首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SIBERIA is a physically based model for the geomorphic evolution of landforms. It is essential that the SIBERIA model be tested or validated against controlled landform development. Previous studies have demonstrated that SIBERIA is able to simulate declining equilibrium landforms and in this paper we examine SIBERIA's ability to simulate landforms as they evolve to their declining equilibrium form. These landscapes are termed transient landforms. Landscapes generated by SIBERIA were compared to those produced by a physical model (experimental model landforms) at stages of evolution. Comparison of the experimental landscapes with the simulated landscapes using total mass, hypsometric curve, width function, cumulative area distribution and area–slope demonstrate that SIBERIA can simulate the experimental model landscape during development (i.e. transient landscapes). Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

2.
Experimentally produced impact craters in limestone targets displayed millimeter-sized shatter cones within crater spallation zones. The craters have been produced by accelerating spherical metal projectiles by means of a light-gas gun. Variation of the impact velocity showed that at about 3 km/s shatter cone formation starts and is reproducible at any higher impact velocities. In most cases the cone apices were pointing in the direction of the impact center. The occurrence of shatter cones directly at the target surface (spallation zones of craters) does not support a theoretical model on shatter cone formation published by Gash (1971).  相似文献   

3.
This study explores the pathways of salt and water movement from the landscape to the stream across major landforms, in dryland areas of south eastern Australia. It was conducted at the Livingstone Creek catchment (43 km2) a sub catchment of the Kyeamba catchment, NSW, Australia. An extensive stream salinity field monitoring network between major landforms was developed and data capture occurred from 2002 to 2004. Additional measurements of surface water isotopes were also taken to independently assess responses observed from the detailed monitoring network and assist in determining the sources of water. Flow and salt mass balances were calculated across four gauging stations for each event. The stream monitoring found patterns of salt delivery to streams were consistent during four monitored stream events. In the hill slope and colluvial fill, lower sloped, meta-sediment landforms, stream salinity responses showed the classical salinity response to an event: an initial increase of salinity at the beginning of an event (due to first flush) which then diminished as a consequence of dilution. The main difference between these landforms was that the colluvial fill lower sloped meta-sediments had sodic, low permeability soils near the stream edge. This lead to (1) less variation in stream salinities during event conditions and (2) during low base flow increases in stream salinity occurred as concentrated salts from the stream banks dissolved. For the flatter, alluvial landforms, the salinity response showed quite a different and contrasting temporal pattern: salinity continued to increase and vary directly with flow during events. For all the landforms, base flow salinity increases as flow diminished after a event although salinity responses were more lagged in the alluvial landform. This different salinity pattern in the alluvial landform is attributed to (1) for event flow, the increased contributions of more saline subsurface lateral flow of soil water from the alluvial landform compared to very fresh direct surface runoff sourced from hillslope landforms upstream and (2) for base flow, seepage of near stream alluvial groundwater through the stream banks that was less saline then the base flow water sourced upstream from the hillslope landforms. The stream water isotope values confirm the above findings by showing that, in the alluvial landforms soil water contributions are important during events and that direct surface runoff with little interaction of soil water occurs from the hill slope landforms during events. Conceptual models describing salt and water movement through the different landforms and under different antecedent catchment wetness conditions are presented. These conceptual models develop our understanding of water and solute (salt) pathways through the landscape to the stream. To date, this is one of the few experimental studies in Australia connecting landscape and stream salinisation.  相似文献   

4.
Using the River Tagliamento, Italy, as an example, we examine the role of self-organisation in the formation and dynamics of vegetated islands in fluvial ecosystems. We consider how various biogeomorphic processes, such as feedbacks between tree growth and sedimentation, influence island self-assembly, as well as the potential influences of island landforms on resource distribution and shifts in ecosystem state. Despite the abundance of island landforms of different sizes and ages in island-braided reaches along the River Tagliamento, island formation is only found within a specific hydrological and sedimentary envelope, and depends upon a delicate balance of biotic-abiotic feedbacks. As a result, island landforms tend to be lost when river functioning is altered by human interventions. We argue that the specific biogeomorphic processes and self-organisation associated with river island dynamics offer an example of biogeomorphic inheritance, in which reciprocal feedbacks between species and geomorphic processes favour engineer species and promote the future development of the landforms. Thus, islands represent extended phenotypes – or external expressions of genetic traits – of key riparian ecosystem engineers. This capacity to modify the physical environment has important implications for landform evolution and riparian biodiversity. In conclusion, we propose several topics that merit investigation to improve our understanding of the biogeomorphology and self-organisation of river island systems.  相似文献   

