首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A series of airborne topographic LiDAR data were obtained from May 2008 to January 2014 over two coastal sites of northern France (Bay of Wissant and east of Dunkirk). These data were used with wind and tide gauge measurements to assess the impacts of storms on beaches and coastal dunes, and particularly of the series of major storms that hit western Europe during the fall and early winter of 2013. Our results show a high variability in shoreline response from one site to the other, but also within each coastal site. Coastal dune erosion and shoreline retreat occurred at both sites, particularly on the coast of the Bay of Wissant where shoreline retreat up to about 40 m was measured. However, stability or even shoreline advance were also observed despite the occurrence of an extreme water level with a return period >100 years during the storm Xaver in early December 2013. Comparison of shoreline change with variations of coastal dune and upper beach volumes revealed only weak relationships. Our results nevertheless showed that shoreline behavior seems to strongly depend on the initial sediment volume on the upper beach before the occurrence of the storms. According to our measurements, an upper beach volume of about 30 m3 m?1 between the dune toe and the mean high water level is sufficient at these sites to protect the coastal dunes from storm waves associated with high water levels with return periods >10 years. The identification of such thresholds in terms of upper beach width or sediment volume may represent valuable information for improving the management of shoreline change by providing an estimate of the minimum quantity of sand on the upper beach necessary to ensure shoreline stability in this region. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
This study investigates the recovery capabilities of a single-barred beach in the Pacific Mexican coast before and after the 2015–2016 El Niño winter. Concurrent hydrodynamic and morphological data collected over a 3-year period (August 2014–2017) were analysed to determine the subaerial-subtidal volumetric exchange and cross-shore subtidal sandbar migrations, in relation to the incident wave forcing. The beach presented a seasonal seaward and landward sandbar migration cycle. The sandbar migrated offshore during the energetic waves between November and February, and onshore during the milder wave period in spring, until welding to the subaerial beach around May. The transfer of sediment towards the subaerial section continued over the summer, reaching a complete recovery by September/October. Prior to El Niño, the subaerial beach successfully recovered by the end of summer 2015 through the landward sandbar migration process. The 2015–2016 energetic winter waves caused a subaerial volume loss of ~ 140 m3 m?1 (from October 2015 to March 2016), more than twice the amount eroded in the other winters, and the sandbar moved further offshore and to deeper depths (3–4 m) than the winter before. In addition, the energetic 2015–2016 winter waves lasted for 2 months longer than in other years, making the 2016 spring shorter. Consequently, during the onshore migration, the sandbar was unable of reaching shallow depths, and a large portion of sand remained in the subtidal beach. The subaerial beach recovered 60 and 65% of the loss in the 2016 and 2017 summers, respectively. It is concluded that the landward migration process of the sandbar during the spring is critical to ensure a full subaerial beach recovery over the mild wave period in summer. The recovery capabilities of the subaerial beach will depend on the cross-shore distance and depth where the sandbar is located, and on the duration of mild wave conditions required for the sandbar to migrate onshore.  相似文献   

3.
4.
The eruption of Volcán Bárcena in 1952 covered Isla San Benedicto with trachytic tephra, except for the nearly vertical sea cliffs. Pluvial erosion on land generally was more important than colian deflation after mid-September 1952. Wave erosion, primarily occurring during summer storms, affected the island’s new shoreline that had built 900 ft. (274 m) seward by tephra fall-out and an additional 2160 ft. (658 m) by lava flowing into the sea in 1952–53. Photogrammetric study of photographs taken on 13 flights to the island showed that in the fall of 1952 wave erosion of the tephra sea cliff east of Bárcena occurred at an average rate of 5.5 ft. (1.7 m) per day. About 25×106 ft.3 (0.71×106 m3) of tephra were eroded during the initial 40-day period after formation of the volcano. This represents an average erosion rate of 625,000 ft.3 (17,700 m3) per day. Waves croded the seaward side of the lava flow by 60 ft. (18 m) during the 158-day period in 1953, representing an average daily rate of 0.4 ft. (0.12 m). Relatively little erosion occurred after 1953. The volcanic ash and lapilli beach north of the flow showed seasonal cut and fill, while the beach to the west was little affected by seasonal changes because of the prevailing direction of wave attack.  相似文献   

5.
