首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This investigation deals with the rocking response of rigid blocks subjected to earthquake ground motion. A numerical procedure and computer program are developed to solve the non-linear equations of motion governing the rocking motion of rigid blocks on a rigid base subjected to horizontal and vertical ground motion. The response results presented show that the response of the block is very sensitive to small changes in its size and slenderness ratio and to the details of ground motion. Systematic trends are not apparent: The stability of a block subjected to a particular ground motion does not necessarily increase monotonically with increasing size or decreasing slenderness ratio. Overturning of a block by a ground motion of particular intensity does not imply that the block will necessarily overturn under the action of more intense ground motion. In contrast, systematic trends are observed when the problem is studied from a probabilistic point of view with the ground motion modelled as a random process. The probability of a block exceeding any response level, as well as the probability that a block overturns, increases with increase in ground motion intensity, increase in slenderness ratio of the block and decrease in its size. It is concluded that probabilistic estimates of the intensity of ground shaking may be obtained from its observed effects on monuments, minarets, tombstones and other similar objects provided suitable data in sufficient quantity is available, and the estimates are based on probabilistic analyses of the rocking response of rigid blocks, considering their non-linear dynamic behaviour.  相似文献   

2.
Allowing structures to uplift modifies their seismic response; uplifting works as a mechanical fuse and limits the forces transmitted to the superstructure. However, engineers are generally reluctant to construct an unanchored structure because the system could overturn due to lacking redundancy. Using a safety factor for the design of a flat rocking foundation, ie, designing it wider, goes against the main idea of this seismic modification method as the force demand for the structure increases. We propose to extend the flat base of a rocking block with curved extensions to better protect the block from overturning, yet not prevent its uplifting. After investigating the seismic response of such rocking blocks, we extend the study to investigate the seismic response of rolling and rocking frames comprising columns with curved base extensions. The equations of motion are derived, time history analyses are performed, and rocking spectra are constructed. We draw two important conclusions: (a) the response of a class of rocking oscillators with curved base extensions is equivalent to the response of a flat-base rocking oscillators of the same slenderness, yet larger size; (b) the rotation demand on two negative stiffness rocking and rolling oscillators with the same uplifting acceleration and the same size is roughly the same as long as the rocking oscillators are not close to overturning. The above findings can serve as a basis for the rational seismic design of structures supported on rocking columns with curved bases, a system that has been used since the 1960s.  相似文献   

3.
This paper characterizes the ability of natural ground motions to induce rocking demands on rigid structures. In particular, focusing on rocking blocks of different size and slenderness subjected to a large number of historic earthquake records, the study unveils the predominant importance of the strong‐motion duration to rocking amplification (ie, peak rocking response without overturning). It proposes original dimensionless intensity measures (IMs), which capture the total duration (or total impulse accordingly) of the time intervals during which the ground motion is capable of triggering rocking motion. The results show that the proposed duration‐based IMs outperform all other examined (intensity, frequency, duration, and/or energy‐based) scalar IMs in terms of both “efficiency” and “sufficiency.” Further, the pertinent probabilistic seismic demand models offer a prediction of the peak rocking demand, which is adequately “universal” and of satisfactory accuracy. Lastly, the analysis shows that an IM that “efficiently” captures rocking amplification is not necessarily an “efficient” IM for predicting rocking overturning, which is dominated by the velocity characteristics (eg, peak velocity) of the ground motion.  相似文献   

