共查询到12条相似文献,搜索用时 15 毫秒
1.
Xavi Gallach Julien Carcaillet Ludovic Ravanel Philip Deline Christophe Ogier Magali Rossi Emmanuel Malet David Garcia-Sellés 《地球表面变化过程与地形》2020,45(13):3071-3091
In the Mont Blanc massif (European Western Alps), rockfalls are one of the main natural hazards for alpinists and infrastructure. Rockfall activity after the Little Ice Age is well documented. An increase in frequency during the last three decades is related to permafrost degradation caused by rising air temperatures. In order to understand whether climate exerts a long-term control on rockfall occurrence, a selection of paleo-rockfall scars was dated in the Glacier du Géant basin [>3200 m above sea level (a.s.l.)] using terrestrial cosmogenic nuclides. Rockfall occurrence was compared to different climatic and glacial proxies. This study presents 55 new samples (including replicates) and 25 previously-published ages from nine sampling sites. In total, 62 dated rockfall events display ages ranging from 0.03 ± 0.02 ka to 88.40 ± 7.60 ka. Holocene ages and their uncertainties were used to perform a Kernel density function into a continuous dataset displaying rockfall probability per 100 years. Results highlight four Holocene periods of enhanced rockfall occurrence: (i) c. 7–5.7 ka, related to the Holocene Warm Periods; (ii) c. 4.5–4 ka, related to the Sub-boreal Warm Period; (iii) c. 2.3–1.6 ka, related to the Roman Warm Period; and (iv) c. 0.9–0.3 ka, related to the Medieval Warm Period and beginning of the Little Ice Age. Laser and photogrammetric three-dimensional (3D) models of the rock walls were produced to reconstruct the detached volumes from the best-preserved rockfall scars (≤0.91 ± 0.12 ka). A structural study was carried out at the scale of the Glacier du Géant basin using aerial photographs, and at the scale of four selected rock walls using the 3D models. Two main vertical and one horizontal fracture sets were identified. They correspond respectively to alpine shear zones and veins opened-up during long-term exhumation of the Mont Blanc massif. Our study confirms that climate primarily controls rockfall occurrence, and that structural settings, coincident at both the massif and the rock wall scales, control the rock-wall shapes as well as the geometry and volume of the rockfall events. © 2020 John Wiley & Sons, Ltd. 相似文献
2.
Improved discrimination of subglacial and periglacial erosion using 10Be concentration measurements in subglacial and supraglacial sediment load of the Bossons glacier (Mont Blanc massif,France) 下载免费PDF全文
Hervé Guillon Jean‐Louis Mugnier Jean‐François Buoncristiani Julien Carcaillet Cécile Godon Charlotte Prud'homme Peter van der Beek Riccardo Vassallo 《地球表面变化过程与地形》2015,40(9):1202-1215
Deciphering the complex interplays between climate, uplift and erosion is not straightforward and estimating present‐day erosion rates can provide useful insights. Glaciers are thought to be powerful erosional agents, but most published ‘glacial’ erosion rates combine periglacial, subglacial and proglacial erosion processes. Within a glaciated catchment, sediments found in subglacial streams originate either from glacial erosion of substratum or from the rock walls above the glacier that contribute to the supraglacial load. Terrestrial cosmogenic nuclides (TCN) are produced by interactions between cosmic ray particles and element targets at the surface of the Earth, but their concentration becomes negligible under 15 m of ice. Measuring TCN concentrations in quartz sand sampled in subglacial streams and in supraglacial channels is statistically compliant with stochastic processes (e.g. rockfalls) and may be used to discriminate subglacial and periglacial erosion. Results for two subglacial streams of the Bossons glacier (Mont Blanc massif, France) show that the proportion of sediments originating from glacially eroded bedrock is not constant: it varies from 50% to 90% (n = 6). The difference between the two streams is probably linked to the presence or absence of supraglacial channels and sinkholes, which are common features of alpine glaciers. Therefore, most of the published mean catchment glacial erosion rates should not be directly interpreted as subglacial erosion rates. In the case of catchments with efficient periglacial erosion and particularly rockfalls, the proportion of sediments in the subglacial stream originating from the supraglacial load could be considerable and the subglacial erosion rate overestimated. Here, we estimate warm‐based subglacial and periglacial erosion rates to be of the same order of magnitude: 0.39 ± 0.33 and 0.29 ± 0.17 mm a?1, respectively. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
3.
