首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Studies have shown that the impact of climate change, human and animal actions on coastal vegetation can turn stabilized dunes into active mobile dunes and vice versa. Yet, the driving factors that trigger vegetation changes in coastal dunes are still not fully understood. In the transgressive dunefields of the Younghusband Peninsula (south-east coast of South Australia) historical aerial photographs show an increase in vegetation cover over the last ~70 years. This study attempts to identify the causes of the changes in vegetation cover (1949 to 2017) observed in a typical section of the coastal dune systems of the Peninsula. Vegetation cover was first estimated for various years using the available historical aerial photography (long-term changes – 1949 to 2017) and recent satellite imagery (short-term annual changes – 2010 to 2017) for the area, and then results were discussed against the observed changes in climatic variables and rabbit density, factors that could have played a role in this transformation. Results of long-term changes show that the vegetation cover has increased significantly from 1949 to 2017, from less than 7% vegetation cover to almost 40%, increasing dune stabilization and forming parabolic dune systems. Periods with the largest growth in vegetation cover (1952-1956 and 2009-2013) coincide with a significant decline in rabbit numbers. Rabbit density was found to be the primary factor linked to the rapid vegetation growth and stabilization of the dunefield, for both decadal long-term (last 68 years) and annual short-term changes (last 8 years). Other factors such as changes in rainfall, aeolian sediment transport, land use practices, and the introduction of invasive plants have apparently played a limited to negligible role in this stabilization process. © 2018 John Wiley & Sons, Ltd.  相似文献   

2.
Changes in vegetation cover within dune fields can play a major role in how dune fields evolve. To better understand the linkage between dune field evolution and interdune vegetation changes, we modified Werner's (Geology, 23, 1995: 1107–1110) dune field evolution model to account for the stabilizing effects of vegetation. Model results indicate that changes in the density of interdune vegetation strongly influence subsequent trends in the height and area of eolian dunes. We applied the model to interpreting the recent evolution of Jockey's Ridge, North Carolina, where repeat LiDAR surveys and historical aerial photographs and maps provide an unusually detailed record of recent dune field evolution. In the absence of interdune vegetation, the model predicts that dunes at Jockey's Ridge evolve towards taller, more closely‐spaced, barchanoid dunes, with smaller dunes generally migrating faster than larger dunes. Conversely, the establishment of interdune vegetation causes dunes to evolve towards shorter, more widely‐spaced, parabolic forms. These results provide a basis for understanding the increase in dune height at Jockey's Ridge during the early part of the twentieth century, when interdune vegetation was sparse, followed by the decrease in dune height and establishment of parabolic forms from 1953‐present when interdune vegetation density increased. These results provide a conceptual model that may be applicable at other sites with increasing interdune vegetation cover, and they illustrate the power of using numerical modeling to model decadal variations in eolian dune field evolution. We also describe model results designed to test the relative efficacy of alternative strategies for mitigating dune migration and deflation. Installing sand‐trapping fences and/or promoting vegetation growth on the stoss sides of dunes are found to be the most effective strategies for limiting dune advance, but these strategies must be weighed against the desire of many park visitors to maintain the natural state of the dunes. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
Parabolic dunes are widely distributed on coasts and margins of deserts and steppes where ecosystems are vulnerable and sensitive to environmental changes and human disturbances. Some studies have indicated that vegetated parabolic dunes can be activated into highly mobile barchan dunes and the catastrophic shift of eco‐geomorphic systems is detrimental to land management and social‐economic development; however, no detailed study has clarified the physical processes and eco‐geomorphic interactions that control the stability of a parabolic dune and its resistance to unfavorable environmental changes. This study utilizes the Extended‐DECAL (Discrete Eco‐geomorphic Aeolian Landscapes) model, parameterized by field measurements of dune topography and vegetation characteristics combined with remote sensing, to explore how increases in drought stress, wind strength, and grazing stress may lead to the activation of stabilizing parabolic dunes into highly mobile barchans. The modeling results suggest that the mobility of an initial parabolic dune at the onset of a perturbation determines the capacity of a system to absorb environmental change, and a slight increase in vegetation cover of an initial parabolic dune can increase the activation threshold significantly. The characteristics of four eco‐geomorphic interaction zones control the processes and resulting morphologies of the transformations. A higher deposition tolerance of vegetation increases the activation threshold of the dune transformation under both a negative climatic impact and an increased sand transport rate, whereas the erosion tolerance of vegetation influences the patterns of resulting barchans (a single barchan versus multiple barchans). The change in the characteristics of eco‐geomorphic interaction zones may indirectly reflect the dune stability and predict an ongoing transformation, whilst the activation angle may be potentially used as a proxy of environmental stresses. In contrast to the natural environmental changes that tend to affect relatively weak and young plants, grazing stress can exert a broader impact on any plant indistinctively. A small increase in grazing stress just above the activation threshold can accelerate dune activation significantly. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

