment accumulations. Resetting sediment dynamics after earthquakes associated with different land cover distributions needs to be considered within watersheds. © 2019 John Wiley & Sons, Ltd.  相似文献   

3.
Mesozoic and Cenozoic tectonic evolution of the Longmenshan fault belt   总被引:8,自引:0,他引:8  
The giant earthquake (M s=8.0) in Wenchuan on May 12, 2008 was triggered by oblique convergence between the Tibetan Plateau and the South China along the Longmenshan fault belt. The Longmenshan fault belt marks an important component of the tectonic and geomorphological boundary between the eastern and western part of China and has a protracted tectonic history. It was first formed as an intracontinental transfer fault, patitioning the differential deformation between the Pacific and Tethys tectonic domains, initiated in late Paleozoic-early Mesozoic time, then served as the eastern boundary of the Tibetan Plateau to accommodate the growth of the plateau in Cenozoic. Its current geological and geomorphological frameworks are the result of superimposition of these two tectonic events. In Late Triassic, the Longmenshan underwent left-slip oblique NW-SE shortening due to the clockwise rotation of the Yangtze Block, which led to the flexural subsidence of the Sichuan foreland basin, but after that, the subsidence of the Sichuan Basin seems no longer controlled by the tectonic activity of the Longmenshan fault belt. The Meosozoic tectonic evolution of the Songpan-Ganzi fold belt differs significantly compared with that of the Yangtze Platform, featured by intensive northeast and southwest shortening and resulted in the close of the Paleo-Tethys. Aerial photos taken immediately after main shock of the giant May 12, 2008 earthquake have documented extensive rock fall and landslides that represent one of the most destructive aspects of the earthquake. Both rock avalanches and landslides delivered a huge volume of debris into the middle part of the Minjiang River, and formed many dammed lakes. Breaching of these natural dams can be catastrophic, as occurred in the Diexi area along the upstream of the Minjiang River in the year of 1933 that led to devastating floodings. The resultant flood following the breaching of these dams flowed through and out of the Longmenshan belt into the Chengdu Plain, bringing a huge volume of sediments. The oldest alluvial deposits within the Chengdu Plain are estimated to be Late Miocene (8–13 Ma). We suggest that the flooding that transported the course-grained sediments into the Chengdu Plain occurred in late Cenozoic, resulted from both the climate and the historical earthquakes similar to the May 12 earthquake. Estimated age of the sediments related to earthquakes and coeval shortening across the Chengdu Plain indicate that the eastern margin of the plateau became seismically and tectonically active in Late Miocene. Supported by Knowledge Innovation Project of Chinese Academy of Sciences (Grant No. KZCX2-YW-12), National Natural Science Foundation of China (Grant Nos. 40672151, 40721003, 40472121 and 40830314) and PetroChina Company Limited  相似文献   

4.
地震和降雨是滑坡产生的两大诱因。一般认为二者的耦合作用概率小,在现实中也较少发现有此种实例。岷县漳县6.6级地震中黄土地震滑坡广泛发生,本文通过现场调查,在相关降雨量数据、航空影像空间分析的基础上研究了两个地点(永光村滑坡和堡子村滑坡)的典型地震黄土滑坡的空间展布特征和发生、发展过程,分析了诱发机制。结果发现:(1)地震滑坡呈带状分布与地震发震构造走向一致;(2)位于极震区范围的永光村黄土滑坡具有泥流特征,土体含水量可达塑限以上,是由于过量降水和强地震动耦合作用下发生;(3)堡子村黄土地震滑坡则主要为强地震动所诱发,滑距较短,并具滞后发生特性。本结果对未来地震中滑坡的预防与防治具有借鉴意义。  相似文献   

