首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present study efforts have been made to evaluate ground water potential zones for ground water targeting using IRS-IC LISS-II1 geo-coded data on 1:50,000 scale. The drainage, geology, geomorpholgoy and lineament information has been generated and integrated to evaluate hydro-geomorphological characteristics of the Gairnukh watershed, Bhandara district, Maharashtra for delineation of ground water potential zones. The analysis reveals that the deep valley fills with thick alluvium have excellent, shallow valley tills and deeply weathered pediplains with thin alluvium have very good and moderately weathered pediplains in the geological formations of Tirodi Gneiss and Sausar Groups have god ground water potential and these units are highly favourable for ground water exploration and development. Shallow weathered pediments in geological formations of Tirodi Gnesis and Sausar Groups are marked under moderate ground water potential zone. Shallow weathered pediplains in geological formations of Tiridi Gneiss and Sausor Groups are grouped under limited ground water potential category, except along the fractures/lineaments. Structural hills in geological formations of Tirodi Gneiss and Sausar Groups have poor ground water prospects. Inselbergs and Linear ridges in geological formations of Tirodi Gneiss are grouped under very poor ground water prospects zone. The good inter-relationship was found among the geological units, geomorphological units, lineament density, hydro-geomorphological zones and ground water yield data.  相似文献   

2.
The study area is one of the watersheds of North Pennar basin, covering an area of 570 km2 in Pavagada taluk of Tumkur district. The watershed has been subdivided into nine sub-watersheds namely Dalavayihalli, Maddalenahalli, Talamaradahalli, Puluvalli tank, Nagalamadike, Gowdatimmanahalli, Naliganahalli, Devadabetta and Byadanur. These nine sub-watersheds have been evaluated to delineate groundwater potential zones based on the characteristics of geomorphic units together with slope, geology, lineaments, borewell data using Remote Sensing and Geographic Information System (GIS) techniques. Slope varies from nearly level (0–1%) to very steep (>35%). The different geomorphic units in each sub-watershed consist of denudational hills, residual hills, inselbergs, pediment inselberg complex, pediments, shallow weathered pediplains, moderately weathered pediplains and valley fills. The lineament map for each sub-watershed has been prepared and the trends were analysed with rose diagrams. The analysis of borewell locations and their yield data in association with lineaments at subwatersheds level reveals that the lineaments are acting as a pathway for groundwater movement. The integrated map comprising groundwater potential zones prepared by “Union” function using GIS indicate that valley fills and moderately weathered pediplains are very good to good, shallow weathered pediplains are good to moderate, pediment inselberg complex and pediments are moderate to poor and denudational hills, residual hills and inselbergs are poor to very poor groundwater prospect zones.  相似文献   

3.
Identification of fractures/lineaments and hydrogeomorphic units is prerequisite for undertaking ground water exploration and development in any terrain. Use of satellite remote sensing techniques coupled with aerial photo-interpretation greatly aid in planning ground water exploration, and pin pointing well sites In this study, airborne and space borne data was used for qualitative evaluation of ground water resources and a critical appraisal of such study in combination with hydrogeological and hydrogeophysical techniques for ground water exploration and development in Keonjhar district of Orissa. The study area has been divided into various geomorphic units based on visual interpretation of Landsat (TM) false colour composite on. 1:2,50,000 scale and the ground water potential of each of the units is qualitatively assessed. Digital image processing techniques such as principal component analysis and brightness index were used for generating classified outputs. The features like valley fills, pediments ete appeared clearly on the classified image. Directional filtering brought out minor fractures/lineaments crisply. The study has revealed the significance of different hydrogeomorptuc units and lineaments in Controlling ground water potential of the area. The findings were corroborated by resalts of drilling and resistivity soundings.  相似文献   

4.
The present study was carried out to delineate and characterize ground water prospect zones using IRS-ID LISS-III geocoded data on 1:50,000 scale. The information on lithology, structure, geomorphology and hydrology were generated and integrated to prepare ground water prospect map for a region in western Rajasthan. The information on nature and type of aquifer, type of wells, depth range, yield range, success rate and sustainability were supplemented to form a good database for identification of favourable zone. Geographical Information system (GIS) was used to prepare database on the above layers, analysis of relationship and integrated map preparation. The study area has a complex geomorphology. The geology is dominated by rocks of post Delhi Intrusive and Quaternary sediments. On the basis of hydrogeology and geomorphic characteristics, four categories of ground water prospect zones: high, moderate, low and very low ere delineated. The high prospect zones are alluvial plains and valley fills mainly influenced by quaternary formations with yield expectation between 100-200 lpm. The moderate zone has pediment surfaces covered by shallow soil cover in addition to weathered and fractured aquifer material with expected yield of water between 50-100 lpm. The low potential zones mainly comprise inselbergs and rocky surface with expected discharge below 50 lpm. The very low prospect zones act as run-off generating zones.  相似文献   

