首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effectiveness of viscous and viscoelastic dampers for seismic response reduction of structures is quite well known in the earthquake engineering community. This paper deals with the optimal utilization of these dampers in a structure to achieve a desired performance under earthquake‐induced ground excitations. Frequency‐dependent and ‐independent viscous dampers and viscoelastic dampers have been considered as the devices of choice. To determine the optimal size and location of these dampers in the structure, a genetic algorithm is used. The desired performance is defined in terms of several different forms of performance functions. The use of the genetic approach is not limited to any particular form of performance function as long as it can be calculated numerically. For illustration, numerical examples for different building structures are presented showing the distribution and size of different dampers required to achieve a desired level of reduction in the response or a performance index. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

2.
黏滞阻尼器在单层网壳结构中的优化布置   总被引:1,自引:0,他引:1  
目前采用黏滞阻尼器对单层网壳结构进行减振控制时,阻尼器最优布置位置通过试算确定。针对此问题,推导了地震作用下黏滞阻尼器耗能公式,提出了以能量比例系数为评价指标的阻尼器优化布置准则。以单层球面网壳和单层柱面网壳为例,对比分析了地震作用下分别采用优化布置准则与现有布置方式布置阻尼器时结构最大节点位移减振系数,验证了所提出优化布置准则的正确性及在单层球面网壳和单层柱面网壳中的适用性。  相似文献   

3.
Optimal design of viscoelastic dampers using eigenvalue assignment   总被引:1,自引:0,他引:1  
In this study a procedure for determining the optimum size and location of viscoelastic dampers is proposed using the eigenvalue assignment technique. Natural frequencies and modal damping ratios, required to realize a given target response, are determined first by the convex model. Then the desired dynamic structural properties are realized by optimally distributing the damping and stiffness coefficients of viscoelastic dampers using non‐linear programming based on the gradient of eigenvalues. This optimization method provides information on the optimal location as well as the magnitude of the damper parameters. The proposed procedure is applied to the retrofit of a 10‐story shear frame, and to a three‐dimensional structure with an asymmetric plan. The analysis results confirm that the responses of model structures retrofitted by the proposed method correspond well with the given target response. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

4.
Tuned mass dampers for response control of torsional buildings   总被引:1,自引:0,他引:1  
This paper presents an approach for optimum design of tuned mass dampers for response control of torsional building systems subjected to bi‐directional seismic inputs. Four dampers with fourteen distinct design parameters, installed in pairs along two orthogonal directions, are optimally designed. A genetic algorithm is used to search for the optimum parameter values for the four dampers. This approach is quite versatile as it can be used with different design criteria and definitions of seismic inputs. It usually provides a globally optimum solution. Several optimal design criteria, expressed in terms of performance functions that depend on the structural response, are used. Several sets of numerical results for a torsional system excited by random and response spectrum models of seismic inputs are presented to show the effectiveness of the optimum designs in reducing the system response. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

5.
阻尼器参数的确定是利用阻尼器连接相邻结构进行减震设计的关键.根据随机地震反应理论,以相邻结构的频率比和质量比为参数,推导了结构位移反应均方差与连接阻尼比的关系式,得到了相邻结构的地震反应与频率比、质量比以及连接阻尼比的影响规律,从而得到了连接阻尼器的优化设计参数.根据自振频率相等的原则,探讨了将多自由度体系简化为单自由度体系的分析方法.最后在El Centro波、Taft 波及人工波激励下,对比分析了某相邻10层建筑结构有连接和无连接时的地震反应,表明黏滞阻尼器连接相邻结构具有较好的减震效果.本分析方法可供相邻结构减震设计参考.  相似文献   

6.
本文建立了基于二次型性能指标的结构控制系统控制器最优布置方法。以控制器撤除时的系统最优控制性能指标增量作为控制器对系统最优控制的贡献,并用做确定经济的控制器数量和最优控制器位置的定量分析准则。本文中的控制器位置和控制器设计采用同一个优化性能指标,使得控制系统设计为最优。根据逼近满设置控制器结构控制系统的最优状态求得控制器降阶后等价的反馈控制增益。应用本文的方法对剪切模型框架结构上安装的锚索控制器进行了控制器的总体优化设计。数值分析表明,本文提出的控制器数量、位置和参数优化方法不仅易于实现,而且甚为有效。  相似文献   