5.
西秦岭造山带(中段)及其两侧地块深部电性结构特征   总被引:10,自引:5,他引:10       下载免费PDF全文
本文对跨过西秦岭造山带(中段)的阿坝—若尔盖—临潭—兰州大地电磁剖面(WQL-L1)所采集到的数据进行了精细化处理分析和二维反演研究,结合跨过2013年岷县漳县地震区的WQL-L6剖面大地电磁探测结果和以往的地质与地球物理资料,对西秦岭造山带(中段)的深部电性结构、主要断裂带延伸状况以及与南北两侧地块的接触关系等进行了分析研究,结果表明:东昆仑断裂带塔藏段、迭部—白龙江断裂和光盖山—迭山断裂带共同组成了东昆仑断裂系统,分隔了松潘—甘孜地块和西秦岭造山带(中段);西秦岭北缘断裂带为主要的高角度南倾大型电性边界带,延伸深度穿过莫霍面;临潭—宕昌断裂带具有电性边界带特征,其延伸情况具有东、西差异.西秦岭造山带(中段)自地表到深度约20 km范围表现为东北和西南浅、中部深的倒"梯形"高阻层,在高阻层之下广泛发育低阻层,低阻层与高阻层相互契合,呈现相互挤压堆积的式样,其西南侧的松潘—甘孜地块中下地壳存在西南深、东北浅低阻层,其东北侧的陇西盆地具有稳定的成层性结构,显示出西秦岭造山带(中段)正处于松潘—甘孜地块向北挤压和陇西盆地向南的阻挡挤压作用中.松潘—甘孜地块从西南向东北推挤、东北侧陇西盆地相对阻挡的相互作用是2013年岷县漳县6.6级地震发生的外部动力学机制,同时地震震源区特殊介质属性是该次地震发生的内部因素.西秦岭造山带(中段)中上地壳倒"梯形"高阻体埋深西薄、东厚的分段差异与该段内部中强地震分布差异有关.东昆仑断裂玛沁段和塔藏段内部的深部电性结构差异和延伸状况与东昆仑断裂自西向东走滑速率减小有内在联系.  相似文献   

6.
Over the past geological and historical period, tens of thousands of landslides occurred in the upper reaches of the Minjiang River, an area which is characterized by alpine valleys and has been densely populated over the past several hundreds of years. Discussing the triggering factor of these landslides is of great significance to geological hazard mitigation and prevention in this region. In this paper, we focus on four aspects of regional rainfall, shape features of landslide slopes, the corresponding relationship between landslide area and earthquake magnitude, and the recurring features of the reconstructed palaeoearthquake record at Diexi. Compared with those in Nepal, both mean seasonal rainfall accumulation and mean daily rainfall for the past 30 years are too low to reach the threshold values triggering landslides in the upper reaches of the Minjiang River. Secondly, landslides in the study area are usually absent of inner gorges(canyon topography)on the hillslope toes, which are confirmed in previous studies as typical features of landslides triggered by storms. Thirdly, wide distribution of the landslides in the study area supports our notion of earthquake-triggering because the landslides triggered by storms commonly distribute locally. Fourthly, periodicity analysis of the reconstructed palaeoearthquake record at Diexi provides a few cycles of twenty to thirty years, possibly corresponding to the earthquakes of magnitudes>5.0 or 5.5 which are believed to have caused soft-sediment deformation in the study area. In contrast, like the 2008 MS8.0 Wenchuan earthquake, the average recurrence interval of the large earthquakes in the study area is 2.6ka. They caused tens of thousands of landslides and provided more coarse silt particles for the nearby lake sediments at least in 330 years for each time. This is consistent with exponential increase of earthquake magnitude from large to medium and of the landslide area with the increased earthquake magnitude. To sum up, we suggest that tens of thousands of landslides in the upper reaches of the Minjiang River were most likely triggered by earthquakes instead of storms. This preliminary viewpoint needs further examination in the future.  相似文献   