4.
Barchan dunes are common on Earth, Mars and Titan. Previous studies have shown that their formation, migration and evolution are influenced by the wind regime and other factors, but details vary among regions. Understanding barchan morphology and migration will both improve our understanding of dune geomorphology and provide a basis for describing the environmental conditions that affect the formation and development of these dunes on Earth and other planets. Here, we provide detailed measurements of barchan dune migration in China's Quruq Desert, in the lower reaches of the Tarim River. We monitored their migration direction and rate, and their morphological changes during migration, by comparing Google Earth images acquired in 2003 and 2014. The dunes migrated west-southwest, close to the local resultant drift direction. The migration rate averaged 8.9 to 32.1 m year−1, with obvious spatial variation. In addition to the wind regime, the migration rate depended on dune morphology, density and vegetation cover; the rate was negatively related to dune height, density and vegetation cover, but positively linearly related to the length/width ratio (LU/W) and to the decrease in this ratio from 2003 to 2014. We found correlations among the dune morphometric parameters, but the relationships were weaker than in previous research. Due to the complexity of the factors that affect the processes that underlie sand dune development and migration, the morphological changes during dune migration were also complex. Our measurements suggest that the aeolian environment played a dominant role in dune migration and its spatial variation in the Quruq Desert. These results will support efforts to control dune migration in the western Quruq Desert and improve our understanding of dune morphodynamics. © 2019 John Wiley & Sons, Ltd.  相似文献   

5.
Field studies conducted at Owens Lake, California, provide direct measurements of sand flux on sand sheets with zero to 20 per cent cover of salt grass. Results from 12 different sand transport events show that aerodynamic roughness length and threshold wind shear velocity increase with vegetation cover as measured by vertically projected cover and roughness density (λ). This results in a negative exponential decrease in sediment flux with increasing vegetation cover such that sand transport is effectively eliminated when the vertically projected cover of salt grass is greater than 15 per cent. A general empirical model for the relation between sand flux and vegetation cover has been derived and can be used to predict the amount of vegetation required to stabilize sand dune areas. © 1998 John Wiley & Sons, Ltd.  相似文献   

6.
The introduction of vegetation to bare barchan dunes can result in a morphological transformation to vegetated parabolic dunes. Models can mimic this planform inversion, but little is known about the specific processes and mechanisms responsible. Here we outline a minimalist, quantitative, and process‐based hypothesis to explain the barchan–parabolic transformation. The process is described in terms of variations in the stabilization of wind‐parallel cross‐sectional dune slices. We hypothesize that stabilization of individual ‘dune slices’ is the predictable result of feedbacks initiated from colonization of vegetation on the slipface, which can only occur when slipface deposition rates are less than the deposition tolerance of vegetation. Under a constant vegetation growth regime the transformation of a barchan dune into a parabolic dune is a geometric response to spanwise gradients in deposition rates. Initial vegetation colonization of barchan horns causes shear between the anchored sides and the advancing centre of the dune, which rotates the planform brinkline angle from concave‐ to convex‐downwind. This reduces slipface deposition rate and allows vegetation to expand inward from the arms to the dune centre. The planform inversion of bare barchans dunes into vegetated parabolic dunes ultimately leads to complete stabilization. Our hypothesis raises several important questions for future study: (i) are parabolic dunes transitional landforms between active and vegetation‐stabilized dune states? (ii) should stabilization modelling of parabolic dune fields be treated differently than linear dunes? and (iii) are stabilized parabolic dune fields ‘armoured’ against re‐activation? Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
Changing fire regimes and prescribed‐fire use in invasive species management on rangelands require improved understanding of fire effects on runoff and erosion from steeply sloping sagebrush‐steppe. Small (0·5 m2) and large (32·5 m2) plot rainfall simulations (85 mm h–1, 1 h) and concentrated flow methodologies were employed immediately following burning and 1 and 2 years post‐fire to investigate infiltration, runoff and erosion from interrill (rainsplash, sheetwash) and rill (concentrated flow) processes on unburned and burned areas of a steeply sloped sagebrush site on coarse‐textured soils. Soil water repellency and vegetation were assessed to infer relationships in soil and vegetation factors that influence runoff and erosion. Runoff and erosion from rainfall simulations and concentrated flow experiments increased immediately following burning. Runoff returned to near pre‐burn levels and sediment yield was greatly reduced with ground cover recovery to 40 per cent 1 year post‐fire. Erosion remained above pre‐burn levels on large rainfall simulation and concentrated flow plots until ground cover reached 60 per cent two growing seasons post‐fire. The greatest impact of the fire was the threefold reduction of ground cover. Removal of vegetation and ground cover and the influence of pre‐existing strong soil‐water repellency increased the spatial continuity of overland flow, reduced runoff and sediment filtering effects of vegetation and ground cover, and facilitated increased velocity and transport capacity of overland flow. Small plot rainfall simulations suggest ground cover recovery to 40 per cent probably protected the site from low‐return‐interval storms, large plot rainfall and concentrated flow experiments indicate the site remained susceptible to elevated erosion rates during high‐intensity or long duration events until ground cover levels reached 60 per cent. The data demonstrate that the persistence of fire effects on steeply‐sloped, sandy sagebrush sites depends on the time period required for ground cover to recover to near 60 per cent and on the strength and persistence of ‘background’ or fire‐induced soil water repellency. Published in 2009 by John Wiley & Sons, Ltd.  相似文献   