Sediment transport and short‐term morphologic change were evaluated at a site where sand fences are deployed and the beach is raked (Managed Site) and a site where these human adjustments are not practiced (Unmanaged Site). Data were gathered across the seaward portion of a low foredune when winds blew nearly shore‐normal at mean speeds 8.9 to 9.3 m s‐1. Data from traps revealed sediment transport rates at unvegetated portions of the foredune crest (40.2 to 43.5 kg m‐1 h‐1) were greater than on the backshore (4.9 to 11.2 kg m‐1 h‐1) due to onshore decreases in surface moisture and speed‐up of the wind passing over the foredune. Data from erosion pins indicate sediment input to the dune was 1.48 m3 m‐1 alongshore at the Managed Site and 1.25 m3 m‐1 at the Unmanaged Site. The Unmanaged Site had deposition at the dune toe, erosion at mid‐slope, and deposition at the crest. Deposition occurred at mid‐slope on the Managed Site near a partially buried (0.58 m high) fence with a porosity of about 65%. Deposition at partially buried wrack on the upper backshore and dune toe at the Unmanaged Site was about twice as great as deposition in this zone at the Managed Site. Results indicate that: (1) the seaward slope of the foredune can be a more important source of sand to the lee of the crest than the beach; (2) wrack near the toe can decrease transport into the foredune; (3) a scour zone can occur on the foredune slope above the wrack line; (4) a fence placed in this location can promote deposition and offset scour, but fences can restrict delivery of sediment farther inland. Evaluation of alternative configurations of fences and strategies for managing wrack is required to better determine the ways that humans modify foredunes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
Low altitude flights by a micro‐drone were made in 2012 and 2013 over two boulder beaches in north‐western Spain. Geographical information system software was used to map the data. Boulder outlines from the first flight were recorded on 4796 clasts at Laxe Brava and 2508 clasts at Oia. Changes in location were identified by overlaying these outlines on the 2013 images. About 17.5% of the boulders (mean surface area 0.32 m2) moved at Laxe Brava and about 53% (mean surface area 0.23 m2) at Oia. Most movement on both beaches was between the mid‐tide to about 2 m above the high tidal level. The location and elevation of the highest points were also recorded on the 2012 images on 4093 boulders at Laxe Brava and 3324 boulders at Oia. These elevations were compared with the elevations at the same locations in 2013. The occurrence and scale of the elevational changes were generally consistent with changes in the boulder outlines. The study confirmed that boulder beaches can be cheaply and effectively monitored using high resolution, micro‐drone technology. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
Sand spits with distal hooks have been well documented from coasts with low to moderate tidal ranges, unlike high tidal-range environments. Datasets from 15 LiDAR and 3 UAV surveys between 2009 and 2019 on the Agon spit in Normandy (France), a setting with one of the largest tidal ranges in the world (mean spring tidal range: 11 m), combined with in-situ hydrodynamic records between 2013 and 2017, highlight a three-stage pattern of spit hook evolution. Stage 1 (2009–2013) commenced with the onshore migration and attachment of a swash bar, followed by persistent spit accretion updrift of the bar and erosion downdrift because of the slow speed of bar migration in this large tidal-range environment. In stage 2 (2013–2016), three overwash events and a 220 m-wide breach culminating in the total destruction of the spit during winter 2015–2016 involved the landward mobilization of thousands of cubic metres of sand. These events occurred during short durations (a few hours) when spring high tides coincided with relatively energetic waves, underscoring the importance of storms in rapid spit morphological change. Strong spring tidal currents maintained the breach. Stage 3 (2016–2019) has involved new hook construction through welding of a swash bar and spit longshore extension, highlighting the resilience of the spit over the 10-year period, and involving a positive sediment balance of 244 000 m3. The three stages bring out, by virtue of the temporal density of LiDAR and UAV data used, a high detail of spit evolution relative to earlier studies in this macrotidal setting. The large tidal range strongly modulates the role of waves and wave-generated longshore currents, the main process drivers of spit evolution, by favouring long periods of inertia in the course of the spring–neap tidal cycle, but also brief episodes of significant morphological change when storm waves coincide with spring high tides. © 2020 John Wiley & Sons, Ltd.  相似文献   

8.