4.
The capacity of a gravity structure to counter seismically induced overturning can only be estimated with good accuracy using a dynamic analysis of the rotational (rocking) motion involving large displacement theory. Seismic assessment employing quasi‐static analysis can be overly conservative if the reserve capacity of this type of rocking structure to displace without overturning is not taken into account. It was revealed through dynamic testing on a shaking table that the overturning hazards of ground shaking are best represented by the peak displacement demand (PDD) parameter and that the vulnerability to overturning instability decreases with the increasing size of the object when the aspect ratio is held constant. This finding has important implications on the engineering of structures for countering moderate ground shaking in regions of low and moderate seismicity. Experimental data were validated and supplemented by computer simulations that involved generating artificial accelerograms of designated earthquake scenarios and non‐linear time‐history analyses of the overturning motions. Based on these simulations, fragility curves were constructed for estimating the probability of overturning for given levels of PDD and for different specimen dimensions. An expression was developed for estimating the level of PDD required to overturn rectangular objects of given dimensions for 5% probability of exceedance. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
A new finite element model to analyze the seismic response of deformable rocking bodies and rocking structures is presented. The model comprises a set of beam elements to represent the rocking body and zero‐length fiber cross‐section elements at the ends of the rocking body to represent the rocking surfaces. The energy dissipation during rocking motion is modeled using a Hilber–Hughes–Taylor numerically dissipative time step integration scheme. The model is verified through correct prediction of the horizontal and vertical displacements of a rigid rocking block and validated against the analytical Housner model solution for the rocking response of rigid bodies subjected to ground motion excitation. The proposed model is augmented by a dissipative model of the ground under the rocking surface to facilitate modeling of the rocking response of deformable bodies and structures. The augmented model is used to compute the overturning and uplift rocking response spectra for a deformable rocking frame structure to symmetric and anti‐symmetric Ricker pulse ground motion excitation. It is found that the deformability of the columns of a rocking frame does not jeopardize its stability under Ricker pulse ground motion excitation. In fact, there are cases where a deformable rocking frame is more stable than its rigid counterpart. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
The rocking response of a rigid, freestanding block in two dimensions typically assumes perfect contact at the base of the block with instantaneous impacts at two distinct, symmetric rocking points. This paper extends the classical two‐dimensional rocking model to account for an arbitrary number of rocking points at the base representing geometric interface defects. The equations of motion of this modified rocking system are derived and presented in general terms. Energy dissipation is modeled assuming instantaneous point impacts, yielding a discrete angular velocity adjustment. Whereas this factor is always less than unity in the classical model, it is possible for this factor to exceed unity in the presented model, yielding a finite increase in the angular velocity at impact and a markedly different rotational response than the classical model predicts. The derived model and the classical model are numerically integrated and compared to the results of recent shake table tests. These comparisons show that the new model significantly enhances agreement in both peak angular displacement and motion decay. The equations of motion and the energy dissipation of the presented model are further investigated parametrically considering the size of the defect, the number of rocking points, and the aspect ratio and size of the block.  相似文献   

7.
The rocking response of large flexible structures to earthquakes   总被引:1,自引:0,他引:1  
The rocking response of structures subjected to strong ground motions is a problem of ‘several scales’. While small structures are sensitive to acceleration pulses acting successively, large structures are more significantly affected by coherent low frequency components of ground motion. As a result, the rocking response of large structures is more stable and orderly, allowing effective isolation from the ground without imminent danger of overturning. This paper aims to characterize and predict the maximum rocking response of large and flexible structures to earthquakes using an idealized structural model. To achieve this, the maximum rocking demand caused by different earthquake records was evaluated using several ground motion intensity measures. Pulse-type records which typically have high peak ground velocity and lower frequency content caused large rocking amplitudes, whereas non-pulse type records caused random rocking motion confined to small rocking amplitudes. Coherent velocity pulses were therefore identified as the primary cause of significant rocking motion. Using a suite of pulse-type ground motions, it was observed that idealized wavelets fitted to velocity pulses can adequately describe the rocking response of large structures. Further, a parametric analysis demonstrates that pulse shape parameters affect the maximum rocking response significantly. Based on these two findings, a probabilistic analysis method is proposed for estimating the maximum rocking demand to pulse-type earthquakes. The dimensionless demand maps, produced using these methods, have predictive power in the near-field provided that pulse period and amplitude can be estimated a priori. Use of this method within a probabilistic seismic demand analysis framework is briefly discussed.  相似文献   