7.
Two large landslides successively blocked the Jinsha River at the same location in Jiangda Village on October 10 and November 3,2018,respectively.The dynamic processes and possible interactions of the two landslides need to be studied to better understand the physical processes involved,and to provide information on future disaster mitigation.We investigated their force histories and sliding directions by inverting regional broadband seismograms.The scale of the October landslide was approximately three times that of the November event.The October event revealed a particularly strong deceleration force,which may have been caused by a collision between the sliding mass and ground surface.In contrast,the November event had a relatively weaker deceleration force,indicating that it may have been gradually stopped by the landslide dam formed during the October landslide.The sliding directions of the two landslides differed significantly in terms of both horizontal and vertical directions,indicating a change in their sliding surfaces.We conclude that unconsolidated materials at the top of the October landslide continued sliding along a curved slope during the November event.From our seismic models of dynamic processes,both the October landslide and local background may have affected and even changed a subsequent landslide's mechanism.  相似文献   

8.
山西大宁县位于山西省吕梁山南端,境内沟壑纵横,具有独特的黄土高原地形地貌特征。在该地区进行地质灾害调查,以查明灾害分布、形成原因和隐患情况。应用地貌学的有关原理,结合遥感影像解译,在义亭河的支流河谷两岸0.3 km2(575 m×526 m)范围内发现并确认了2个大型和2个中型滑坡体。滑坡体均为基岩与上方的黄土沉积层整体滑下,滑坡体沿河流流动的方向发生一定程度的扭转,滑面近于直立,滑动方向与河流流向一致,没有形成堰塞湖。对滑坡体与周围地貌特征,以及河道被改动的方向特征研究认为:①4个滑坡体是在不同的地质时期形成;②其中1个滑坡体明显受到一条断裂的影响;③其它3个滑坡体,可能是在河流侵蚀搬运作用加强,导致的"重力塌陷",及河流流向作用牵引的动力学作用下,经过较漫长的时间形成;④在距离该地区约60 km的洪洞地震、临汾地震,以及距离该地区230余公里的华县地震,这三次8级地震过程中,地震应力可能加剧了滑坡体的发生或滑动;⑤未来该滑坡体,仍然可能在非常规的外界条件下,如强降雨或地震应力等的影响下,出现加速滑动的可能。  相似文献   

9.
对1990年以来南北地震带南段发生的Ms5.0以上地震和北段发生的慨4.5以上地震的迁移现象进行分析。结果表明,在南北地震带南、北段发生的中强地震具有呼应现象,且呈现一定规律,即大致以30°N线为基线对称分布。通过对震源机制的对比分析,发现南段和北段的地震类型不一致,可能与不同的地质构造和作用力有关。  相似文献   

10.
The Luonan-Luanchuan tectonic belt lies between the North China Block and Qinling Mountains, including the Luonan-Luanchuan fault zone and the strong deformation zone to the north of the fault. The ductile shear zone, imbricate brittle fault and duplex structure in the fault zone now are the expression of the same tectonic event in different depth. Such lineation structure exists in the tectonic belts as mineral lineation, elongation lineation, crenulation lineation, sheath folds and so on, indicating NE-directed plate motion. Fold axes and thrusts in the strong deformation zone are inclined to the Luonan-Luanchuan fault zone at small angles. The structures with different natures show a regular pattern, produced during oblique convergence of plates. The convergence factors are as follows: The direction of plate convergence is 22°, 31° and the angle between the plate convergence direction and plate boundary is 73°, 82° respectively in the west and east segment. The Luonan-Luanchuan tectonic belt was deformed strongly in 372 Ma, resulted from Erlangping back-arc ocean basin subduction sinistrally and obliquely to North China Block during the collision of North China Block and South China Block. Supported by National Natural Science Foundation of China (Grant Nos. 40372097 and 40772131)  相似文献   