Ping Fu Arjen P. Stroeven Jonathan M. Harbor Jakob Heyman Clas Hättestrand Marc W. Caffee 《地球表面变化过程与地形》2019,44(4):918-932
Quantifying glacial erosion contributes to our understanding of landscape evolution and topographic relief production in high altitude and high latitude areas. Combining in situ 10Be and 26Al analysis of bedrock, boulder, and river sand samples, geomorphological mapping, and field investigations, we examine glacial erosion patterns of former ice caps in the Shaluli Shan of the southeastern Tibetan Plateau. The general landform pattern shows a zonal pattern of landscape modification produced by ice caps of up to 4000 km2 during pre-LGM (Last Glacial Maximum) glaciations, while the dating results and landforms on the plateau surface imply that the LGM ice cap further modified the scoured terrain into different zones. Modeled glacial erosion depth of 0–0.38 m per 100 ka bedrock sample located close to the western margin of the LGM ice cap, indicates limited erosion prior to LGM and Late Glacial moraine deposition. A strong erosion zone exists proximal to the LGM ice cap marginal zone, indicated by modeled glacial erosion depth >2.23 m per 100 ka from bedrock samples. Modeled glacial erosion depths of 0–1.77 m per 100 ka from samples collected along the edge of a central upland, confirm the presence of a zone of intermediate erosion in-between the central upland and the strong erosion zone. Significant nuclide inheritance in river sand samples from basins on the scoured plateau surface also indicate restricted glacial erosion during the last glaciation. Our study, for the first time, shows clear evidence for preservation of glacial landforms formed during previous glaciations under non-erosive ice on the Tibetan Plateau. As patterns of glacial erosion intensity are largely driven by the basal thermal regime, our results confirm earlier inferences from geomorphology for a concentric basal thermal pattern for the Haizishan ice cap during the LGM. © 2018 John Wiley & Sons, Ltd. 相似文献
4.
Proglacial sediment dynamics from daily to seasonal scales in a glaciated Alpine catchment (Bossons glacier,Mont Blanc massif,France) 下载免费PDF全文
The sediment yields of Alpine catchments are commonly determined from streamload measurements made some distance downstream from glaciers. However, this approach indiscriminately integrates erosion processes occurring in both the glacial and proglacial areas. A specific method is required to ascertain the respective inputs from (i) subglacial and supraglacial sediments, (ii) proglacial hillslopes and (iii) proglacial alluvial areas or sandurs. This issue is addressed here by combining high‐resolution monitoring (2 min) of suspended sediment concentrations at different locations within a catchment with discharge gauging and precipitation data. This methodological framework is applied to two proglacial streams draining the Bossons glacier (Mont Blanc massif, France): the Bossons and Crosette streams. For the Bossons stream, discharge and suspended load data were acquired from June to October 2013 at 1.15 and 1.5 km from the glacial terminus, respectively upstream and downstream from a small valley sandur. These hydro‐sedimentary data are compared with the Crosette stream dataset acquired at the outlet of the Bossons glacier subglacial drainage system. A fourfold analysis focusing on seasonal changes in streamload and discharge, multilinear regression modelling, evaluation of the sandur flux balance and probabilistic uncertainty assessment is used to determine the catchment sediment budget and to explain the proglacial sediment dynamics. The seasonal fluctuation of the sediment signal observed is related to the gradual closing of the subglacial drainage network and to the role of the proglacial area in the sediment cascade: the proglacial hillslopes appear to be disconnected from the main channel and the valley sandur acts as a hydrodynamic sediment buffer both daily and seasonally. Our findings show that an understanding of proglacial sediment dynamics can help in evaluating paraglacial adjustment and subglacial erosion processes. Copyright © 2017 John Wiley & Sons, Ltd. 相似文献
5.