After wildfire, hillslope and channel erosion produce large amounts of sediment and can contribute significantly to long-term erosion rates. However, pre-erosion high-resolution topographic data (e.g. lidar) is often not available and determining specific contributions from post-fire hillslope and channel erosion is challenging. The impact of post-fire erosion on landscape evolution is demonstrated with Structure from Motion (SfM) Multi-View Stereo (MVS) photogrammetry in a 1 km2 Idaho Batholith catchment burned in the 2016 Pioneer Fire. We use SfM-MVS to quantify post-fire erosion without detailed pre-erosion topography and hillslope transects to improve estimates of rill erosion at adequate spatial scales. Widespread rilling and channel erosion produced a runoff-generated debris-flow following modest precipitation in October 2016. We implemented unmanned aerial vehicle (UAV)-based SfM-MVS to derive a 5 cm resolution digital elevation model (DEM) of the channel scoured by debris-flow. In the absence of cm-resolution pre-erosion topography, a synthetic surface was defined by the debris-flow scour's geomorphic signature and we used a DEM of Difference (DoD) to map and quantify channel erosion. We found 3467 ± 422 m3 was eroded by debris-flow scour. Rill dimensions along hillslope transects and Monte Carlo simulation show rilling eroded ~1100 m3 of sediment and define a volume uncertainty of 29%. The total eroded volume (4600 ± 740 m3) we measured in our study catchment is partitioned into 75% channel erosion and 25% rill erosion, reinforcing the importance of catchment size on erosion process-dominance. The deposit volume from the 2016 event was 5700 ± 1140 m3, indicating ~60% contribution from post-fire channel erosion. Dating of charcoal fragments preserved in stratigraphy at the catchment outlet, and reconstructions of prior deposit volumes provide a record of Holocene fire-related debris-flows at this site; results suggest that episodic wildfire-driven erosion (~6 mm/year) dominate millennial-scale erosion (~5 mm/Ka) at this site. © 2019 John Wiley & Sons, Ltd. © 2019 John Wiley & Sons, Ltd.  相似文献   

9.
Erosion of hard‐rock coastal cliffs is understood to be caused by a combination of both marine and sub‐aerial processes. Beach morphology, tidal elevation and significant wave heights, especially under extreme storm conditions, can lead to variability in wave energy flux to the cliff‐toe. Wave and water level measurements in the nearshore under energetic conditions are difficult to obtain and in situ observations are rare. Here we use monthly cliff‐face volume changes detected using terrestrial laser scanning alongside beach morphological changes and modelled nearshore hydrodynamics to examine how exposed cliffs respond to changes in extreme wave conditions and beach morphology. The measurements cover the North Atlantic storms of 2013 to 2014 and consider two exposed stretches of coastline (Porthleven and Godrevy, UK) with contrasting beach morphology fronting the cliffs; a flat dissipative sandy beach at Godrevy and a steep reflective gravel beach at Porthleven. Beach slope and the elevation of the beach–cliff junction were found to influence the frequency of cliff inundation and the power of wave–cliff impacts. Numerical modelling (XBeach‐G) showed that under highly energetic wave conditions, i.e. those that occurred in the North Atlantic during winter 2013–2014, with Hs = 5.5 m (dissipative site) and 8 m (reflective site), the combination of greater wave height and steeper beach at the reflective site led to amplified wave run‐up, subjecting these cliffs to waves over four times as powerful as those impacting the cliffs at the dissipative site (39 kWm‐1 compared with 9 kWm‐1). This study highlighted the sensitivity of cliff erosion to extreme wave conditions, where the majority (over 90% of the annual value) of cliff‐face erosion ensued during the winter. The significance of these short‐term erosion rates in the context of long‐term retreat illustrates the importance of incorporating short‐term beach and wave dynamics into geomorphological studies of coastal cliff change. © 2017 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

10.