8.
9.
Soil hydrology was investigated in the Guadelperalón experimental watershed in order to determine the influence of land use and vegetation cover on runoff and infiltration within the Dehesa land system. Five soil–vegetation units were selected: (1) tree cover, (2) sheep trials, (3) shrub cover, (4) hillslope grass and (5) bottom grass. The results of the simulated rainfall experiments performed at an intensity of 56·6 mm h−1 during one hour on plots of 0·25 m2, and the water drop penetration time test indicate the importance of water repellency in the Dehesa land system under drought conditions. Low infiltration rates (c. 9–44 mm h−1) were found everywhere except at shrub sites and in areas with low grazing pressure. Soil water repellency greatly reduced infiltration, especially beneath Quercus ilex canopies, where fast ponding and greater runoff rates were observed. The low vegetation cover as a consequence of a prolonged drought and grazing pressure, in conjunction with the soil water repellency, induces high runoff rates (15–70 per cent). In spite of this, macropore fluxes were found in different locations, beneath trees, on shrub-covered surfaces, as well as at sites with a dominance of herbaceous cover. Discontinuity of the runoff fluxes due to variations in hydrophobicity causes preferential flows and as a consequence deeper infiltration, especially where macropores are developed. © 1998 John Wiley & Sons, Ltd.  相似文献   

10.
Bonäsheden, Sweden's largest continuous dune field, situated in the county of Dalarna, central Sweden, has been investigated using LiDAR (light detection and ranging) remote sensing, ground penetrating radar as well as by field observations and luminescence dating. The use of LiDAR in conjunction with geographic information system (GIS) software proved to be efficient in mapping the inactive dune field and classifying the dune morphology, especially when slope raster images were used. The dunes have formed mostly by winds from the northwest (NW) and are of a transverse type. Still other dune types, such as parabolic dunes, and transverse dunes with a deviating orientation are present. Also, there seems to be different generations of dunes, suggesting a complex palaeowind environment with a change from predominantly north‐westerly winds to more westerly winds. Luminescence dating finally allows us to have an absolute chronology of the development of the Bonäsheden dune field, revealing formation of the dune field closely following the de‐glaciation of this part of Sweden (c. 10.5 ka). The well preserved transverse shape of the majority of the dunes suggests rapid stabilization by vegetation, although sand drift still seems to have been active on a noticeable scale for at least 1500 years and also, occasionally and patchy, as coversand deposition during the Late Holocene. A simple model is proposed for the dune field development of Bonäsheden based on our findings. This model is a useful addition since the majority of present day dune field models focus on the formation of parabolic dunes or large unvegetated dune fields. Our results suggest that most models cannot adequately simulate the formation of such small dune fields as that of Bonäsheden, with apparently rapidly fixated transverse dunes in a previously glaciated, now vegetated area. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