5.
The role of hydrogeomorphological units and lineaments in the storage of groundwater from the Muvattupuzha river basin has been investigated using IRS ID LISS III data. Other than the usual water bodies such as river course, reservoirs and ponds, the major hydrogeomorphological units identified in this basin in the descending order of their groundwater potential are: valley fills, moderately dissected plateau, pediments, residual mounts, residual mount complex, linear ridges, residual hills and structural hills. Majority of the lineaments trends in NW-SE and WNW-ESE directions. Even though the eastern part of the basin is characterised by moderate to high lineament density, the above area is found to be poor to moderate groundwater prospect zone because of high gradient and structural hills. The pump test analyses of dug wells from different hydrogeomorphic units also confirm that valley fills are the most promising unit for groundwater prospecting than the rest.  相似文献   

6.
The present study was aimed to identify and delineate the groundwater potential areas in parts of Western Ghats, Kottayam, covering the upper catchment of Meenachil river. The study area is composed rocks of Archaean age and Charnockite dominated over others. The information on lithology, geomorphology, lineaments, slope and land use/land cover was generated using the Resourcesat (IRS P6 LISS III) data and Survey of India (Sol) toposheets of scale 1:50,000 (surveyed in 1969) and integrated them with raster based Geographical Information System (GIS) to identify the groundwater potential of the study area. Thus, a GIS-based model which takes account of local condition/variations has been developed specifically for mapping groundwater potential. On the basis of hydrogeomorphology, three categories of groundwater potential zones namely good, moderate and poor were identified, and delineated. The high potential zones correspond to the fracture valleys, valley fills, pediments and denudational slope, which coincide with the low slope and high lineaments density areas. The low zone mainly comprise structural hills and escarpments and these act as run-off zones. The derived panchayath-wise groundwater potentiality information could be used for effective identification of suitable locations for extraction of potable water for rural populations.  相似文献   

7.
An area of about 1000 square kilometres in Cuddapah and Nellore districts of Andhra Pradesh is studied to bring out the different landforms and other geomorphic features, their material content and distribution, the processes that have acted and are acting in the evolution of landscape and ultimately to get an idea of the geomorphic history of the area. The data obtained during the present study is mainly through remote sensing-techniques (Landsat image and airphoto interpretation) with field checks. The study area forms a part of southeastern Cuddapah Basin and consists of structurally disturbed and deformed sedimentary sequence of varied lithology. The impor-tant rock types in the area are granites, gneisses, quartzites, shales, phyllites, limestones and dolomites. The area presently comes under semi-arid climatic zone. The different landforms recognised and mapped in the area are hog-back ridges, piedmont fans, valley fills, river built plain, abandoned channels, point bars, ’ V‘ shaped valleys, piedmont zone, colluvial plain, residual hills, besides lineaments.  相似文献   

8.
In order to examine the influence of tectonic and morphological characteristics on the occurrence and movement of ground water in Khondalitic (garnetiferrous sillimanite gneiss) suite of rocks, hydromorphogeological studies were carried out in a typical Khondalitic terrain situated in Viziangaram district of Andhra Pradesh, India. Different land forms have been identified with the aid of visual interpretation of Landsat imagery together with ground truth data in order to prepare hydromorphogeological and lineament maps. Drainage map and topographic slope map have been prepared using toposheets. These maps and other collateral data like well yields and geophysical data have been analysed to evaluate the ground water prospective geomorphic units. Ground water prospect areas are located in shallow buried pediplains and wash plains in such a way that they are identified on gently sloping uplands situated between the lineaments. Non potential areas are those, which are, low-lying areas near the streams and high slope areas near the residual hills. It is found near low lying areas i.e., beneath the streams that the khondalite must have transformed itself into kaoline and acting as barrier evidently preventing lateral movement of ground water forcing it to accumulate in flat upland areas between two streams or lineaments. From the lithologic cross sections it is found that there are four distinct subsurface layers namely (1) top soil, (2) highly weathered khondalite (kaolinised layer), (3) moderately weathered and fractured khondalite (aquifer layer) and (4) basement of granitic gneiss.  相似文献   