11.
Landslides and debris flows associated with forest harvesting can cause much destruction and the influence of the timing of harvesting on these mass wasting processes therefore needs to be assessed in order to protect aquatic ecosystems and develop improved strategies for disaster prevention. We examined the effects of forest harvesting on the frequency of landslides and debris flows in the Sanko catchment (central Japan) using nine aerial photo periods covering 1964 to 2003. These photographs showed a mosaic of different forest ages attributable to the rotational management in this area since 1912. Geology and slope gradient are rather uniformly distributed in the Sanko catchment, facilitating assessment of forest harvesting effects on mass wasting without complication of other factors. Trends of new landslides and debris flows correspond to changes in slope stability explained by root strength decay and recovery; the direct impact of clearcutting on landslide occurrence was greatest in forest stands that were clearcut 1 to 10 yr earlier with progressively lesser impacts continuing up to 25 yr after harvesting. Sediment supply rate from landslides in forests clearcut 1 to 10 yr earlier was about 10‐fold higher than in control sites. Total landslide volume in forest stands clearcut 0 to 25 yr earlier was 5·8 × 103 m3 km?2 compared with 1·3 × 103 m3 km?2 in clearcuts >25 yr, indicating a fourfold increase compared with control sites during the period when harvesting affected slope stability. Because landslide scars continue to produce sediment after initial failure, sediment supply from landslides continues for 45 yr in the Sanko catchment. To estimate the effect of forest harvesting and subsequent regeneration on the occurrence of mass wasting in other regions, changes in root strength caused by decay and recovery of roots should be investigated for various species and environmental conditions. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
分析了2006年12月26日台湾恒春地震对厦门的影响,并从应急工作的科学性、可操作性和体系性上结合实例对厦门市地震应急预案的修改和全市信息传输设施的改进进行了讨论。  相似文献   

13.
对山西地区4次Ms≥4.0地震震中距20-80 km的近台PG、SG波列进行频谱分析,结果显示,不同震相的频谱特征存在较大差异,优势频段不一.并对山西大同Ms4.6、阳曲Ms4.6地震波列进行小波多分辨分解,结果显示,PG、SG波均表现为多组波列,且差异较大,可能与两次地震的破裂机制、所处构造部位不同有关.  相似文献   

14.
土壤氡气异常特征与台湾南投7.6级地震   总被引:4,自引:0,他引:4  
林依再 《地震研究》2001,24(4):321-325
总结了10年来长乐筹东土壤氡气(土氡)观测点所测得的9个3.6级以上地震的土氡前兆异常特征,表明土氡异常具有预报意义。同时着重分析了1999年9月21日台湾南投Ms7.6级地震前该测点4-6月间的土氡异常特征,据此在1999年的半年度会商中提出预报意见。并介绍了7月后该测点的土氡变化特征,认为7-9月间测值的变化是由于降雨过多引起的。  相似文献   

15.
The M5.7 Jiujiang earthquake in 2005 was a mid-strong one, stronger than expected to occur in the region. This paper discusses the neo-tectonic settings of this earthquake, and it is thought that the earthquake region is located in the transitional belt, a potential area inducing weak to moderately strong earthquakes, between two large different tectonic units. The results of the reconnaissance work and on-the-spot investigation after earthquake indicate that the occurrence of the M5.7 Jiujiang earth- quake is closely related with the NE-trending fault on the western margin of Ruichang Basin. From its controlling to the landforms and Quaternary depositions, geological profiles, ESR dating, etc., the ac- tivity of the Dingjiashan-Langjunshan fault bounding the basin is discussed. It suggests that this fault displays an active one in Middle Pleistocene by the outcrop. Based on the activity of the fault, and the direction and location of the ground fissures, the isoseismal lines and the nodal plane of the focal mechanism solution, it is inferred that the Dingjiashan-Langjunshan fault is the seismogenic tectonics of the M5.7 Jiujiang earthquake, and the intersection point between this fault and the active NW ones is the possible origin of location of this earthquake. Our study shows that this earthquake is not an event exceeding expectation, and that the active and invisible characteristics of the causative fault are typical in the eastern area of China.  相似文献   

16.
通过分析我国南北地震带(以下简称南北带)有仪器记录以来发生的大震后,发现存在约10年主体大震活动区,并自北而南有4次转移图像;同时对汶川8级大震前后的震情活动进行分析,认为未来10年南北带北段及以西地区将进入活跃期,很有可能发生多次7级以上地震,但也可能南移;未来几年四川地区可能再次发生大震,甘肃东南部地区有可能发生6级以上地震。  相似文献   