André Salgado César Varajão Fabrice Colin Régis Braucher Angélica Varajão Herminio Nalini Jr 《地球表面变化过程与地形》2007,32(6):905-911
The present work quantifies the erosive processes in the two main substrates (schists–phyllites and granites–gneisses) of the upper Maracujá Basin in the Quadrilátero Ferrífero/MG, Brazil, a region of semi‐humid tropical climate. Two measuring methods of concentration were used: (i) in situ produced 10Be in quartz veins (surface erosion rates) and (ii) 10Be in fluvial sediments (basin erosion rates). The results confirm that (i) erosion tends to be more aggressive close to the headwaters than in the lower parts of the basin and (ii) the region is now affected by dissection. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献
6.
A note on 10Be‐derived mean erosion rates in catchments with heterogeneous lithology: examples from the western Central Andes 下载免费PDF全文
Sebastien Carretier Vincent Regard Riccardo Vassallo Joseph Martinod Frederic Christophoul Eric Gayer Laurence Audin Christelle Lagane 《地球表面变化过程与地形》2015,40(13):1719-1729
Millennial catchment–mean erosion rates derived from terrestrial cosmogenic nuclides are generally based on the assumption that the lithologies of the parent rock each contain the same proportion of quartz. This is not always true for large catchments, in particular at the edge of mountainous plateaus where quartz‐rich basement rocks may adjoin sedimentary or volcano‐sedimentary rocks with low quartz content. The western Central Andes is an example of this type of situation. Different quartz contents may be taken into account by weighting the TCN production rates in the catchment. We recall the underlying theory and show that weighting the TCN production rate may also lead to bias in the case of a spatial correlation between erosion rate and lithology. We illustrate the difference between weighted and unweighted erosion rates for seven catchments (16 samples) in southern Peru and northern Chile and show variations up to a factor of 2 between both approaches. In this dataset, calculated erosion rates considering only granitoid outcrops are better correlated with catchment mean slopes than those obtained without taking into account the geological heterogeneity of the drained watershed. This dataset analysis demonstrates that weighting erosion rates by relative proportions of quartz is necessary to evaluate the uncertainties for calculated catchment–mean erosion rates and may reveal the correlation with geomorphic parameters. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
7.
Rates of erosion and landscape change along the Blue Ridge escarpment,southern Appalachian Mountains,estimated from in situ cosmogenic 10Be 下载免费PDF全文
Colleen L. Linari Paul R. Bierman Eric W. Portenga Milan J. Pavich Robert C. Finkel Stewart P.H.T. Freeman 《地球表面变化过程与地形》2017,42(6):928-940
The Blue Ridge escarpment, located within the southern Appalachian Mountains of Virginia and North Carolina, forms a distinct, steep boundary between the lower‐elevation Piedmont and higher‐elevation Blue Ridge physiographic provinces. To understand better the rate at which this landform and the adjacent landscape are changing, we measured cosmogenic beryllium‐10 (10Be) in quartz separated from sediment samples (n = 50) collected in 32 streams and from three exposed bedrock outcrops along four transects normal to the escarpment, allowing us to calculate erosion rates integrated over 104–105 years. These basin‐averaged erosion rates (5.4–49 m Myr?1) are consistent with those measured elsewhere in the southern Appalachain Mountains and show a positive relationship between erosion rate and average basin slope. Erosion rates show no relationship with basin size or relative position of the Brevard fault zone, a fundamental structural element of the region. The cosmogenic isotopic data, when considered along with the distribution of average basin slopes in each physiographic province, suggest that the escarpment is eroding on average more rapidly than the Blue Ridge uplands, which are eroding more rapidly than the Piedmont lowlands. This difference in erosion rates by geomorphic setting suggests that the elevation difference between the uplands and lowlands adjacent to the escarpment is being reduced but at extremely slow rates. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
8.