8.
Results obtained for rigid structures suggest that rocking can be used as seismic response modification strategy. However, actual structures are not rigid: structural elements where rocking is expected to occur are often slender and flexible. Modeling of the rocking motion and impact of flexible bodies is a challenging task. A non‐linear elastic viscously damped zero‐length spring rocking model, directly usable in conventional finite element software, is presented in this paper. The flexible rocking body is modeled using a conventional beam‐column element with distributed masses. This model is verified by comparing its pulse excitation response to the corresponding analytical solution and validated by overturning analysis of rocking blocks subjected to a recorded ground motion excitation. The rigid rocking block model provides a good approximation of the seismic response of solitary flexible columns designed to uplift when excited by pulse‐like ground motions. Guidance for development of rocking column models in ordinary finite element software is provided. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
Vertically oriented objects, such as tombstones, monuments, columns, and stone lanterns, are often observed to shift and rotate during earthquake ground motion. Such observations are usually limited to the mesoseismal zone. Whether near-field rotational ground motion components are necessary in addition to pure translational movements to explain the observed rotations is an open question. We summarize rotation data from seven earthquakes between 1925 and 2009 and perform analog and numeric rotation testing with vertically oriented objects. The free-rocking motion of a marble block on a sliding table is disturbed by a pulse in the direction orthogonal to the rocking motion. When the impulse is sufficiently strong and occurs at the ‘right’ moment, it induces significant rotation of the block. Numeric experiments of a free-rocking block show that the initiation of vertical block rotation by a cycloidal acceleration pulse applied orthogonal to the rocking axis depends on the amplitude of the pulse and its phase relation to the rocking cycle. Rotation occurs when the pulse acceleration exceeds the threshold necessary to provoke rocking of a resting block, and the rocking block approaches its equilibrium position. Experiments with blocks subjected to full 3D strong motion signals measured during the 2009 L’Aquila earthquake confirm the observations from the tests with analytic ground motions. Significant differences in the rotational behavior of a monolithic block and two stacked blocks exist.  相似文献   

10.
In order to use rocking as a seismic response modification strategy along both directions of seismic excitation, a three‐dimensional (3D) rocking model should be developed. Since stepping or rolling rocking structural members out of their initial position is not a desirable performance, a rocking design should not involve these modes of motion. To this end, a model that takes the aforementioned constraint into account needs to be developed. This paper examines the 3D motion of a bounded rigid cylinder that is allowed to uplift and sustain rocking and wobbling (unsteady rolling) motion without sliding or rolling out of its initial position (i.e., a 3D inverted pendulum). Thus, the cylinder is constrained to zero residual displacement at the end of its 3D motion. This 3D dynamic model of the rocking rigid cylinder has two DOFs (three when damping is included), making it the simplest 3D extension of Housner's classical two‐dimensional (2D) rocking model. The development of models with and without damping is presented first. They are simple enough to perform extensive parametric analyses. Modes of motion of the cylinder are identified and presented. Then, 3D rocking and wobbling earthquake response spectra are constructed and compared with the classical 2D rocking earthquake response spectra. The 3D bounded rocking earthquake response spectra for the ground motions considered seem to have a very simple linear form. Finally, it is shown that the use of a 2D rocking model may lead to unacceptably unconservative estimates of the 3D rocking and wobbling seismic response. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

