首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The study of the coastal landscapes of hotspot oceanic islands through comprehensive structural metrics and ecological estimators represents an opportunity to explore geomorphological transformations and broad spatiotemporal scale features of coastal evolution. As part of this approach, a new metrical comparative analysis is presented in this study, comprising four islands in different evolutionary stages. They belong to the Cape Verde archipelago, which forms a double insular chain in which an east–west gradient in age and evolution is particularly evident across the southern chain. A space-for-time (SFT) substitution approach is applied to the coasts of (1) Fogo, in the shield stage; (2) Santiago, in the early post-erosional stage; (3) São Vicente, in the advanced post-erosional stage; and (4) Boa Vista, in the last erosional stage. From the obtained spatial distributions and frequencies of landforms, the coastal landscapes of these islands are compared in relation to their (i) geomorphic composition, using similarity indices (Whittaker, βw, Sorensen, Cs) and nestedness estimators (NOFD, WNODF), (ii) geomorphic abundance, using morpho-assembling densities (Dgm), and (iii) geomorphic diversity, using six alpha-diversity indices (Richness, S, Menhinick, DMN, Simpson, D, Shannon, H', Berger-Parker, d, and Brillouin, HB). An advanced geomorphological taxonomy is implemented for areas with limited open-access data, including a set of planform features captured through scale-frequency decomposition. Photographic, cartographic and fieldwork data are used for landform identification at 1200 random sampling points, empirically determined by a bootstrap method. The results show a chronological ordering of the compared variables and a possible co-evolution towards an increase in organizational geomorphic complexity of coastal systems at broad space-timescales. The method proposed in this study can contribute, from a metrical perspective, to finding new long-term evolutionary features and constitutes an advance in the development of an integrated model of coastal evolution in oceanic islands. © 2019 John Wiley & Sons, Ltd.  相似文献   

2.
Transient evolution and adjustment to changing tectonic and climatic boundary conditions is an essential attribute of landscapes, and characterizing transient behavior is a key to understanding their dynamics and history. Developing new approaches to detect such transience has been explored by various methods, in particular to identify landscape response to Late Cenozoic and Quaternary climatic changes. Such studies have often focused on regions of high relief and/or active tectonic activity where interferences between tectonic and climatic signals might complicate the interpretation of the observations. We investigated the case of the hillslopes of the Serra do Cipó quartzitic range in SE Brazil in order to detect and quantify transience in a tectonically quiescent landscape over 100-ka timescales. We determined hilltop curvature from a high-resolution digital surface model derived from Pléiades imagery and measured cosmogenic nuclide (10Be and 26Al) concentrations at these hilltop sites. We compare both observations with predictions of hillslope diffusion theory, observing a distinctive signature of an acceleration of denudation. We performed a joint inversion of topographic and isotopic data to retrieve an evolution of the hillslope sediment transport coefficient through time. The timing of the increase in denudation cannot be unequivocally associated with a single climatic event but is consistent with important, climatically modulated fluctuations in precipitation and erosion in this area during the Middle and Late Pleistocene.  相似文献   

3.
In biological evolution, creativity occurs in the appearance of new entities by evolutionary dynamics. This is linked to mutations and genetic drift, which cannot occur in geophysical phenomena. Biota can exhibit evolutionary creativity that influences landforms, but how does creativity (defined here as the capacity for emergence of new entities that increase the adjustedness of the landscape to environmental conditions) occur in landforms and landscapes as entities independent of biota? Creativity in geomorphic evolution does not require any sort of goal functions or purposeful innovation – just that geomorphic development is capable of producing novelties that may be better adapted (more efficient or durable) than predecessors. Independently of biota, evidence exists that landforms may develop to become more or less ‘fit' in terms of efficiency and/or durability. Thus, emergence of novel features may lead to their persistence. Emergence of novel forms is illustrated for the case of karst sinkholes (dolines), which indicates increasing geomorphic diversity over Ma and Ga timescales. A case study of fluviokarst chronosequences in Kentucky demonstrates emergence and elimination of landforms as landscapes evolve. Some of these may represent generally (as opposed to locally) novel landforms. While this article is more suggestive than demonstrative, results strongly suggest evolutionary creativity in geomorphology both tied to, and independent of, biological evolution. This occurs due to emergence of geomorphic entities that are subject to selection that tends to increase efficiency and durability. © 2019 John Wiley & Sons, Ltd.  相似文献   