11.
Dune mobility and vegetation cover in the Southwest Kalahari desert   总被引:1,自引:0,他引:1  
As part of a wider project investigating the palaeoenvironmental significance of partially vegetated linear dunes in the southwest Kalahari, data collected in the latter part of 1992 concerning dune movement and vegetation cover suggest that sediment transport is occurring on some dune surfaces, and that the majority of surface activity occurs on the crests and upper slopes of the dunes. The data suggest that the limiting variables on surface sediment movement vary on different parts of a dune. On interdunes and lower dune slopes the primary limiting variable is available wind energy, while on dune crests and upper slopes it is vegetation cover. Ground cover by litter has much greater importance in protecting the surface sediment from erosion than rooted vegetation. From individual data points, no evidence is found to support a threshold vegetation cover below which sediment movement occurs. Rather, a gradient of activity is suggested whereby a reduction in vegetation cover increases the potential for sediment movement and surface change. However, dunes with differing amounts of mean vegetation cover display differing degrees of surface activity, and at this scale, a vegetation cover threshold in the region of 14 per cent may be recognized.  相似文献   

12.
Extensive coastal dune ?elds occur on the Quaternary strandplain associated with the São Francisco River mouth. Two different generations of dunes are identi?ed. One is inactive, already ?xed by vegetation, comprising parabolic dunes. The other generation is active, bordering the present‐day shoreline and transgressing over the inactive dune ?eld. Three morphological provinces in the active coastal dune ?elds are recognized. On the updrift side of the São Francisco River mouth, they are: (a) sand‐sheet with shrub coppice and shadow dunes; (b) isolated dunes of the barchan‐transversal type up to 5 m high, and interdune areas; and (c) a 23 m high compound dune, with superimposed small dunes. The same provinces are recognized on the downdrift side of the river mouth, with two important exceptions: the barchan‐transversal and compound dunes are replaced, respectively, by (i) zibar‐type dunes up to 5 m high, and (ii) a 19 m high precipitation dune, which is associated with numerous blowouts. The prevailing eastern winds from August to January favour the development of the aeolian bedforms and the migration of dunes. The shoreline orientation almost transversal to the winds and the great supply of ?ne‐grained sediments contribute to the formation of barchan‐transversal types and compound dunes in the updrift side. On the other hand, in the downdrift side the shoreline orientation is almost parallel to the prevailing winds. This fact, in association with a coarser grain size in the beachface, favours the formation of zibar‐type and precipitation dunes with numerous blowouts. The rate of migration of individual dunes is about 20 to 24 m per year. This study suggests that the aeolian sedimentation is a relatively recent phenomenon at the Quaternary strandplain of the São Francisco River. The ?rst generation of dune ?elds initiated some time after 3000 years BP and the second generation originated some centuries ago. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.
Accurate knowledge of the surface roughness and the resultant wind speed are important for many applications, such as climatic models, wind power meteorology, agriculture and erosion hazards, especially on sand dunes in arid and semi‐arid environments, where vegetation cover is scarce. In this study we aimed at quantifying the effects of vegetation cover and topography on surface roughness over a stabilizing dune field on the southern coast of Israel. Forty‐six wind measurements were made at various distances from the coastline, ranging from 10 to 2800 m, and z0 values were calculated from the wind measurements based on the ratio between the wind gust and the average wind speed. We estimated vegetation cover using the soil adjusted vegetation index (SAVI) from Landsat satellite images for the upwind sector at various lengths, ranging from 15 to 400 m, and based on digital elevation models and differential GPS field measurements we calculated the topographic variable of the relative heights of the stations. z0 values were positively correlated with the winter SAVI values (r = 0·87 at an upwind length of 200 m) and negatively correlated with the relative height (r = ?0·68 at an upwind length of 200–400 m for the inland dune stations). Using these variables we were able to create a map of estimated z0 values having an accuracy of over 64%. Such maps provide a better understanding of the spatial variability in both wind speed and sand movement over coastal dune areas. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
Transgressive dune fields often comprise a multiplicity of landforms where vegetation processes largely affect landform dynamics, which in turn, also affect vegetation processes. These associations have seldom been studied in detail. This paper examines four separate landform types in a complex coastal transgressive dunefield located in the central Gulf of Mexico, in order to assess the relationships between dunefield habitat, local environmental factors, vegetation associations and landform evolution. Topographic surveys using tape and clinometer were conducted in conjunction with vegetation survey transects at four locations across the Doña Juana dunefield. Vegetation surveys allowed the estimation of relative plant cover of each plant species found along the transects. A large variety of landforms were found at the Doña Juana Dunefield: deflation plains, gegenwalle (counter) ridges, transverse dune trailing ridges, blowouts and parabolic dunes, aklé (fish‐scale shaped) dunefields and precipitation ridges, with plant species associations developing on these different landforms equally variable. Flood tolerant species were located in the lower parts (deflation plain and gegenwalle ridges) whereas the older and dryer parts were covered by coastal matorral shrubs. Burial‐tolerant species were dominant in the most mobile areas (blowouts and aklé dunefield and margin). The dune trailing ridge, with relatively milder conditions, showed the highest richness, with no dominant species. A dual interaction was found such that colonizing species both create and affect topography, and in turn, topography determines vegetation association and succession patterns. In coastal dunes, the vegetation and abiotic environment (namely the different landforms and the inherent micronevironmental variability) interact tightly and generate a complex and highly dynamic biogeomorphic system where substrate mobility and colonization processes reinforce one another in positive feedback. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
Long-term and seasonal geomorphological changes at Padre Island, Texas are identified and linked with potential external drivers. Aerial and satellite images from 1950 to 2018, monthly images from 2019 to 2020, and a 2018 LiDAR data set are used to assess long-term and seasonal geomorphological changes within a 50 km2 area of Padre Island near Port Mansfield, Texas. Trends in landcover are evaluated by mapping and comparing the relative areal coverage of each facies. Vegetated dunes, absent initially, emerged in the fore-island and expanded into the back-barrier to cover 14% of the study area. The active vegetation-free back-barrier dune field steadily decreased in areal extent from 12% to 6% as vegetation spread. Nebkha dune coverage fluctuated between 4% and 7%. Expansive microbial mats colonized the wind tidal and deflation flats surrounding the vegetated dunes and back-barrier dune field giving rise to a remarkably different landscape over the 50-year period studied. An assessment of external forcing factors identifies increased rates of relative sea level rise and decreased sediment influx as the most likely primary factors driving the geomorphological changes. These changes have induced a widespread shift toward stabilization of island sediments by vegetation and microbial mats, which in turn has starved the back-barrier of sediments resulting in low rates of accretion and increased flooding. These findings highlight the sensitivity of the back-barrier and, in particular, the dune facies to changes in sea level and sediment supply, and show that microbial mats are effective at stabilizing island sediments and may be harbingers to barrier island response to rising sea level. As shown in this study, long-term monitoring of geomorphic facies changes and topography can detect important shifts in the island state that can be used to inform decision making for these sensitive coastal landscapes.  相似文献   