11.
Predicting the rocking response of structures to ground motion is important for assessment of existing structures, which may be vulnerable to uplift and overturning, as well as for designs which employ rocking as a means of seismic isolation. However, the majority of studies utilize a single rocking block to characterize rocking motion. In this paper, a methodology is proposed to derive equivalence between the single rocking block and various rocking mechanisms, yielding a set of fundamental rocking parameters. Specific structures that have exact dynamic equivalence with a single rocking block, are first reviewed. Subsequently, approximate equivalence between single and multiple block mechanisms is achieved through local linearization of the relevant equations of motion. The approximation error associated with linearization is quantified for three essential mechanisms, providing a measure of the confidence with which the proposed methodology can be applied. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
This paper deals with the dynamic response of free-standing statues on the top surface of slender elastically supported cantilevers subjected to horizontal ground motion. Given that there is no link between the base of the statue and the top surface of the monolithic cantilever the statue is in equilibrium in the vertical direction under its own weight. Attention is focused on the determination of the minimum amplitude ground acceleration which leads to the rocking (overturning) instability of the statue whose mass and rotatory inertia are a priory known. It is assumed that the friction between the base of the statue and the top surface of the cantilever is sufficiently large to prevent sliding so that rocking prevails. After simulating the statue by a rigid block freely supported on the top surface of the elastically restrained monolithic cantilever, a theoretical dynamic analysis of the cantilever–rigid block system under horizontal ground motion is comprehensively presented. Two modes of overturning instability of the free standing rigid block are discussed: instability without or with impact. Criteria for overturning instability of the rigid block associated with the minimum amplitude ground acceleration which leads through the vanishing of the angular velocity to an escaped motion in the phase-plane portrait, are properly assessed.  相似文献   

13.
This paper experimentally investigates the application of damage avoidance design (DAD) philosophy to moment‐resisting frames with particular emphasis on detailing of rocking interfaces. An 80% scale three‐dimensional rocking beam–column joint sub‐assembly designed and detailed based on damage avoidance principles is constructed and tested. Incremental dynamic analysis is used for selecting ground motion records to be applied to the sub‐assembly for conducting a multi‐level seismic performance assessment (MSPA). Analyses are conducted to obtain displacement demands due to the selected near‐ and medium‐field ground motions that represent different levels of seismic hazard. Thus, predicted displacement time histories are applied to the sub‐assembly for conducting quasi‐earthquake displacement tests. The sub‐assembly performed well reaching drifts up to 4.7% with only minor spalling occurring at rocking beam interfaces and minor flexural cracks in beams. Yielding of post‐tensioning threaded bars occurred, but the sub‐assembly did not collapse. The externally attached energy dissipators provided large hysteretic dissipation during large drift cycles. The sub‐assembly satisfied all three seismic performance requirements, thereby verifying the superior performance of the DAD philosophy. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
Some spread footing foundations from real retrofitting practices in Taiwan were extended to be uneconomically large due to the restriction of foundation uplift regulated in the design code. Although rocking mode of spread footings induced from foundation uplift is not favorable in current design code, recent studies have shown that the rocking of a spread footing may have a beneficial effect on the dynamic performance of piers by reducing the earthquake forces that can be transmitted to the pier base. This implies that the plastic deformation that occurs at the pier's plastic zone can be decreased and as a result the ductility demand of piers can possibly be reduced. In order to gain a better understanding of the structural behavior related to rocking and to clarify that if the widening and strengthening of the foundations to limit the rocking mechanism of spread footing is necessary for the retrofitting work, a series of preliminary rocking experiments were performed. A total of three circular reinforced concrete columns with spread footing foundations were tested. Using pseudo‐dynamic tests and a cyclic loading test, these columns were subjected to different levels of earthquake accelerations, including a near field ground motion. The results of the tests and the rocking behavior of the footings are discussed in this paper. From the benchmark test, the difference between the response behavior of a rocking base and a fixed base foundation was highlighted. By comparing the experimental responses of the retrofitted column with the responses of the original one, the effect of the rocking mechanism on the ductility demand and strength demand of the columns was also identified. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
A rocking podium structure is a class of structures consisting of a superstructure placed on top of a rigid slab supported by free‐standing columns. The free‐standing columns respond to sufficiently strong ground motion excitation by uplifting and rocking. Uplift works as a mechanical fuse that limits the forces transmitted to the superstructure, while rocking enables large lateral displacements. Such ‘soft‐story’ system runs counter to the modern seismic design philosophy but has been used to construct several hundred buildings in countries of the former USSR following Polyakov's rule‐of‐thumb guidelines: (i) that the superstructure behave as a rigid body and (ii) that the maximum lateral displacement of the rocking podium frame be estimated using elastic earthquake displacement response spectra. The objectives of this paper are to present a dynamic model for analysis of the in‐plane seismic response of rocking podium structures and to investigate if Polyakov's rule‐of‐thumb guidelines are adequate for the design of such structures. Examination of the rocking podium structure response to analytical pulse and recorded ground motion excitations shows that the rocking podium structures are stable and that Polyakov's rule‐of‐thumb guidelines produce generally conservative designs. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