4.
Incised coastal gullies (ICGs) are dynamic features found at the terrestrial‐coastal interface. Their geomorphic evolution is driven by the interactions between processes of fluvial knickpoint migration and coastal cliff erosion. Under scenarios of future climate change the frequency and magnitude of the climatological drivers of both terrestrial (fluvial and hillslope) and coastal (cliff erosion) processes are likely to change, with an adjunct impact on these types of coastal features. Here we explore the response of an incised coastal gully to changes in both terrestrial and coastal climate in order to elucidate the key process interactions which drive ICG evolution. We modify an extant landscape evolution model, CHILD, to incorporate processes of soft‐cliff erosion. This modified version, termed the Coastal‐Terrestrial‐CHILD (CT‐CHILD) model, is then employed to explore the interactions between changing terrestrial and coastal driving forces on the future evolution of an ICG found on the south‐west Isle of Wight, UK. It was found that the magnitude and frequency of storm events will play a key role in determining the future trajectory of ICGs, highlighting a need to understand the role of event sequencing in future projections of landscape evolution. Furthermore, synergistic (positive) and antagonistic (negative) interactions were identified between coastal and terrestrial parameters, such as wave height intensity and precipitation duration, which act to modulate the impact of changes in any one parameter. Of note was the role played by wave height intensity in driving coastal erosion, which was found to play a more important role than sea‐level rise in determining rates of coastal erosion. This highlights the need for a greater focus on wave height in studies of soft‐cliff erosion. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
Landscape evolution in northern New England is characterized by the persistence of landforms over long time periods. The topography in the study area was initiated by Paleozoic diapiric intrusion of granitic rocks as highs within metasedimentary and volcanic rocks. This framework was probably reinforced by differences in the resistance of the massive igneous and the fractured metasedimentary rocks to erosion. As a result, both the Tertiary and present-day relief of the area consists of uplands developed on granitic rocks partly overlain by Paleozoic volcanic rocks, and lowlands developed on Paleozoic metasediments. Extensive volcanism in the Tertiary had only a minimal effect on this relationship. A significant impact of Tertiary volcanism, however, was the diversion of major streams across topographic highs. Despite 19-35 Ma of incision, these streams are still far from establishing equilibrium profiles and dissecting the highs. The persistence of topography for a timescale of the same order of magnitude as that conventionally thought to be required for planation is due to reduced denudation rates in a passive tectonic setting and the presence of erosion-resistant Paleozoic igneous units. The latter influence is indicated by knickpoint persistence for 19-35 Ma on streams diverted across these rocks. Since it is generally considered that such disequilibria are short-lived features formed by Quaternary or ongoing deformation, this knickpoint persistence has important implications for landscape analyses that use disequilibria to assess recent tectonism in a landscape.  相似文献   