17.
The M5.7 Jiujiang earthquake in 2005 was a mid-strong one, stronger than expected to occur in the region. This paper discusses the neo-tectonic settings of this earthquake, and it is thought that the earthquake region is located in the transitional belt, a potential area inducing weak to moderately strong earthquakes, between two large different tectonic units. The results of the reconnaissance work and on-the-spot investigation after earthquake indicate that the occurrence of the M5.7 Jiujiang earthquake is closely related with the NE-trending fault on the western margin of Ruichang Basin. From its controlling to the landforms and Quaternary depositions, geological profiles, ESR dating, etc., the activity of the Dingjiashan-Langjunshan fault bounding the basin is discussed. It suggests that this fault displays an active one in Middle Pleistocene by the outcrop. Based on the activity of the fault, and the direction and location of the ground fissures, the isoseismal lines and the nodal plane of the focal mechanism solution, it is inferred that the Dingjiashan-Langjunshan fault is the seismogenic tectonics of the M5.7 Jiujiang earthquake, and the intersection point between this fault and the active NW ones is the possible origin of location of this earthquake. Our study shows that this earthquake is not an event exceeding expectation, and that the active and invisible characteristics of the causative fault are typical in the eastern area of China. Supported by the National Development and Reform Commission (Grant No. 20041138) and the National Natural Science Foundation of China (Grant No. 40602019)  相似文献   

18.
The Super‐Sauze mudslide is a persistently active slow‐moving landslide occurring in the black marl outcrops of the French South Alps. It has been intensively studied since the early 1990s. Geotechnical, geomorphological, geophysical and hydrological investigations have led to a better understanding of the processes governing the landslide motion. Water ?ows inside the system have been proven to have a major impact. To look closer at the processes involved and especially to gain a better idea of the origin and pathways of the waters, a hydrochemical study was carried out from May 2003 to May 2004. The groundwater was sampled during ?ve ?eld campaigns spread uniformly over the year. Groundwater from a network of boreholes was collected as well as spring waters from the fractured bedrock (in situ black marl) and from the moraine aquifer above the landslide. Results showed that the groundwater chemistry could not be fully explained by rainfall recharge or simple water–matrix equilibrium. A contribution of saline waters coming from the bottom of a thrust sheet overhanging the landslide was required to get the observed high mineralization. On a ?ow line, the hydrochemical evolution was related to both soil–matrix equilibrium and deep water sources coming up to the surface by means of major faults, the bedding planes and the schistosity. Hydrochemical anomalies made it possible to point out such contributions locally. It was shown that water chemistry and landslide activity were closely related. This hydrochemical investigation also enabled us to better de?ne the hydrosystem limits.Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
北京及邻区中等地震前的近南北向异常小震条带   总被引:1,自引:0,他引:1  
北京是我国政治、经济和文化中心,中等有感地震会引起极大的社会影响。北京地区面积小、地震较少,缺少有效的中等地震短期预测指标。通过对1970年以来首都圈中部地区的小震活动图像全时空扫描与研究,认为该地区的近南北向异常小震条带可以作为北京及邻近地区中等地震前短期预测指标。  相似文献   

20.
A middle Paleozoic subduction-collision orogenic belt between the Siberian and North China Plates has been recognized in Xilinhot-the south of Sonid Left Banner-Erdaojing area, northern Inner Mongolia, China. It comprises five subunits: mélange belt, foreland deformation belt, molasse and littoral basin, are diorite series and syncollision granitoid series. Evolution history of the orogenic belt can be divided into subduction stage (500-400 Ma) and collision stage (400-320 Ma). The formation of the orogenic belt caused the convergence between the Siberian and North China Plates during the late Devonian. Suture zone corresponding to the mélange belt extends from Erdaojing, Qagan Ura to Honggor. Project supported by Fok Ying Tung Education Foundation in Hong Kong.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号