11.
The 1999 jökulhlaup at Sólheimajökull was the first major flood to be routed through the proglacial system in over 600 years. This study reconstructed the flood using hydrodynamic, sediment transport and morphodynamic numerical modelling informed by field surveys, aerial photograph and digital elevation model analysis. Total modelled sediment transport was 469 800 m3 (+/‐ 20%). Maximum erosion of 8.2 m occurred along the ice margin. Modelled net landscape change was –86 400 m3 (+/‐ 40%) resulting from –275 400 m3 (+/‐ 20%) proglacial erosion and 194 400 m3 (+/‐ 20%) proglacial deposition. Peak erosion rate and peak deposition rate were 650 m3 s‐1 (+/‐ 20%) and 595 m3 s‐1 (+/‐ 20%), respectively, and coincided with peak discharge of water at 1.5 h after flood initiation. The pattern of bed elevation change during the rising limb suggested widespread activation of the bed, whereas more organisation, perhaps primitive bedform development, occurred during the falling limb. Contrary to simplistic conceptual models, deposition occurred on the rising stage and erosion occurred on the falling limb. Comparison of the morphodynamic results with a hydrodynamic simulation illustrated effects of sediment transport and bed elevation change on flow conveyance. The morphodynamic model advanced flood arrival and peak discharge timings by 100% and 19%, respectively. However, peak flow depth and peak flow velocity were not significantly affected. We suggest that morphodynamic processes not only increase flow mass and momentum but that they also introduce a feedback process whereby flood conveyance becomes more efficient via erosion of minor bed protrusions and deposition that infills or subdues minor bed hollows. A major implication of this study is that reconstructions of outburst floods that ignore sediment transport, such as those used in interpretation of long‐term hydrological record and flood risk assessments, may need considerable refinement. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
云南阳宗海大气氮、磷沉降特征   总被引:1,自引:0,他引:1  
大气氮、磷沉降是湖泊水体氮、磷入湖的重要途径之一.为了解阳宗海氮、磷沉降对湖泊富营养化的潜在影响,于2012年5月-2014年4月通过监测阳宗海大气氮、磷沉降,估算氮、磷的大气沉降通量,揭示阳宗海大气氮、磷沉降随时间变化的特征,分析其来源、影响因素等.由于阳宗海是磷限制湖泊,本研究在估算大气氮、磷沉降通量的基础上,特别比较了大气磷沉降入湖量与非点源磷的入湖量,以此评估大气沉降输入磷对湖泊富营养化的潜在影响.研究结果表明:阳宗海总氮年平均沉降通量为248 mg/m~2,春、夏、秋和冬季平均分别为200、306、274和214 mg/m~2,其中夏季沉降通量最大,原因与降雨量增加有关;总磷年平均沉降通量为24 mg/m~2,春、夏、秋和冬季平均分别为18、31、19和27 mg/m~2.大气磷沉降与输入阳宗海的总磷量相比很小,对阳宗海富营养化影响较小.  相似文献   

13.
Concentrated erosion, a major feature of land degradation, represents a serious problem for soil and water resources management and a threat to ecosystems. Understanding the internal mechanisms (de-)coupling sediment pathways can improve the management and resilience of catchments. In this study, concentrated erosion and deposition forms were mapped accurately through field and aerial unmanned aerial vehicle (UAV) campaigns, in order to assess the evolution of connectivity pathways over a series of three contrasted and consecutive flood events occurring between October 2016 and January 2017 (return period ranging from 0.5 to 25 years) in a small Mediterranean agricultural catchment (Can Revull, Mallorca, Spain; 1.4 km2). In addition, a morphometric index of connectivity (IC) was used to identify the potential trajectories of different concentrated erosion forms and deposition areas. IC predictions were calibrated by identifying the optimal critical thresholds, i.e. those most consistent with field observations after each of the events studied. The results found that the index performed well in predicting the occurrence and the length/area of the different type of landforms, giving kappa (κ) coefficients of variation ranging between 0.21 and 0.92 and linear correlations R2 between 0.33 and 0.72. The type of landform affected the correspondence of IC predictions and field observations, with lower thresholds the greater the magnitude of their associated geomorphic processes. Rainfall magnitude proved to be a very important factor controlling the development of erosion and deposition landforms, with large differences in length/area between the contrasted events. The evolution of the observed trajectories revealed feedback dynamics between the structural and functional connectivity of the catchment, in which morphological changes determined the spatial distribution of the processes’ activity in the successive events and vice versa. © 2020 John Wiley & Sons, Ltd.  相似文献   

14.