6.
Past variations in climate and tectonics have led to spatially and temporally varying erosion rates across many landscapes. In this contribution I examine methods for detecting and quantifying the nature and timing of transience in eroding landscapes. At a single location, cosmogenic nuclides can detect the instantaneous removal of material or acceleration of erosion rates over millennial timescales using paired nuclides. Detection is possible only if one of the nuclides has a significantly shorter half‐life than the other. Currently, the only practical way of doing this is to use cosmogenic in situ carbon‐14 (14C) alongside a longer lived nuclide, such as beryllium‐10 (10Be). Hillslope information can complement or be used in lieu of cosmogenic information: in soil mantled landscapes, increased erosion rates can be detected for millennia after the increase by comparing relief and ridgetop curvature. This technique will work as long as the final erosion rate is greater than twice the initial rate. On a landscape scale, transience may be detected based upon disequilibria in channel profiles or ridgetops, but transience can be sensitive to the nature of transient forcing. Where forcing is periodic, landscapes display differing behavior if forcing is driven by changes in base level lowering rates versus changes in the efficiency of either channel or hillslope erosion (e.g. driven by climate change). Oscillations in base level lowering lead to basin averaged erosion rates that reflect a long term average erosion rate despite strong spatial heterogeneity in local erosion rates. This averaging is reflected in 10Be concentrations in stream sediments. Changes in hillslope sediment transport coefficients can lead to large fluctuations in basin averaged erosion rates, which again are reflected in 10Be concentrations. The variability of erosion rates in landscapes where both the sediment transport and channel erodibility coefficients vary is dominated by changes to the hillslope transport coefficient. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
Globally sandy coastlines are threatened by erosion driven by climatic changes and increased storminess. Understanding how they have responded to past storms is key to help manage future coastal changes. Coastal spits around the world are particularly dynamic and therefore potentially vulnerable coastal features. Therefore, how they have evolved over the last few centuries is of great importance. To illustrate this, this study focuses on the historical evolution of a spit at Spurn on the east coast of the UK, which currently provides critical protection to settlements within the Humber estuary. Through the combination of digitized historical mapping and luminescence dating, this study shows that Spurn has been a consistent coastal feature over at least the past 440 years. No significant westward migration was observed for the last 200 years. Results show a long-term extension of the spit and a decrease in its overall area, particularly in the last 50 years. Breaches of the neck cause temporary sediment pathway changes enabling westward extension of the head. Use of digitized historical maps in GIS combined with OSL dating has allowed a more complete understanding of long-term spit evolution and sediment transport modes at Spurn. In doing so it helps inform future possible changes linked to pressures, such as increases in storm events and sea-level rise. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd  相似文献   

8.
Coastal dunes provide essential protection for infrastructure in developed regions, acting as the first line of defence against ocean-side flooding. Quantifying dune erosion, growth and recovery from storms is critical from management, resiliency and engineering with nature perspectives. This study utilizes 22 months of high-resolution terrestrial LiDAR (Riegl VZ-2000) observations to investigate the impact of management, anthropogenic modifications and four named storms on dune morphological evolution along ~100 m of an open-coast, recently nourished beach in Nags Head, NC. The influences of specific management strategies – such as fencing and plantings – were evaluated by comparing these to the morphologic response at an unmanaged control site at the USACE Field Research Facility (FRF) in Duck, NC (33 km to the north), which experienced similar environmental forcings. Various beach-dune morphological parameters were extracted (e.g. backshore-dune volume) and compared with aeolian and hydrodynamic forcing metrics between each survey interval. The results show that LiDAR is a useful tool for quantifying complex dune evolution over fine spatial and temporal scales. Under similar forcings, the managed dune grew 1.7 times faster than the unmanaged dune, due to a larger sediment supply and enhanced capture through fencing, plantings and walkovers. These factors at the managed site contributed to the welding of the incipient dune to the primary foredune over a short period of less than a year, which has been observed to take up to decades in natural systems. Storm events caused alongshore variable dune erosion primarily to the incipient dune, yet also caused significant accretion, particularly along the crest at the managed site, resulting in net dune growth. Traditional empirical Bagnold equations correlated with observed trends of backshore-dune growth but overpredicted magnitudes. This is likely because these formulations do not encompass supply-limiting factors and erosional processes. © 2019 John Wiley & Sons, Ltd.  相似文献   