9.
The Varushanad hills forms the eastern offshoot of the Western Ghats and the Cumbum valley divides the Varushnad hills from the Western Ghats. Investigations were carried out in about 1700 sq Km comprising the Cumbum valley and the Varushanad hills of the Western Ghats situated in Periakulam Srivalliputhur and Usilampatti taluks of Tamil Nadu on the geological and geomorphological aspects. Remote sensing techniques were used and limited field checks were made. Visual interpretation of aerial photographs on 1:60,000 scale was carried out for identifying the geomorphological features, drainage pattern and lithology. Digital analysis of the Landsat computer compatible tape (CCT) path-row 154–053 was also carried out to delineate major lithological variations. Major lineaments were also mapped from the Landsat imagery and false colour composite. The rock types of the Cumbum valley and the Varushanad hills are mainly charnockites, granite gneiss and pink granites which have been deformed by folds and faults. The various geomorphological units of the area are ridges, valleys, bazada zone and pediment zone of mountain complex. Resources evalution studies on the potential zone of ground water and possible construction materials were also discussed.  相似文献   

10.
With the advent of multispectral scanners and the availability of digital data, information extraction through remote sensing has become one of the viable tools for studying natural resources. Normally thick vegetation and soil cover are common obstacles while geologically studying an area remotely. The study area, Goa, is largely covered by settlements, private mines, and dense vegetation. This makes it difficult to decipher lithology, structures and to find their extension by ground surveying. In this paper, an attempt has been made to study a variety of image enhancement and analysis techniques to delineate geological features, lineaments, and several landuse features. The information gathered from land use features and vegetation cover is also utilized in delineating lithology and lineaments. Landsat Multi-Spectral Scanner (MSS) data both in the visual and digital form have been used for the analysis. Various photographic techniques such as Bas-relief, combined printing of positive and negative for different bands, color composites, and digital image processing techniques like ratioing, principal component analysis and ratioing of the first two principal components have been applied for geological information extraction. This paper examines comparative utility of enhancement techniques in studying geological aspects. It is found that the ratio image of PCI and PC2 gives most significant and detailed information with maximum contrast and sharp boundaries. Bas-relief images are excellent for identifying geomorphic features and lineaments.  相似文献   

11.
The present work accentuated the expediency of remote sensing and geographic information system (GIS) applications in groundwater studies, especially in the identification of groundwater potential zones in Ithikkara River Basin (IRB), Kerala, India. The information on geology, geomorphology, lineaments, slope and land use/land cover was gathered from Landsat ETM + data and Survey of India (SOI) toposheets of scale 1:50,000 in addition, GIS platform was used for the integration of various themes. The composite map generated was further classified according to the spatial variation of the groundwater potential. Four categories of groundwater potential zones namely poor, moderate, good and very good were identified and delineated. The hydrogeomorphological units like valley fills and alluvial plain and are potential zones for groundwater exploration and development and valley fills associated with lineaments is highly promising area for groundwater extraction. The spatial variation of the potential indicates that groundwater occurrence is controlled by geology, structures, slope and landforms.  相似文献   

12.
The area in and around Guntur Town in Andhra Pradesh faces an acute water problem. It represents plain land and gentle slope responsible for infiltration and groundwater recharge. Adequate groundwater resource is reported to be available in the investigated area. It has not been properly exploited. The present investigation is, therefore, undertaken to assess groundwater favourable zones for development and exploration with the help of geomorphological units and associated features. The identified units and features by remote sensing technology with the integration of conventional information and limited ground truths are shallow weathered pediplain (PPS), moderately weathered pediplain (PPM), deeply weathered pediplain (PPD), residual hill (RH) and lineaments (L). The results show that the PPD, PPM and PPS are good, moderate to good and poor to moderate promising zones, respectively for groundwater prospecting. The RH is a poor geomorphological unit in respect to prospective zone as groundwater resource. However, adequate recharge source of groundwater can be expected surrounding the RH, as it acts as surface run-off zone. Lineaments parallel to the stream courses and intersecting-lineaments are favourable indicators for groundwater development. They can also be utilized to augment groundwater resource.  相似文献   