Increases in the frequency and magnitude of extreme water levels and storm surges are correlated with known indices of climatic variability (CV), including the El Niño Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO), along some areas of the British Columbia coast. Since a shift to a positive PDO regime in 1977, the effects of ENSO events have been more frequent, persistent, and intense. Teleconnected impacts include more frequent storms, higher surges, and enhanced coastal erosion. The response of oceanographic forcing mechanisms (i.e. tide, surge, wave height, wave period) to CV events and their role in coastal erosion remain unclear, particularly in western Canada. As a first step in exploring the interactions between ocean–atmosphere forcing and beach–dune responses, this paper assembles the historic erosive total water level (TWL) regime and explores relations with observed high magnitude storms that have occurred in the Tofino‐Ucluelet region (Wickaninnish Bay) on the west coast of Vancouver Island, British Columbia, Canada. Extreme events where TWL exceeded an erosional threshold (i.e. elevation of the beach–foredune junction) of 5·5 m aCD are examined to identify dominant forcing mechanisms and to classify a regime that describes erosive events driven principally by wave conditions (61·5%), followed by surge (21·8%), and tidal (16·7%) effects. Furthermore, teleconnections between regional CV phenomena, extreme storm events and, by association, coastal erosion, are explored. Despite regional sea level rise (eustatic and steric), rapid crustal uplift rates have resulted in a falling relative sea level and, in some sedimentary systems, shoreline progradation at rates approaching +1·5 m a–1 over recent decades. Foredune erosion occurs locally with a recurrence interval of approximately 1·53 years followed by rapid rebuilding due to high onshore sand supply and often in the presence of large woody debris and rapidly colonizing vegetation in the backshore. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
This paper documents application of an established geostatistical methodology to detect significant changes in a foredune–transgressive dune complex where Parks Canada Agency (PCA) implemented a dynamic restoration program to remove invasive marram grasses (Ammophila spp.) and enhance dynamic dune habitat for an endangered species. Detailed topographic surveys of a 10 320 m2 site in the Wickaninnish Dunes in Pacific Rim National Park, British Columbia, Canada for the first year post‐treatment are compared to a pre‐restoration LiDAR baseline survey. The method incorporates inherent spatial structure in measured elevation datasets at the sub‐landscape scale and models statistically significant change surfaces within distinct, linked geomorphic units (beach, foredune, transgressive dune complex). Seasonal and annual responses within the complex are discussed and interpreted. All geomorphic units experienced positive sediment budgets following restoration treatment. The beach experienced the highest differential volumetric change (+1656 m3) and net sediment influx (+834 m3, 0 · 19 m3 m–2) mostly from supply to the supratidal beach and incipient dune. This sediment influx occurred independent of the restoration effort and was available as a buffer against wave erosion and as supply to the landward dunes. The foredune received +200 m3 (0 · 13 m3 m‐2) and its seaward profile returned to a similar pre‐restoration form following erosion at the crest from vegetation removal and scarping by high water events. Sediment bypassing and minimal change was evident at the mid‐stoss slope with appreciable extension of depositional lobes in the lee. The transgressive dune complex experienced high accretion following restoration activity (+201 m3) and over the year (+284 m3, 0 · 07 m3 m–2) mostly from depositional lobes from the foredune, precipitation ridge growth along the downwind boundary, and growth of existing lobes within the complex. Further integration of this methodology to detect significant geomorphic changes is recommended, particularly for applications where sampling densities are limited or logistically defined. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