5.
The variable source area (VSA) concept provides the underlying paradigm for managing phosphorus losses in runoff in the north‐eastern USA. This study sought to elucidate factors controlling runoff along two hillslopes with contrasting soils, including characterizing runoff generation mechanisms and hydrological connectivity. Runoff monitoring plots (2 m × 1 m) were established in various landscape positions. Footslope positions were characterized by the presence of a fragipan that contributed to seasonally perched water tables. In upslope positions without a fragipan, runoff was generated primarily via the infiltration‐excess (IE) mechanism (96% of events) and was largely disconnected from downslope runoff. Roughly 80% of total runoff originated from the north footslope landscape position via saturation‐excess (SE) (46% of events; 62% of runoff) and IE (54% of events; 38% of runoff) mechanisms. Runoff from the north hillslope was substantially greater than the south hillslope despite their proximity, and apparently was a function of the extent of fragipan representation. Results demonstrate the influence of subsurface soil properties (e.g. fragipan) on surface runoff generation in variable source area hydrology settings, which could be useful for improving the accuracy of existing runoff prediction tools. Published in 2009 by John Wiley & Sons, Ltd.  相似文献   

6.
Feedback between hydrogeomorphological processes and riparian plants drives landscape dynamics and vegetation succession in river corridors. We describe the consequences of biogeomorphological feedback on the formation and dynamics of vegetated fluvial landforms based on observations from the channelized Isère River in France. The channel was laterally confined with embankments and mostly straightened. From the beginning of the 1970s to the end of the 1990s, alternate bars were progressively but heavily colonized by vegetation. This context presented an exceptional opportunity to analyse temporal adjustments between fluvial landforms and vegetation succession from bare gravel bars to mature upland forest as the consequence of biogeomorphological interactions. Based on a GIS analysis of aerial photographs (between 1948 and 1996), we show that the spatiotemporal organization of vegetated bars within the river channel observed in 1996 resulted from a bioconstruction and biostabilization effect of vegetation and interactions between bars of varying age, size and mobility. Field measurements in 1996 reflected how a strong positive feedback between sedimentary dynamics and riparian vegetation succession resulted in the construction of the vegetated bars. A highly significant statistical association of geomorphological and vegetation variables (RV of co-inertia analysis = 0.41, p < 0.001) explained 95% of the variability in just one axis, supporting the existence of very strong feedback between geomorphological changes (i.e. the transformation of small bare alternate bars to fluvial landforms covered by mature upland forest, and vegetation succession). Such dynamics reflect the fluvial biogeomorphological successions model, as described by the authors earlier. © 2020 John Wiley & Sons, Ltd.  相似文献   

7.
The ability to continuously monitor the dynamic response of periglacial landforms in a climate change context is of increasing scientific interest. Satellite radar interferometry provides information on surface displacement that can be related to periglacial processes. Here we present a comparison of two‐dimensional (2D) surface displacement rates and geomorphological mapping at periglacial landform and sediment scale from the mountain Nordnesfjellet in northern Norway. Hence, 2D Interferometric Synthetic Aperture Radar (InSAR) results stem from a 2009–2014 TerraSAR‐X dataset from ascending and descending orbits, decomposed into horizontal displacement vectors along an east–west plane, vertical displacement vectors and combined displacement velocity. Geomorphological mapping was carried out on aerial imagery and validated in the field. This detailed landform and sediment type mapping revealed an altitudinal distribution dominated by, weathered bedrock blockfields, surrounded primarily by slightly, to non‐vegetated solifluction landforms at the mountain tops. Below, an active rockslide and associated rockfall deposits are located on the steep east‐facing side of the study area, whereas glacial sediments dominate on the gentler western side. We show that 2D InSAR correctly depicts displacement rates that can be associated with typical deformation patterns for flat‐lying or inclined landforms, within and below the regional permafrost limit, for both wet and dry areas. A net lowering of the entire landscape caused by general denudation of the periglacial landforms and sediments is here quantified for the first time using radar remote sensing. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