7.
A methodology for the optimal design of supplemental viscous dampers for framed structures is presented. It addresses the problem of minimizing the added damping subject to a constraint on the maximal interstorey angular drift for an ensemble of realistic ground motion records while assuming linear behaviour of the damped structure. The solution is achieved by actually solving an equivalent optimization problem of minimizing the added damping subject to a constraint on a maximal weighted integral on the squared angular drift. The computational effort is appreciably reduced by first using one ‘active’ ground motion record. If the resulting optimal design fails to satisfy the constraints for other ground motions from the original ensemble, additional ground motions (loading conditions) are added one by one to the ‘active’ set until the optimum is reached. An efficient selecting process which is presented herein will usually require one or two records to attain an optimum design. Examples of optimal designs of supplemental dampers are presented for a 2‐storey shear frame and a 10‐storey industrial frame. The 2‐storey shear frame is required to withstand one given ground motion whereas the 10‐storey frame is required to withstand an ensemble of twenty ground motions. The resulting viscously damped structures have envelope values of interstorey drifts equal or less than the target drifts. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
Nonlinear viscous dampers are supplemental devices widely used for enhancing the performance of structural systems exposed to seismic hazard. A rigorous evaluation of the effect of these damping devices on the seismic performance of a structural system should be based on a probabilistic approach and take into account the evolutionary characteristics of the earthquake input and of the corresponding system response. In this paper, an approximate analytical technique is proposed for studying the nonstationary stochastic response characteristics of hysteretic single degree of freedom systems equipped with viscous dampers subjected to a fully nonstationary random process representing the seismic input. In this regard, a stochastic averaging/linearization technique is utilized to cast the original nonlinear stochastic differential equation of motion into a simple first‐order nonlinear ordinary differential equation for the nonstationary system response variance. In comparison with standard linearization schemes, the herein proposed technique has the significant advantage that it allows to handle realistic seismic excitations with time‐varying frequency content. Further, it allows deriving a formula for determining the nonlinear system response evolutionary power spectrum. By this way, ‘moving resonance’ effects, related to both the evolutionary seismic excitation and the nonlinear system behavior, can be observed and quantified. Several applications involving various system and input properties are included. Furthermore, various response parameters of interest for the seismic performance assessment are considered as well. Comparisons with pertinent Monte Carlo simulations demonstrate the reliability of the proposed technique. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
Semi‐active control of buildings and structures for earthquake hazard mitigation represents a relatively new research area. Two optimal displacement control strategies for semi‐active control of seismic response of frame structures using magnetorheological (MR) dampers or electrorheological (ER) dampers are proposed in this study. The efficacy of these displacement control strategies is compared with the optimal force control strategy. The stiffness of brace system supporting the smart damper is also taken into consideration. An extensive parameter study is carried out to find the optimal parameters of MR or ER fluids, by which the maximum reduction of seismic response may be achieved, and to assess the effects of earthquake intensity and brace stiffness on damper performance. The work on example buildings showed that the installation of the smart dampers with proper parameters and proper control strategy could significantly reduce seismic responses of structures, and the performance of the smart damper is better than that of the common brace or the passive devices. The optimal parameters of the damper and the proper control strategy could be identified through a parameter study. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

10.
In this study, several mass dampers were designed and fabricated to suppress the seismic responses of a ¼‐scale three‐storey building structure. The dynamic properties of the dampers and structure were identified from free and forced vibration tests. The building structure with or without the dampers was, respectively, tested on a shake table under the white noise excitation, the scaled 1940 El Centro earthquake and the scaled 1952 Taft earthquake. The dampers were placed on the building floors using the sequential procedure developed by the authors in previous studies. Experimental results indicated that the multiple damper system is substantially superior to a single tuned mass damper in mitigating the floor accelerations even though the multiple dampers are sub‐optimal in terms of tuning frequency, damping and placement. These results validated the sequential procedure for placement of the multiple dampers. The structure was also analysed numerically based on the shake table excitation and the identified structure and damper parameters for all test cases. Numerical and experimental results are in good agreement, validating the dynamic properties identified. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