9.
Epigenetic gorges form when channels that have been laterally displaced during episodes of river blockage or aggradation incise down into bedrock spurs or side‐walls of the former valley rather than excavating unconsolidated fills and reinhabiting the buried paleovalley. Valley‐filling events that promote epigenetic gorges can be localized, such as a landslide dam or an alluvial/debris flow fan deposit at a tributary junction, or widespread, such as fluvial aggradation in response to climate change or fluctuating base‐level. The formation of epigenetic gorges depends upon the competition between the resistance to transport, strength and roughness of valley‐filling sediments and a river's ability to sculpt and incise bedrock. The former affects the location and lateral mobility of a channel incising into valley‐filling deposits; the latter determines rates of bedrock incision should the path of the incising channel intersect with bedrock that is not the paleovalley bottom. Epigenetic gorge incision, by definition, post‐dates the incision that originally cut the valley. Strath terraces and sculpted bedrock walls that form in relation to epigenetic gorges should not be used to directly infer river incision induced by tectonic activity or climate variability. Rather, they are indicative of the variability of short‐term bedrock river incision and autogenic dynamics of actively incising fluvial landscapes. The rate of bedrock incision associated with an epigenetic gorge can be very high (>1 cm/yr), typically orders of magnitude higher than both short‐ and long‐term landscape denudation rates. In the context of bedrock river incision and landscape evolution, epigenetic gorges force rivers to incise more bedrock, slowing long‐term incision and delaying the adjustment of rivers to regional tectonic and climatic forcing. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
Rising in the Neogene hills of the Mallakaster, the rivers Seman and Vjosa have built up two large joint deltas on the Albanian Adriatic shore. This shoreline is characterized by a low sandy coast with bars and spits. Changes in the river courses and migration of the mouths of the deltas were rapid and numerous from the Holocene period until the beginning of drainage works in the 1950s. The drainage basins of the two rivers are developed in soft clastic rocks (flysch and molasse) in the proportion of 71·4 per cent for the Seman and 44·8 per cent for the Vjosa. Both rivers carry abundant sediment loads, amounting to 6·7 × 106 tonnes per year for the Vjosa and 13·2 × 106 tonnes per year for the Seman. This is the reason why the alluvial deposits of the Seman have built up two‐thirds of the alluvial plain. The use of a SPOT image dated 25 May 1995 (HRV 3 081‐268) enabled us to view the effects of coastal and fluvial dynamics, the role of neotectonics as well as the predominance of the plume of suspended sediment of the Seman river. Using this image, a geomorphological map was drawn, which identifies the palaeochannels of the Seman and the Vjosa. In order to date those palaeochannels we have made an archaeological inventory from oral and written published information. The location of the sites we studied was checked systematically in the field. The mediaeval and Ottoman archives kept in Tirana also provided substantial information, as well as the reconstitution of the evolution of the shoreline between 1870 and 1990, carried out using an inventory of topographic maps. This work allowed us to reconstitute the progression of the deltas of the Seman and the Vjosa since antiquity. We may then infer that from antiquity up to the Middle Ages, the deltas of the Seman and the Vjosa both progressed very moderately and in a comparable way. However, at the end of the 15th century the Seman underwent a major change in its course, through a southward migration of the river. The natural processes of alluviation and changes in the river courses seem to have been accelerated as agricultural exploitation of the Neogene hills that form most of the drainage basin of the Seman increased. This exploitation is linked with the massive exportation of cereal from the port of Skela e Pirgut, which started in the 14th century. It appears that the 20th century has been the period of the largest progression of the deltas during historical times. The speed of progression increased as early as the beginning of the century, as a result of the rapid growth of the rural population densities. Soil erosion from arable fields increased catchment sediment yields to promote rapid changes in the river courses. This resulted in abandonment of deltaic mouths, a phenomenon leading to a straightening of the coast. Thus to the south of the present mouth of the Seman the coast receded by 7 to 30 m per year between 1968 and 1990 as a result of the abandonment of a mouth. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

11.
While it is well recognized that vegetation can affect erosion, sediment yield and, over longer timescales, landform evolution, the nature of this interaction and how it should be modeled is not obvious and may depend on the study site. In order to develop quantitative insight into the magnitude and nature of the influence of vegetation on catchment erosion, we build a landscape evolution model to simulate erosion in badlands, then calibrate and evaluate it against sediment yield data for two catchments with contrasting vegetation cover. The model couples hillslope gravitational transport and stream alluvium transport. Results indicate that hillslope transport processes depend strongly on the vegetation cover, whereas stream transport processes do not seem to be affected by the presence of vegetation. The model performance in prediction is found to be higher for the denuded catchment than for the reforested one. Moreover, we find that vegetation acts on erosion mostly by reducing soil erodibility rather than by reducing surface runoff. Finally, the methodology we propose can be a useful tool to evaluate the efficiency of previous revegetation operations and to provide guidance for future restoration work. © 2019 John Wiley & Sons, Ltd.  相似文献   