8.
Erosion calderas: origins, processes, structural and climatic control   总被引:1,自引:0,他引:1  
 The origin and development of erosion-modified, erosion-transformed, and erosion-induced depressions in volcanic terrains are reviewed and systematized. A proposed classification, addressing terminology issues, considers structural, geomorphic, and climatic factors that contribute to the topographic modification of summit or flank depressions on volcanoes. Breaching of a closed crater or caldera generated by volcanic or non-volcanic processes results in an outlet valley. Under climates with up to ∼2000–2500 mm annual rainfall, craters, and calderas are commonly drained by a single outlet. The outlet valley can maintain its dominant downcutting position because it quickly enlarges its drainage basin by capturing the area of the primary depression. Multi-drained volcanic depressions can form if special factors, e.g., high-rate geological processes, such as faulting or glaciation, suppress fluvial erosion. Normal (fluvial) erosion-modified volcanic depressions the circular rim of which is derived from the original rim are termed erosion craters or erosion calderas, depending on the pre-existing depression. The resulting landform should be classed as an erosion-induced volcanic depression if the degradation of a cluster of craters produces a single-drained, irregular-shaped basin, or if flank erosion results in a quasi-closed depression. Under humid climates, craters and calderas degrade at a faster rate. Mostly at subtropical and tropical ocean-island and island-arc volcanoes, their erosion results in so-called amphitheater valleys that develop under heavy rainfall (>∼2500 mm/year), rainstorms, and high-elevation differences. Structural and lithological control, and groundwater in ocean islands, may in turn preform and guide development of high-energy valleys through rockfalls, landsliding, mudflows, and mass wasting. Given the intense erosion, amphitheater valleys are able to breach a primary depression from several directions and degrade the summit region at a high rate. Occasionally, amphitheater valleys may create summit depressions without a pre-existing crater or caldera. The resulting, negative landforms, which may drain in several directions and the primary origin of which is commonly unrecognizable, should be included in erosion-transformed volcanic depressions. Received: 4 January 1998 / Accepted: 18 January 1999  相似文献   

9.
In biological evolution, creativity occurs in the appearance of new entities by evolutionary dynamics. This is linked to mutations and genetic drift, which cannot occur in geophysical phenomena. Biota can exhibit evolutionary creativity that influences landforms, but how does creativity (defined here as the capacity for emergence of new entities that increase the adjustedness of the landscape to environmental conditions) occur in landforms and landscapes as entities independent of biota? Creativity in geomorphic evolution does not require any sort of goal functions or purposeful innovation – just that geomorphic development is capable of producing novelties that may be better adapted (more efficient or durable) than predecessors. Independently of biota, evidence exists that landforms may develop to become more or less ‘fit' in terms of efficiency and/or durability. Thus, emergence of novel features may lead to their persistence. Emergence of novel forms is illustrated for the case of karst sinkholes (dolines), which indicates increasing geomorphic diversity over Ma and Ga timescales. A case study of fluviokarst chronosequences in Kentucky demonstrates emergence and elimination of landforms as landscapes evolve. Some of these may represent generally (as opposed to locally) novel landforms. While this article is more suggestive than demonstrative, results strongly suggest evolutionary creativity in geomorphology both tied to, and independent of, biological evolution. This occurs due to emergence of geomorphic entities that are subject to selection that tends to increase efficiency and durability. © 2019 John Wiley & Sons, Ltd.  相似文献   