The 20 May 2016 MW 6.1 Petermann earthquake in central Australia generated a 21 km surface rupture with 0.1 to 1 m vertical displacements across a low-relief landscape. No paleo-scarps or potentially analogous topographic features are evident in pre-earthquake Worldview-1 and Worldview-2 satellite data. Two excavations across the surface rupture expose near-surface fault geometry and mixed aeolian-sheetwash sediment faulted only in the 2016 earthquake. A 10.6 ± 0.4 ka optically stimulated luminescence (OSL) age of sheetwash sediment provides a minimum estimate for the period of quiescence prior to 2016 rupture. Seven cosmogenic beryllium-10 (10Be) bedrock erosion rates are derived for samples < 5 km distance from the surface rupture on the hanging-wall and foot-wall, and three from samples 19 to 50 km from the surface rupture. No distinction is found between fault proximal rates (1.3 ± 0.1 to 2.6 ± 0.2 m Myr−1) and distal samples (1.4 ± 0.1 to 2.3 ± 0.2 m Myr−1). The thickness of rock fragments (2–5 cm) coseismically displaced in the Petermann earthquake perturbs the steady-state bedrock erosion rate by only 1 to 3%, less than the erosion rate uncertainty estimated for each sample (7–12%). Using 10Be erosion rates and scarp height measurements we estimate approximately 0.5 to 1 Myr of differential erosion is required to return to pre-earthquake topography. By inference any pre-2016 fault-related topography likely required a similar time for removal. We conclude that the Petermann earthquake was the first on this fault in the last ca. 0.5–1 Myr. Extrapolating single nuclide erosion rates across this timescale introduces large uncertainties, and we cannot resolve whether 2016 represents the first ever surface rupture on this fault, or a > 1 Myr interseismic period. Either option reinforces the importance of including distributed earthquake sources in fault displacement and seismic hazard analyses.  相似文献   

17.
Upper Klamath Lake (UKL) is the source of the Klamath River that flows through southern Oregon and northern California. The UKL Basin provides water for 81,000+ ha (200,000+ acres) of irrigation on the U.S. Bureau of Reclamation Klamath Project located downstream of the UKL Basin. Irrigated agriculture also occurs along the tributaries to UKL. During 2013–2016, water rights calls resulted in various levels of curtailment of irrigation diversions from the tributaries to UKL. However, information on the extent of curtailment, how much irrigation water was saved, and its impact on the UKL is unknown. In this study, we combined Landsat-based actual evapotranspiration (ETa) data obtained from the Operational Simplified Surface Energy Balance model with gridded precipitation and U.S. Geological Survey station discharge data to evaluate the hydrologic impact of the curtailment program. Analysis was performed for 2004, 2006, 2008–2010 (base years), and 2013–2016 (target years) over irrigated areas above UKL. Our results indicate that the savings from the curtailment program over the June to September time period were highest during 2013 and declined in each of the following years. The total on-field water savings was approximately 60 hm3 in 2013 and 2014, 44 hm3 in 2015, and 32 hm3 in 2016 (1 hm3 = 10,000 m3 or 810.7 ac-ft). The instream water flow changes or extra water available were 92, 68, 45, and 26 hm3, respectively, for 2013, 2014, 2015, and 2016. Highest water savings came from pasture and wetlands. Alfalfa showed the most decline in water use among grain crops. The resulting extra water available from the curtailment contributed to a maximum of 19% of the lake inflows and 50% of the lake volume. The Landsat-based ETa and other remote sensing datasets used in this study can be used to monitor crop water use at the irrigation district scale and to quantify water savings as a result of land-water management changes.  相似文献   

18.