11.
磁流变阻尼器在受控结构中的优化布置   总被引:4,自引:0,他引:4  
高层建筑结构中由于地震引起的结构体系的振动是十分严重的,利用磁流变阻尼器进行振动控制的方法可以有效减小体系的振动反应、这种振动控制的效果,不仅取决于阻尼器出力大小和控制算法的优化,也取决于阻尼器在高层结构中的布置位置。首先对近年来出现的许多优化布置方法进行了阐述,论述了这些方法的优缺点,然后选用了一种优化布置方法并结合一个结构体系进行了阻尼器的优化布置研究,最后给出了阻尼器优化布置的几个原则。研究的结果表明通过阻尼器在高层结构中的优化布置可以有效提高振动控制的效果.  相似文献   

12.
The optimal values for the distribution of passive dampers interconnecting two adjacent structures of different heights are determined. The dampers are selected to minimize the seismic response in the first and second modes of the taller of the two structures. For simplicity, the structures are represented as uniform damped shear beams subjected to a common ground motion. Under certain conditions, apparent damping ratios as high as 12 and 15 per cent can be achieved in the first and second modes of lightly damped structures by the introduction of interconnection dampers. The largest reduction of the response in the first mode is achieved when the taller structure is about twice the height of the second structure. © 1998 John Wiley & Sons, Ltd.  相似文献   

13.
This paper presents a simultaneous optimization procedure for both viscoelastic dampers (VEDs) and supporting braces installed in a structure. The effect of supporting braces on the control efficiency of VEDs is also investigated. To apply a general gradient‐based optimization algorithm, closed‐form expressions for the gradients of objective function and constraints are derived. Also, the constraint on the dynamic behavior of a structure is embedded in the gradient computation procedure to reduce the number of variables in the optimization. From numerical analysis of an example structure, it was found that when sufficient stiffness cannot be provided for the supporting braces, the flexibility of the brace should be taken into account in the design of the VED to achieve the desired performance of the structure. It was also observed that, as a result of the proposed optimization process, the size of the supporting brace could be reduced while the additional VED size (to compensate for the loss of the control effect) was insignificant. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

14.
To address challenges in stochastic seismic analysis of nonlinear structures, this paper further develops a recently proposed Gaussian mixture–based equivalent linearization method (GM‐ELM). The GM‐ELM uses a Gaussian mixture distribution model to approximate the probabilistic distribution of a nonlinear system response. Using properties of the Gaussian mixture model, GM‐ELM can decompose the non‐Gaussian response of a nonlinear system into multiple Gaussian responses of linear single–degree of freedom oscillators. With the set of the equivalent linear systems identified by GM‐ELM, response statistics as crossing rate and first‐passage probability can be computed conveniently using theories of linear random vibration analysis. However, the original version of GM‐ELM may lead to an inaccurate estimate because of the heuristic parameters of the linear system introduced to supplement insufficient information. To overcome this limitation and define unique equivalent linear systems, this paper proposes a further developed version of GM‐ELM, which uses a mixture of bivariate Gaussian densities instead of univariate models. Moreover, to facilitate the use of elastic response spectra for estimating the mean peak responses of a nonlinear structure, a new response spectrum combination rule is proposed for GM‐ELM. Two numerical examples of hysteretic structural systems are presented in this paper to illustrate the application of the bivariate GM‐ELM to nonlinear stochastic seismic analysis. The analysis results obtained by the bivariate GM‐ELM are compared with those obtained by the univariate GM‐ELM, the conventional equivalent linearization method, the tail equivalent linearization method, and Monte Carlo simulation. The supporting source code and data are available for download at https://github.com/yisangri/GitHub‐bGM‐ELM‐code.git  相似文献   