16.
Linear and non-linear responses of a two-story structural model excited by near-source fault-normal pulse and fault-parallel displacement are investigated. For the considered linear system, the multi-component differential-motion effects amplify the first-story drifts 3.0–4.0 times relative to the excitation by synchronous horizontal ground motion only. The contribution of horizontal differential ground motion to the total drift is about two thirds, and the contribution of vertical and rocking differential ground motions is about one third. For the considered nonlinear system, the effects of vertical and rocking differential ground motions become more significant for the second-story drifts. The horizontal differential ground motion amplifies the first-story drifts, but the simultaneous action of horizontal, vertical, and rocking differential ground motions can amplify the first- and second-story drifts by more than 2.0 times relative to the drifts computed for uniform horizontal ground motion only.  相似文献   

17.
18.
This paper is concerned with the superficial similarities and fundamental differences between the oscillatory response of a single‐degree‐of‐freedom (SDOF) oscillator (regular pendulum) and the rocking response of a slender rigid block (inverted pendulum). The study examines the distinct characteristics of the rocking spectrum and compares the observed trends with those of the response spectrum. It is shown that the rocking spectrum reflects kinematic characteristics of the ground motions that are not identifiable by the response spectrum. The paper investigates systematically the fundamental differences in the dynamical structure of the two systems of interest and concludes that rocking structures cannot be replaced by ‘equivalent’ SDOF oscillators. The study proceeds by examining the validity of a simple, approximate design methodology, initially proposed in the late 1970s and now recommended in design guidelines to compute rotations of slender structures by performing iteration either on the true displacement response spectrum or design spectrum. This paper shows that the simple design approach is inherently flawed and should be abandoned, in particular for smaller, less‐slender blocks. The study concludes that the exact rocking spectrum emerges as a distinct intensity measure of ground motions. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

19.
The classical problem of rocking of a rigid, free-standing block to earthquake ground shaking containing distinct pulses, as is the case of near-fault earthquake motions, is revisited. A rectangular block resting on a rigid base is considered, subjected to a range of idealized single-lobe ground acceleration pulses expressed by a generalized function controlled by a single shape parameter. The problem is treated analytically in the realm of the linearized equations of motion under the assumption of slender block geometry and rocking without slipping. Peak rocking response and overturning criteria for different waveforms are presented in terms of dimensionless closed-form expressions and graphs. Two parameters are employed to this end: dimensionless pulse duration f (i.e., actual pulse duration times characteristic block frequency) and dimensionless uplift strength η (i.e., ratio of minimum required acceleration for initiation of uplift over peak pulse acceleration). The linearized response is compared analytically with the fully non-linear one using an ad hoc energy formulation leading to an approximate closed-form solution. It is shown that the non-linear equations of motion yield more stable response than their linearized counterparts. A brief discussion on scaling laws is provided.  相似文献   

20.
Prediction of displacement demand to assess seismic performance of structures is a necessary step where nonlinear static procedures are followed. While such predictions have been well established in literature for fixed-base structures, fewer bodies of researches have been carried out on the effect of rocking and uplifting of shallow foundations supported by soil, on such prediction. This paper aimed to investigate the effect of soil structure interaction on displacement amplification factor C1 using the beam on nonlinear Winkler foundation concept. A practical range of natural period, force reduction factors, and wide range of anticipated behavior from rocking, uplifting and hinging are considered and using thousands nonlinear time history analysis, displacement amplification factors are evaluated. The results indicate that the suggested equations in current rehabilitation documents underestimate displacement demands in the presence of foundation rocking and uplift. Finally, using regression analyses, new equations are proposed to estimate mean values of C1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号