12.
Central Kentucky is characterized by a mixture of karst and ?uvial features, typically manifested as mosaic of karst‐rich/channel‐poor (KRCP) and channel‐rich/karst‐poor (CRKP) environments. At the regional scale the location and distribution of KRCP and CRKP areas are not always systematically related to structural, lithological, topographic, or other controls. This study examines the relationship of KRCP and CRKP zones along the Kentucky River gorge area, where rapid incision in the last 1·5 million years has lowered local base levels and modi?ed slopes on the edge of the inner bluegrass plateau. At the scale of detailed ?eld mapping on foot within a 4 km2 area, the development of karst and ?uvial features is controlled by highly localized structural and topographic constraints, and can be related to slope changes associated with retreat of the Kentucky River gorge escarpment. A conceptual model of karst/?uvial transitions is presented, which suggests that minor, localized variations are suf?cient to trigger a karst–?uvial or ?uvial–karst switch when critical slope thresholds are crossed. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.
The development of functional portable optically stimulated luminescence (OSL) readers over the last decade has provided practitioners with the capability to acquire luminescence signals from geological materials relatively rapidly, which allows for expedient preliminary chronostratigraphic insight when working with complex depositional systems of late Quaternary age. Typically, when using the portable OSL reader, infrared (IR) or blue post-IR OSL signals are acquired from bulk unprocessed materials, in contrast to regular luminescence dating, which is usually based on measurements on pure quartz or feldspar mineral separates, or on select silt-sized polymineralic portions. To demonstrate the utility of portable OSL measurements, this paper outlines the basic features of portable OSL readers and their constraints. Subsequently, case studies in which the instrument has been used to elucidate cryptostratigraphic variations in sedimentary sequences for geomorphological applications are reviewed. The studies can generally be grouped into three main categories. The first includes studies where the variation of portable OSL reader luminescence signal intensities with depth are plotted to generate profiles that contextualize sediment stratigraphy. In the second group, portable OSL reader luminescence signal intensities are used to interpret sediment processes that shed light on depositional histories. In the last category, luminescence signals from the portable OSL reader are calibrated to approximate numerical burial ages of depositional units. The paper concludes with a discussion of possible future directions. © 2020 John Wiley & Sons, Ltd.  相似文献   

14.
《Marine pollution bulletin》2014,81(1-2):222-233
Reverse osmosis membranes at many desalination plants are disinfected by periodic shock treatments with sodium metabisulphite, which have potentially toxic effects to the environment for marine life, although no empirical and experimental evidence for this is yet available. The aim of this study was to characterise for the first time, the physico-chemical modification of the marine environment and its biological effects, caused by hypersaline plumes during these membrane cleaning treatments. The case study was the Maspalomas II desalination plant, located in the south of Gran Canaria (Canary Islands, Spain). Toxicity bioassays were performed on marine species characteristic for the infralittoral soft bottoms influenced by the brine plume (Synodus synodus and Cymodocea nodosa), and revealed a high sensitivity to short-term exposure to low sodium metabisulphite concentrations. The corrective measure of incorporating a diffusion system with Venturi Eductors reduced nearly all the areas of influence, virtually eliminating the impact of the disinfectant.  相似文献   