15.
This paper analyzes the influence of damper properties on the probabilistic seismic performance of building frames equipped with viscous dampers. In particular, a probabilistic methodology is employed to evaluate the influence of the damper nonlinearity, measured by the damper exponent, on the performance of structural and nonstructural components of building frames, as described by the response hazard curves of the relevant engineering demand parameters. The performance variations due to changes in the damper nonlinearity level are evaluated and highlighted by considering two realistic design scenarios and by comparing the results of a set of cases involving dampers with different exponents designed to provide the same deterministic performance. By this way, it is possible to evaluate the influence of the nonlinear response and of its dispersion on the demand hazard. It is shown that the damper nonlinearity level strongly affects the seismic performance and different trends are observed for the demand parameters of interest. A comparison with code provisions shows that further investigation is necessary to provide more reliable design formulas accounting for the damping nonlinearity level. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
Long-period pulses in near-field earthquakes lead to large displacements in the base of isolated structures.To dissipate energy in isolated structures using semi-active control,piezoelectric friction dampers(PFD) can be employed.The performance of a PFD is highly dependent on the strategy applied to adjust its contact force.In this paper,the seismic control of a benchmark isolated building equipped with PFD using PD/PID controllers is developed.Using genetic algorithms,these controllers are optimized to create a balance between the performance and robustness of the closed-loop structural system.One advantage of this technique is that the controller forces can easily be estimated.In addition,the structure is equipped with only a single sensor at the base floor to measure the base displacement.Considering seven pairs of earthquakes and nine performance indices,the performance of the closed-loop system is evaluated.Then,the results are compared with those given by two well-known methods:the maximum possive operation of piezoelectric friction dampers and LQG controllers.The simulation results show that the proposed controllers perform better than the others in terms of simultaneous reduction of floor acceleration and maximum displacement of the isolator.Moreover,they are able to reduce the displacement of the isolator systems for different earthquakes without losing the advantages of isolation.  相似文献   

17.
This paper presents an experimental investigation on semi-active seismic response control of a multistory building with a podium structure using multiple magnetorheological (MR) dampers manipulated by a logic control algorithm. The experiments are performed in three phases on a seismic simulator with a slender 12-story building model representing a multi-story building and a relatively stiff 3-story building model typifying a podium structure. The first phase of the investigation is to assess control performance of using three MR dampers to link the 3-story building to the 12-story building, in which seismic responses of the controlled two buildings are compared with those of the two buildings without any connection and with rigid connection. The second phase is to investigate reliability of the semi-active control system and robustness of the logic control algorithm when 2 out of 3 MR dampers fail and when the electricity supply to MR dampers is completely stopped. The last phase is to examine sensitivity of semi-active control performance of two buildings to change in ground excitation. The experimental results show that multiple MR dampers with the logic control algorithm can achieve a significant reduction in seismic responses of both buildings. The proposed semi-active control system is of high reliability and good robustness.  相似文献   

18.
The dynamic responses of tall civil structures due to earthquakes are very important to the civil engineer. These dynamic responses can produce situations that can range from uncomfortable to unsafe for the building occupants. In recent years classical control theory has been used in civil engineering to reduce the dynamic responses of tall civil structures. Most optimal control algorithms for civil structures involve full state feedback control which requires good estimates of the velocity and displacements throughout the structure. However, there are several important advantages of output feedback control: it takes less computational effort and it has the robustness of passive systems. In this paper, optimal control algorithms are formulated for the optimization of feedback gains and controller placement for building structures. The fundamental basis for these algorithms is the calculation of the gradient of the performance function with respect to the gain matrix. The effectiveness of the algorithm is demonstrated for deterministic earthquake loads in the time domain. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

19.
研究了基于状态观测器的结构控制系统传感器的最优位置问题,定义了问题的数学模型,给出了求解问题的一种方法,并数值分析了在地震作用下一幢房屋结构控制传感器的最优位置,验证了方法的有效性。  相似文献   

20.
This paper presents a new optimization approach for designing minimum-cost fail-safe distributions of fluid viscous dampers for seismic retrofitting. Failure is modeled as either complete damage of the dampers or partial degradation of the dampers' properties. In general, this leads to optimization problems with large number of constraints. This may result in high computational costs if all the constraints are simultaneously considered during the optimization analysis. Thus, to reduce the computational effort, the use of a working-set optimization algorithm is proposed in this paper. The main idea is to solve a sequence of relaxed optimization subproblems with a small subset of all constraints. The algorithm terminates once a solution of a subproblem is found that satisfies all the constraints of the problem. The retrofitting cost is minimized with constraints on the interstory drifts at the peripheries of frame structures. The structures considered are subjected to a realistic ensemble of ground motions, and their response is evaluated with time-history analyses. The transient optimization problem is efficiently solved with a gradient-based sequential linear programming algorithm. The gradients of the response functions are calculated with a consistent adjoint sensitivity analysis procedure. Promising results attained for 3-D irregular frames are presented and discussed. The numerical results highlight the fact that the optimized layout and size of the dampers can change significantly even for moderate levels of damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号