10.
Insects are the largest and most diverse group of living organisms on Earth, playing a critical but underestimated role as agents of geomorphic change. Burrowing insects create micro-scale landforms such as subterranean tunnels and surface mounds and, by this way, exert an influence on hydrology, soil erosion and sediment transfer at a wider landscape scale. However, social insects represented by ants and termites were the main taxa studied as geomorphic agents and ecosystem engineers. This article proposes an extended and critical literature review of insects as zoogeomorphic agents, with reference to various taxonomic orders and families of insects having a burrowing behaviour. It provides a large overview of their primary and secondary impacts on Earth surface systems, both supported by naturalistic evidence and available quantitative data. Some evolutionary insights are discussed based on fossil evidence of geomorphic work by insects and, at finer temporal scale, on recent advances in radiometric and luminescence dating of insect mounds. Finally, this article explores the fruitful links between geomorphology and entomology, and suggests several research perspectives in order to develop an integrated understanding of the importance of insects in Earth surface processes and landforms. © 2020 John Wiley & Sons, Ltd.  相似文献   

11.
在海上实施三维地震探测过程中,人工震源枪阵中心与船上GPS的距离及地震探测作业中的船行方向造成炮点实际位置与预设位置有一定偏差;自由落体投放的OBS由于海流的影响会偏离原定设计位置(投放点),因此,炮点与海底地震仪(OBS)的位置校正是三维地震结构研究中的基本环节.本文利用艏向信息校正了炮点位置;采用蒙特卡洛和最小二乘法方法对海底地震仪的位置进行了校正,并探讨了直达水波曲线特征.结果表明 OBS位置一般偏离设计点1 km左右,其误差范围在20 m以内,校正后的OBS记录剖面展示了真实的记录情况.该研究结果为下一步西南印度洋的三维层析成像研究提供了坚实数据基础,同时为今后南海的三维深部地壳结构探测提供经验与借鉴.  相似文献   

12.
We present an integrated study of subsurface and surficial karst landforms to unravel the uplift history of karst landscape in a tectonically-active area. To this end, we apply a multidisciplinary approach by combining cave geomorphology and Th/U dating of speleothems with remote sensing plus geophysical imaging of surface landforms. We use as an example Mt. Menikio in northern Greece where four caves share well-defined epiphreatic/shallow phreatic characteristics that are related to the distribution of surface and buried doline fields and provide evidence for three distinct water table stillstands (e.g. expressed as cave levels) now lying at ~130 m, ~800 m and ~1600 m a.m.s.l. Our dating constraints delimit the age of the lower water table stillstand prior to 77 ka ago and imply a maximum rate of relative base level drop of 0.45 mma-1, which is consistent with relative tectonic uplift rate estimates along currently active normal faults. We interpret the elevation of the higher water table stillstands to reflect earlier phases of uplift related to the regional tectonic events associated with the development of the North Anatolian Fault and the Northern Aegean area. Our analysis shows that the combined study of epiphreatic/shallow phreatic caves and surficial karst landforms together, is a robust way to investigate the uplift history of a karst landscape in a tectonically-active setting. © 2019 John Wiley & Sons, Ltd.  相似文献   

13.
Stable carbon and oxygen isotope composition of fossilized brachiopod shells serves as an important source to delineate Earth's paleoenvironmental evolution in the Phanerozoic. However, the original isotopic composition is potentially modified by various kinds of diagenesis. To evaluate the extent to which the original isotopic composition of fossilized brachiopod shells is modified by meteoric diagenesis, microstructure, cathodoluminescence (CL) images, and carbon and oxygen isotope composition of fossilized Kikaithyris hanzawai (rhynchonellate brachiopod) shells were examined. The shells were collected from Pleistocene shallow marine carbonates exposed on the Ryukyu Islands, southwestern Japan. The extent of diagenetic alteration is quantitatively evaluated here as both the preservation state of the original shell microstructure and the luminescence/non‐luminescence of shells. Although altered fibers were commonly observed in the brachiopod shells, the original isotopic composition was almost retained. There are no significant differences in the isotopic composition between the luminescent and non‐luminescent shells. There is no direct relationship between the preservation state of the original shell microstructure and the luminescence/non‐luminescence of shells at three of four horizons, indicating that CL images are not necessarily useful for the detection of diagenetic alteration of shells or shell portions. Applying multiple criteria to assessing diagenetic alteration and cross‐checking them are required to distinguish between diagenetically altered and unaltered brachiopod shells.  相似文献   