The coast of southeast Africa is dominated by sandy beaches that tend to be confined within log‐spiral or headland‐bound embayments. Investigations using serendipitous air imagery data set have been previously undertaken and conclusions drawn about the stability of the coast. We show that conclusions drawn from this data, with respect to the high water mark (HWM) position are fraught with errors, which include tidal state, pressure regime, beach slope, high‐swell erosion, seasonal and multi‐annual changes. We highlight and discuss these sources of error, together with their magnitudes. The most significant of these are the high‐swell, seasonal and multi‐annual variations. From case studies we show that the seasonal beach rotation and long‐term beach width variation are responsible for tens of metres of unaccounted HWM variation, 30 to 50 m is common, with maximums reaching 60 to 100 m. Overall the southeast African coastline appears to be in a state of long‐term dynamic equilibrium. There is no evidence of any sea‐level rise‐forced transgression in the coastal sediment budget, despite sea‐level rise (SLR). If such a signal is, in fact present, it is lost within the beach width variation. Some southeast African coastal reaches are suffering chronic erosion, but these are related to anthropogenic impacts. The extreme difficulty of placing a HWM, with any temporal validity on this coast precludes the routine use of the Bruun Rule. Although no transgressive signature is found, there is evidence of a decreasing coastal sand budget as a result of anthropogenic or natural climate change, or both. This decrease in the coastal sand volume is likely to result in increased future erosion. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
In the last decade advances in surveying technology have opened up the possibility of representing topography and monitoring surface changes over experimental plots (<10 m2) in high resolution (~103 points m‐1). Yet the representativeness of these small plots is limited. With ‘Structure‐from‐Motion’ (SfM) and ‘Multi‐View Stereo’ (MVS) techniques now becoming part of the geomorphologist's toolkit, there is potential to expand further the scale at which we characterise topography and monitor geomorphic change morphometrically. Moving beyond previous plot‐scale work using Terrestrial Laser Scanning (TLS) surveys, this paper validates robustly a number of SfM‐MVS surveys against total station and extensive TLS data at three nested scales: plots (<30 m2) within a small catchment (4710 m2) within an eroding marl badland landscape (~1 km2). SfM surveys from a number of platforms are evaluated based on: (i) topography; (ii) sub‐grid roughness; and (iii) change‐detection capabilities at an annual scale. Oblique ground‐based images can provide a high‐quality surface equivalent to TLS at the plot scale, but become unreliable over larger areas of complex terrain. Degradation of surface quality with range is observed clearly for SfM models derived from aerial imagery. Recently modelled ‘doming’ effects from the use of vertical imagery are proven empirically as a piloted gyrocopter survey at 50m altitude with convergent off‐nadir imagery provided higher quality data than an Unmanned Aerial Vehicle (UAV) flying at the same height and collecting vertical imagery. For soil erosion monitoring, SfM can provide data comparable with TLS only from small survey ranges (~5 m) and is best limited to survey ranges ~10–20 m. Synthesis of these results with existing validation studies shows a clear degradation of root‐mean squared error (RMSE) with survey range, with a median ratio between RMSE and survey range of 1:639, and highlights the effect of the validation method (e.g. point‐cloud or raster‐based) on the estimated quality. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Abstract

Gully erosion is considered to be one of the most important soil erosion processes in Mediterranean marly environments, but its actual contribution to total soil loss is still under discussion. The objectives of this paper are: (a) to acquire the distributed value of erosion rate in a permanent gully developed on a marly substratum in a Mediterranean environment; and (b) to quantify the key factors responsible for the spatial and temporal differences in erosion rates observed within the gully. A permanent gully located in Cap Bon (northeastern Tunisia) has been intensively and regularly monitored over a 7-year period with electronic survey equipment (total station) to give five field topographic surveys, as well as hydrological measurements at the gully outlet. The net soil loss for the 7-year period comprised a denudation of 51 m3 of sediment on the gully bank slopes, which corresponds to a mean soil loss of 61 m3 ha?1 year?1 or 6.1 mm year?1. Denudation was observed on bed units with a slope gradient greater than 20%, while the remainder showed deposition. By confirming the factors involved in gully evolution, and by refining the statistical link between factors and erosion rates within the gully, the results provide important information to predict gully erosion rates in Mediterranean marly environments.

Editor Z.W. Kundzewicz; Associate editor G. Mahé

Citation El Khalili, A., Raclot, D., Habaieb, H., and Lamachère, J.M., 2013. Factors and processes of permanent gully evolution in a Mediterranean marly environment (Cape Bon, Tunisia). Hydrological Sciences Journal, 58 (7), 1519–1531.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号