16.
The evolution of barchan-to-parabolic dunes can be driven by vegetation establishment, which may be linked to climate change and/or human activity. However, little is known of the impact of changes in wind strength on vegetation development and the resulting impacts on the evolution of dune morphology and sedimentological characteristics. To address this issue, we studied the morphology and grain-size characteristics of barchan, barchan-to-parabolic and parabolic dunes in the Mu Us Desert in north China, which was combined with an analysis of changes in normalized difference vegetation index (NDVI) and climatic variables during 1982–2018. The results reveal a trend of increasing growing-season NDVI which was related to a significant decrease in drift potential (DP). Therefore, we suggest that the initiation of dune transformation was caused by the reduced wind strength which favored the establishment and development of vegetation. To reveal the response of sedimentological reorganization during the processes of dune transformation, grain-size characteristics along the longitudinal profile of the three different types of dunes were examined. The decreasing wind strength led to the transport of fine sands on the upper part of the windward face of the dunes, resulting in a progressive coarsening of the grain-size distribution (GSD) and a reduction in dune height at the crest area. No distinct trend in sorting and mean grain-size was observed on the windward slope of the barchan-to-parabolic dune, indicating that the sand in transit had little influence on the GSD. Conversely, progressive sorting and coarsening of the sand occurred towards the crest of the parabolic dune. This indicates that vegetation development limited the transport of sand from upwind of the dune, and affected a shift in the dune source material to the underlying source deposits, or to reworked pre-existing aeolian deposits, and resulted in the trapping of sand in the crest area. © 2020 John Wiley & Sons, Ltd.  相似文献   

17.
Wildfires raise concerns over the risk of accelerated erosion as a result of increased overland flow and decreased protection of the soil by litter and ground vegetation cover. We investigated these issues following the 1994 fires that burnt large areas of native Eucalyptus forest surrounding Sydney, Australia. A review of previous studies identifies the fire and rainfall conditions that are likely to lead to increased runoff and accelerated erosion. We then compare runoff and erosion between burnt and unburnt sites for 10 months after the 1994 fires. At the scale of hillslope plots, the 1994 fire increased runoff by enhancing soil hydrophobicity, and greatly increased sediment transport, mainly through the reduced ground cover, which lowered substantially the threshold for initial sediment movement. However, both runoff and sediment transport were very localized, resulting in little runoff or sediment yield after the fire at the hillslope catchment scale. We identify that after moderately intense fires, rainfall events of greater than one year recurrence interval are required to generate substantial runoff and sediment yield. Such events did not occur during the monitoring period. Past work shows that mild burns have little effect on erosion, and it is only after the most extreme fires that erosion is produced from small, frequent storms. © 1998 John Wiley & Sons, Ltd.  相似文献   