14.
Seven sites within the mountain region of Abisko, northern Sweden, were selected for measurement of solifluction movement rates and correlation with the local environmental factors. Grids with sizes from 20 m × 30 m to 50 m × 100 m included both solifluction landforms and adjacent ground. Positions of movement markers and the terrain were recorded and the grid areas were digitally reconstructed. This allowed topography, vegetation and soil texture (fraction of fine material) surfaces to be interpolated and used together with data on soil moisture in statistical analyses. Significant correlations differ from site to site indicating that environmental factors have varying importance and inter‐relations depending on the local setting. Geomorphic work was also assessed within the grids. The results indicate measurable geomorphic work where no landforms are present. These areas may make larger contributions to sediment displacement than where solifluction landforms exist. Solifluction is an important denudational agent in the region and has its greatest impact on landscape development in the western part of the region. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
Mechanical processes operating on the slope surface or at depth control the dynamics of alpine landforms and hold critical information of their geomorphological characteristics, yet they often lack systematic quantification and in-depth interpretation. This study aims to address a long-standing issue concerning geomorphological classification from a kinematic perspective. A group of periglacial landforms consisting of several lobes were discovered in the East Kunlun Mountains of China 30 years ago but were ambiguously classified as rock glaciers and later as gelifluction deposits. Here, we use satellite Interferometric Synthetic Aperture Radar to quantitatively characterize the spatial and temporal changes of the surface movement of these landforms. We observe that: (1) its 17 lobes show a pattern of landform-scale and uniform surface movement, especially during May to October; (2) the lobes move at a spatial mean downslope velocity of 10 to 60 cm/yr and a maximum velocity as high as 100 cm/yr in summer; (3) the landforms are nearly inactive from winter to late spring. Based on these observations, we postulate that the movement of the lobes are driven by deep-seated permafrost creep which typically occurs in rock glaciers. The debris of Lobe No.4 is composed of both boulders and pebbles supported by fine-grained matrix generated from the in situ weathering process. It develops a talus-like oversteepened front around 40° and a convex transverse profile perpendicular to the creep direction, which are also characteristic features of a rock glacier. Piecing these observations together, we identify Lobe No.4 as a debris-mantled-slope-connected rock glacier, with the gelifluction process occurring on the surface as small-scale and discrete events. © 2020 John Wiley & Sons, Ltd.  相似文献   

16.
Washover fans are located on small barriers in fetch-limited micro-tidal coastal environments in Denmark. These washover fans are formed during high-energy storm events and we present a method to quantify their volumes and to estimate sediment exchanges between washover fans and their adjacent morphologies. We use high resolution digital terrain models (DTMs) based on light detection and ranging (LiDAR) data. We have delineated landforms using known methods of scale analysis and geomorphometric classification. We quantified volumes of the delineated landforms and estimated the related sediment budgets. These computed volumes were compared using different pre-depositional surfaces. Finally, we assessed the sediment exchange and associated sources of sediments of the washover fans. We applied a scale analysis to determine suitable DTM resolution and focal statistics window size as input to a geomorphometric classification analysis. Landform areas and landforms were delineated using morphometric threshold values, and volumes and sediment budgets of the delineated landforms were computed using different assumptions to define the pre-depositional surface. Resulting washover fan volumes were validated against digital elevation model (DEM) of difference (DoD) derived volumes. Sediment budgets were derived from representative volumes of the washover fans and adjacent berms. We show that quantification of washover features derived from DTMs, using geomorphometric analysis is feasible and that the presented approach provides estimates of washover deposit volumes with an accuracy between 1% and 28% compared to control volumes. © 2021 John Wiley & Sons, Ltd.  相似文献   