Lionel Siame Olivier Bellier Rgis Braucher Michel Sbrier Marc Cushing Didier Bourls Bruno Hamelin Emmanuel Baroux Beatrice de Voogd Grant Raisbeck Franoise Yiou 《Earth and Planetary Science Letters》2004,220(3-4):345-364
Over the past decade, in situ-produced cosmogenic nuclides have revolutionised the study of landscape evolution. In particular, numerous studies have demonstrated that, in active tectonic settings, cosmic ray exposure dating of deformed or displaced geomorphic features makes it possible to quantify long-term deformation rates. In western European countries, erosion due to climatically driven processes and human activities is probably the factor that most limits the accuracy of exposure ages and landscape modification rates. In this study, we present the results of a depth-profiling technique applied to alluvial terraces located along the Rhône and the Moyenne Durance rivers. The expected decrease with depth of the measured 10Be concentrations has been modelled using a χ2 inversion method in order to constrain the exposure history of the alluvial sediments. The results suggest that: (1) over the Quaternary, the local surface erosion rates including both regional uplift and climatically driven processes acting on landforms are on the order of 30 m/Myr in southeastern France, and (2) providing a fairly good bracketing of the exposure age, the modelled abandonment age of alluvial terraces affected by the Moyenne Durance Fault allows estimating incision rates, comparing the alluvial terrace elevations with topographic river profiles, and a minimum vertical slip rate value of roughly 0.02 mm/yr for the southern segment of the Moyenne Durance Fault. 相似文献
9.
Yann Rolland Romain Darnault Régis Braucher Didier Bourlès Carole Petit Stéphane Bouissou ASTER Team 《地球表面变化过程与地形》2020,45(2):393-410
Estimating the extent and age of the last glacial maxima as well as the chronology of glacial recessions in various environmental contexts is key to source-to-sink studies and paleoclimate reconstructions. The Argentera-Mercantour massif is located at the transition between the Alps and the Mediterranean Sea, therefore, its deglaciation chronology can be compared to the sediment budget of the Var River basin. Based on 13 new cosmic-ray exposure (CRE) beryllium-10 (10Be) datings performed on moraines and polished crystalline bedrocks and 22 reassessed 10Be CRE ages from similar altitude nearby steep basement surfaces, and from a lake sediment core, we can constrain the deglaciation chronology of the Argentera-Mercantour massif. These data allow for the first time to fully reconstruct the deglaciation history at the scale of the entire massif in agreement with a major glacier recession at c. 15 ka, at the onset of Bølling transition between the Oldest and Older Dryas. Main deglaciation of the upper slopes [2700–2800 m above sea level (a.s.l.)] occurred after the Last Glacial Maximum (LGM) at 20.8–18.6 ka, followed by the main deglaciation of the lower slopes (2300 m a.s.l.) at 15.3–14.2 ka. Finally, the flat polished surfaces above 2600 m a.s.l. and the zones confined within narrow lateral valleys were likely affected by progressive ice melting of remaining debris covered glaciers and moraine erosion following the Younger Dryas re-advance stage between 12 and 8–9 ka. At lower elevations, the Vens Lake located at 2300 m a.s.l., allows evidence of the onset of lake sedimentation at c. 14 ka and a transition towards a vegetated environment that mainly occurred before 8 ka. Moraine final stabilization at 5 ka might reflect denudation acceleration during the Holocene humid phase. This contribution reveals a glacier–climate relationship more sensitive to warming phases in the southern Alps highlighted by a major decrease of glaciers after c. 15 ka. This major deglaciation is correlated with a 2.5-fold decrease of sediment discharge of rivers into the Mediterranean Sea. © 2019 John Wiley & Sons, Ltd. 相似文献
10.
Erik Thorson Brown Robert F. Stallard Matthew C. Larsen Didier L. Bourls Grant M. Raisbeck Franoise Yiou 《Earth and Planetary Science Letters》1998,160(3-4):723-728
Accurate estimates of watershed denudation absent anthropogenic effects are required to develop strategies for mitigating accelerated physical erosion resulting from human activities, to model global geochemical cycles, and to examine interactions among climate, weathering, and uplift. We present a simple approach to estimate predevelopment denudation rates using in-situ-produced cosmogenic 10Be in fluvial sediments. Denudation processes in an agricultural watershed (Cayaguás River Basin, Puerto Rico) and a matched undisturbed watershed (Icacos River Basin) were compared using 10Be concentrations in quartz for various size fractions of bed material. The coarse fractions in both watersheds bear the imprint of long subsurface residence times. Fine material from old shallow soils contributes little, however, to the present-day sediment output of the Cayaguás. This confirms the recent and presumably anthropogenic origin of the modern high denudation rate in the Cayaguás Basin and suggests that pre-agricultural erosional conditions were comparable to those of the present-day Icacos. 相似文献
11.