15.
Optical dating, sedimentological analysis and soil profile development have been used to develop a chronology for, and an understanding of, the geomorphic evolution of the Holocene coastal plain between Otaki and Te Horo, North Island of New Zealand. The coastal plain has prograded 0·48 m a?1 since sea‐levels reached their post‐glacial maximum 6500 years ago. Dune development on the plain, which is dependent on the supply of sediment suitable for dune building, has been episodic. Three periods of dune activity have been identified – the Foxton, Motuiti and Waitarere phases – the last two of which are believed to have resulted from anthropogenic activities. The dunes north of the Otaki River and south of Mangaone Stream are typical of a coastal dune system that extends from Patea in the north to Paekakariki in the south. However, this system is disrupted by the Otaki River and the gravels it delivers to the coastal zone. Immediately south of the river mouth the dunes are significantly smaller, coarser, and contain significantly more magnetic material. The character of the landforms is the result of: the reworking of the last glacial deposits; ongoing coastal progradation; variation in the input of sediment suitable for dune formation; the change in beach character because of gravel input; and the position of the Otaki River mouth. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
The southern Appalachians represent a landscape characterized by locally high topographic relief, steep slopes, and frequent mass movement in the absence of significant tectonic forcing for at least the last 200 Ma. The fundamental processes responsible for landscape evolution in a post‐orogenic landscape remain enigmatic. The non‐glaciated Cullasaja River basin of south‐western North Carolina, with uniform lithology, frequent debris flows, and the availability of high‐resolution airborne lidar DEMs, is an ideal natural setting to study landscape evolution in a post‐orogenic landscape through the lens of hillslope–channel coupling. This investigation is limited to channels with upslope contributing areas >2.7 km2, a conservative estimate of the transition from fluvial to debris‐flow dominated channel processes. Values of normalized hypsometry, hypsometric integral, and mean slope vs elevation are used for 14 tributary basins and the Cullasaja basin as a whole to characterize landscape evolution following upstream knickpoint migration. Results highlight the existence of a transient spatial relationship between knickpoints present along the fluvial network of the Cullasaja basin and adjacent hillslopes. Metrics of topography (relief, slope gradient) and hillslope activity (landslide frequency) exhibit significant downstream increases below the current position of major knickpoints. The transient effect of knickpoint‐driven channel incision on basin hillslopes is captured by measuring the relief, mean slope steepness, and mass movement frequency of tributary basins and comparing these results with the distance from major knickpoints along the Cullasaja River. A conceptual model of area–elevation and slope distributions is presented that may be representative of post‐orogenic landscape evolution in analogous geologic settings. Importantly, the model explains how knickpoint migration and channel–hillslope coupling is an important factor in tectonically‐inactive (i.e. post‐orogenic) orogens for the maintenance of significant relief, steep slopes, and weathering‐limited hillslopes. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
A natural experiment in landscape evolution is a case study of landform development in which only one element varies significantly, and for which the driving forces, initial conditions, and/or boundary conditions are well constrained. Natural experiments provide a means of testing landscape evolution theory on the large space and time scales to which that theory applies. Natural experiments can involve either steady or transient conditions. Cases with steady conditions allow one to test predictions about the relationships among topography, erosion rates, and various attributes related to climate and material properties. Transient cases are valuable for distinguishing between models whose predictions might be similar, and therefore indistinguishable, under steady conditions. Essential ingredients of a natural experiment include minimal variation in all but one factor, good constraints on timing and/or rates, well‐characterized processes, and high quality topographic data. Other useful ingredients include information about intermediate topographic states (such as a former valley profile revealed by strath terraces), and knowledge of the time history of erosion rates. In order to deepen our understanding of the physics and chemistry of long‐term landscape evolution, there is a pressing need to identify natural experiments and develop the necessary databases to take advantage of them. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
A previous study aiming to characterize the water dynamics of a cloud forest in the Garajonay National Park (La Gomera) from measurements taken in a plot located in the upper part of a selected watershed within the park is here commented. Reported magnitudes of hydrological variables and conclusions based on them are in disagreement with those of numerous studies carried out previously at the same site. Large data dispersion and inapplicability of some of the hypothesis assumed are shown to invalidate most of the results. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
The question as to whether there is a seasonality in the occurrence of local seismic activity in the volcanic island of Tenerife, and if it could be associated to intense rainfall events is addressed. Analogue records from the TFMB seismic station and records on the daily precipitation at the Izaña Meteorological Observatory for the period December 1987–October 1992 were used to check this question. Statistical analyses show a non-random component in the temporal distribution of local microearthquakes at greater than 99% confidence, and a relatively strong contemporaneous correlation with intense rainfall periods. If the suggested correlation is confirmed by further investigations, it will allow better identification and discrimination of local seismic events that could be associated with volcanic activity, and thereby increase the performance of surveillance measures.  相似文献   

20.
Data on the seasonal variability of the quality and quantity of zooplankton are presented for the shallow eutrophic Darss-Zingst estuary. These data are the result of a monitoring programm from 1969–1995. Copepods and rotifers were the main components of the biomass. They showed a pattern of seasonal fluctuation which remained unchanged during the whole period of investigation. Copeods were dominant in spring and autumn and had their maximum in summer. Considerable biomass peaks of cladocerans were observed only in some years in connection with low salinities and high temperatures. A peak of meroplanktic larvae of polychates was observed in late autumn since 1989. Copepods were inversily correlated with the pH-value. An inverse correlation was also found between rotifers and water temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号