17.
The Pochengzi Glaciation is a typical glaciation in Quaternary in the Tianshan Mountains. The glacial landforms comprise several integrated end moraines, like a fan spreading from the north to the south at the mouth of the Muzhaerte River valley and on the piedmont on the southeastern slope of the Tumur Peak, the largest center of modern glaciation in the Tianshan Mountains. The landforms recorded a complex history of the ancient glacier change and contained considerable information of the glacial landscape evolution, and dating these landforms helps us understand the temporal and spatial shifts of the past cryosphere in this valley and reconstruct the paleoenvironment in this region. Electron spin resonance (ESR) dating of the glacial tills in the upper stratum from a well-exposed section, end moraines, and associated outwashes was carried out using Ge centers in quartz grains, which are sensitive to the sunlight and grinding. The results could be divided into three clusters, 13.6–25.3, 39.5–40.4 and 64.2–71.7 ka. Based on the principle of geomorphology and stratigraphy and the available paleoen- vironmental data from northwestern China, the end moraines were determined to deposit in the Last Glaciation. The landforms and the three clusters of ages demonstrate that at least three large glacial advances occurred during the Pochengzi Glaciation, which are corresponding to marine oxygen isotope stage 4 (MIS4), MIS3b and MIS2. The landforms also indicate that the gla- ciers were compound valley glacier in MIS2 and MIS3b and piedmont glacier in MIS4, and the ancient Muzhaerte glacier were 94, 95 and 99 km at their maximum extensions in these three glacial advances.  相似文献   

18.
This work addresses the study of fluid circulation of the Stromboli island using a dense coverage of self-potential (SP) and soil CO2 data. A marked difference exists between the northern flank and the other flanks of the island. The northern flank exhibits (1) a typical negative SP/altitude gradient not observed on the other flanks, and (2) higher levels of CO2. The general SP pattern suggests that the northern flank is composed of porous layers through which vadose water flows down to a basal water table, in contrast to the other flanks where impermeable layers impede the vertical flow of vadose water. In the Sciara del Fuoco and Rina Grande–Le Schicciole landslide complexes, breccias of shallow gliding planes may constitute such impermeable layers whereas elsewhere, poorly permeable, fine-grained pyroclastites or altered lava flows may be present. This general model of the flanks also explains the main CO2 patterns: concentration of CO2 at the surface is high on the porous north flank and lower on the other flanks where impermeable layers can block the upward CO2 flux. The active upper part of the island is underlain by a well-defined hydrothermal system bounded by short-wavelength negative SP anomalies and high peaks of CO2. These boundaries coincide with faults limiting ancient collapses of calderas, craters and flank landslides. The hydrothermal system is not homogeneous but composed of three main subsystems and of a fourth minor one and is not centered on the active craters. The latter are located near its border. This divergence between the location of the active craters and the extent of the hydrothermal system suggests that the internal heat sources may not be limited to sources below the active craters. If the heat source strictly corresponds to intrusions at depth around the active conduits, the geometry of the hydrothermal subsystems must be strongly controlled by heterogeneities within the edifice such as craters, caldera walls or gliding planes of flank collapse, as suggested by the correspondence between SP–CO2 anomalies and structural limits. The inner zone of the hydrothermal subsystems is characterized by positive SP anomalies, indicating upward movements of fluids, and by very low values of CO2 emanation. This pattern suggests that the hydrothermal zone becomes self-sealed at depth, thus creating a barrier to the CO2 flux. In this hypothesis, the observed hydrothermal system is a shallow one and it involves mostly convection of infiltrated meteoric water above the sealed zone. Finally, on the base of CO2 degassing measurements, we present evidence for the presence of two regional faults, oriented N41° and N64°, and decoupled from the volcanic structures.  相似文献   

19.
Miyake-jima, an island volcano, resting on the Izu-Mariana arc is a basaltic stratovolcano dotted with many parasitic cones and craters. Literatures tell us thirteen eruptions which took place in A.D. 1085, 1154, 1469, 1535, 1595, 1643, 1712–1714, 1763–1769, 1811, 1835, 1874, 1940 and 1962. The last two eruptions were studied in detail by using modern scientific techniques after the surface activities had almost died down. Of the thirteen eruptions, the earlier five are only described as «eruption» and no detailed accounts are written in a document. The eruptions in and after 1643 all occurred from parasitic craters or fissure vents and are classified into the following two types:
  1. 1)
    Eruption from a center or centers on or around a parasitic knob on the southwestern flank of the main stratovolcano. Examples are eruptions of 1643, 1712–1714, 1763–1769 and 1835.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号