In situ cosmogenic ~(10)Be dating of the Quaternary glaciations in the southern Shaluli Mountain on the Southeastern Tibetan Plateau 总被引:6,自引:0,他引:6
It is generally considered that four-times ice age happened during the Quaternary epoch on the Tibetan Plateau. However, the research on the chronology of the four-times ice age is far from enough. The Shaluli Mountain on the Southeastern Tibetan Plateau is an ideal place for plaeo-glacier study, because there are abundant Quaternary glacial remains there. This paper discusses the ages of the Quaternary glaciations, based on the exposure dating of roche moutonnée, moraines and gla- cial erosion surfaces using in situ cosmogenic isotopes 10Be. It is found that the exposure age of the roche moutonnée at Tuershan is 15 ka, corresponding to Stage 2 of the deep-sea oxygen isotope, suggesting that the roche moutonnée at Tuershan is formed in the last glacial maximum. The expo- sure age of glacial erosion surface at Laolinkou is 130―160 ka, corresponding to Stage 6 of the deep-sea oxygen isotope. The oldest end moraine at Kuzhaori may form at 421―766 kaBP, corre- sponding to Stages 12―18 of the deep-sea oxygen isotope. In accordance with the climate charac- teristic of stages 12,14,16 and 18 reflected by the deep-sea oxygen isotope, polar ice cores and loess sequence, the oldest end moraine at Kuzhaori may form at stage 12 or stage 16, the latter is more possible. 相似文献
12.
Francesco Brardinoni Reto Grischott Florian Kober Corrado Morelli Marcus Christl 《地球表面变化过程与地形》2020,45(15):3955-3974
We examine the sensitivity of 10Be concentrations (and derived denudation rates), to debris-flow and anthropogenic perturbations in steep settings of the Eastern Alps, and explore possible relations with structural geomorphic connectivity. Using cosmogenic 10Be as a tracer for functional geomorphic connectivity, we conduct sampling replications across four seasons in Gadria, Strimm and Allitz Creek. Sampling sites encompass a range of structural connectivity configurations, including the conditioning of a sackung, all assessed through a geomorphometric index (IC). By combining information on contemporary depth of erosion and sediment yield, disturbance history and post-LGM (Last Glacial Maximum) sedimentation rates, we constrain the effects of debris-flow disturbance on 10Be concentrations at the Gadria sites. Here, we argue that bedrock weakening imparted by the sackung promotes high depth of erosion. Consequently, debris flows recruit sediment beyond the critical depth of spallogenic production (e.g., >3 m), which in turn, episodically, due to predominantly muogenic production pathways, lowers 10Be concentration by a factor of 4, for at least 2 years. In contrast, steady erosion in Strimm Creek yields very stable 10Be concentrations through time. In Allitz Creek, we observe two- to fourfold seasonal fluctuations in 10Be concentrations, which we explain as the combined effects of water diversion and hydraulic structures on sediment mixing. We further show that 10Be concentration correlates inversely with the IC index, where sub-basins characterized by high concentrations (long residence times) exhibit low IC values (structurally disconnected) and vice versa, implying that, over millennial time scales a direct relation exists between functional and structural connectivity, and that the IC index performed as a suitable metric for structural connectivity. The index performs comparably better than other metrics (i.e., mean slope and mean normalized channel steepness index) previously used to assess topographic controls on denudation rates in active unglaciated ranges. In terms of landscape evolution, we argue that the sackung, by favouring intense debris-flow activity across the Holocene, has aided rapid postglacial reshaping of the Gadria basin, which currently exhibits a topographic signature characteristic of unglaciated debris-flow systems. © 2020 John Wiley & Sons, Ltd. 相似文献