18.
Sand dunes as potential sources of dust in northern China   总被引:1,自引:0,他引:1  
While saltation bombardment of sand grains on a fine substrate can produce considerable dust, the well-sorted nature of sand dunes tends to preclude them from consideration as major dust sources. Recent research, however, has revealed that sand dunes can, in some cases, be large sources of dust. We used the PI-SWERL(Portable In-Situ Wind Erosion Laboratory) to measure in the field the potential of sand dunes and other desert landforms to emit particulate matter 10 μm(PM-10) dust in the Tengger, Ulan Buh, and Mu Us deserts of northern China. Combined with high resolution particle size measurements of the dune sand, an assessment of sand dunes as a dust source can be made. Large active transverse dunes tend to contain little to no stored PM-10, yet they produce a low dust flux. Coppice dunes stabilized by vegetation contain appreciable PM-10 and have very high dust emission potential. There is a positive correlation between the amount of PM-10 stored in a dune and its potential dust flux. Saltation liberates loose fines stored in dunes, making them very efficient dust emitters compared to landforms such as dry lake beds and washes where dust particles are unavailable for aeolian transport due to protective crusts or sediment cohesion. In cases where large dunes do not store PM-10 yet emit dust when active, two hypotheses can be considered:(1) iron-oxide grain coatings are removed during saltation, creating dust, and(2) sand grains collide during saltation, abrading grains to create dust. Observations reveal that iron oxide coatings are present on some dune sands. PI-SWERL data suggests that low dust fluxes from dunes containing no stored dust may represent an estimate for the amount of PM-10 dust produced by removal of iron oxide coatings. These results are similar to results from dunes in the United States. In addition, PI-SWERL results suggest that dust-bearing coppice dunes, which cover vast areas of China's sandy deserts, may become major sources of dust in the future if overgrazing, depletion of groundwater, or drought destabilizes the vegetation that now partially covers these dunes.  相似文献   

19.
Embryo dunes are often ephemeral, but can develop to become established coastal foredunes. In 2001 a patch of embryo dunes 13.11 m2 appeared on a beach in north Lincolnshire, UK and had expanded to over 3600 m2 by 2011. The rate of expansion is linked to storm occurrence, where expansion is slowed during years with a higher incidence of storm surges. From July 2009–October 2010 seasonal changes in dune field topography were determined using terrestrial laser scanning (TLS) data. Vegetation is important in the development of embryo dunes, but can cause errors in TLS data. Tests evaluating the impact of vegetation on the TLS data suggest the minimum elevation value from the TLS point cloud within a 0.05 m grid cell gives a good approximation of the ground surface. Digital elevation models (DEMs) of the dunes constructed using filtered data showed the embryo dunes underwent a classic seasonal cycle of erosion during the winter and accretion during the summer. For example from October 2009 to April 2010 over 375 m3 of sediment was eroded from the dunes whereas during spring and summer 2010 the dune field gained over 600 m3 of sand. The overall magnitude of change in dune height and volume from season to season exceeded the errors associated with the construction of the DEM from the TLS data and the vegetation filtering process, which suggests TLS can be useful for documenting topographic change in vegetated dunes. After 10 years, the patch of embryo dunes is still expanding but has not yet merged with more established foredunes to landward. Aeolian process measurements indicate that, at present, the embryo dunes do not prevent sand from reaching the foredunes, however the rate of foredune progradation has slowed concurrently with the expansion of the embryo dune field. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
Transverse dunes appear in regions of mainly unidirectional wind and high sand availability. A dune model is extended to two‐dimensional calculation of the shear stress. It is applied to simulate dynamics and morphology of three‐dimensional transverse dunes. In the simulations they seem to reach translational invariance and do not stop growing. Hence, simulations of two‐dimensional dune ?elds have been performed. Characteristic laws were found for the time evolution of transverse dunes. Bagnold's law of the dune velocity is modi?ed and reproduced. The interaction between transverse dunes led to the interesting conclusion that small dunes can travel over bigger ones. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号