13.
Remote sensing techniques has proved to be an extremely useful tool in morphometric analysis and groundwater studies. Remote sensing techniques with an emphasis on lineament identifications can play a great role in groundwater prospecting in semi-arid hard rock areas of Purulia district. In the present study, morphometric analysis using remote sensing technique has been carried out in parts of Baghmundi block, Purulia district, West Bengal. The parameters worked out include Bifurcation ratio (Rb), Stream length (Lu), Form factor (Rc), Circulatory ratio (Rc), and Drainage density (D). The morphometric analysis suggests that fractured, resistant, permeable rocks cover the area, the drainage network not so affected by tectonic disturbances. Using satellite imageries of two dates of IRS, different hydrogeomorphological units have been delineated. Among different hydrogeomorphic units (i) very shallow weathered pediment and (ii) Structural hills/ residual hills/inselbergs have very poor ground water prospects, while moderately weathered pediplains and valley fills are good prospective zones for groundwater exploration.  相似文献   

14.
Godavari sub-watershed is a part of buried pediplain developed over ‘Chotanagpur’ granite gneiss. Aquifer is unconfined in nature and groundwater occurs under water table condition. In the study area, groundwater is being exploited only through dugwells which are not capable of sustaining long duration pumping. Groundwater exploration involves the investigation of depth and nature of weathered and fractured horizon. To understand the groundwater storage and retrieval in the area, the basement topography derived from Digital Basement Topography Modelling (DBTM), the lineaments identified on remotely sensed data and geohydrological and physiographic data have been analysed. From DBTM, fracture zones have also been inferred. Lineaments (probable fractures) identified with the help of remotely sensed data are linear features representated on a planner surface. Lineaments in the area are subtle in expression due to deeply buried pediplian. Correlation of lineaments with DBTM reveals that a few lineaments/fractures are deep seated and a few have no sub-surface extensions. Also some sub-surface fractures inferred from DBTM have no expressions on the image. Attempt has been made to delineate more authentic lineaments/fractures with the help of remotely sensed data and DBTM. Correlation of probable fractures inferred from remotely sensed data and fracture zones inferred from DBTM indicated that 40 per cent of lineaments seems to be real fractures. Higher correlation may be achieved where lineaments are prominent and reproducible. It has also been observed that those lineaments which correlate with the fracture zones inferred from DBTM, are also not completely traceable in their linear extent. The exaggeration in length of lineaments may be due to subtle nature of lineaments. Correlation shows that remotely sensed lineaments are improtant for groundwater exploration and its authenticity can be further ascertained with DBTM.  相似文献   

15.
The area around Panwari town, Hamirpur district, Uttar Pradesh, faces acute water scarcity and chronically drought prone. The groundwater resources in the area have not been fully exploited. The present study was undertaken to evaluate the groundwater prospective zones. Landsat TM and IRS-1A LISS-II data have been used to differentiate different hydromorphogeological units and to delineate the major trends of lineaments. The digitally enhanced False Colour Composite, Principal Component Analysis and Edge Detections were useful for better correlation. The digital enhancement was helpful with identification of faint lineaments. In addition, the boundaries of various lands forms were better discriminable on the digitally enhanced products. The deeply and moderately weathered buried pediplains are the most potential zones for groundwater targeting. Occurrence of lineaments in such zones is also a favourable indicator. A number of promising groundwater well sites have been located in the pediplains.  相似文献   

16.
Synoptivity and the exemplified fracture systems exhibited by the space borne imagery data has helped in solving many of the geological enigma in various parts of the world. The study conducted, using such remotly sensed data, in Jhalawar anticline, part of Proterozoic Cratonic Vindhyan Basin, Rajasthan, India, led to infer the history of tectonic evolution of peribasinal deformation which has been a matter of controversy for a century and more. In Landsat MSS data the Jhalawar region displays a panorama of lineaments and their analysis through azimuthal frequency diagrams, isofracture, lineament incidence and lineament intersection incidence density maps shows that the mean orientation of the lineaments fall in NW-SE and NE-SW and the shape of the various lineament density contours also show NE-SW and NW-SE orientations. In aerial photographs the area exhibits four sets of lineaments in NE-SW, NW-SE, N-S and E-W directions. Amongst these the former two sets are expressed as wide open master fracture systems with prolific vegetation fills along them and the latter two sets are characteristically observed as thin vegetation linears with frequent strike slip faulting along them. The further analysis of these fracture/lineament systems derived from multi-level remote sensing data shows that the Jhalawar anticline, which followed the pattern of flexural slip fold mechanism, was evolved by horizontally disposed σ1 (greatest principal stress) and 3σ (least principal stress) with the former oriented in NE-SW and the latter aligned in NW-SE directions with vertically disposed 2σ. The inference of such palaeostress environment of the Jhalawar region lead in the identification of a buried rigid basement high southwest of Jhalawar anticline, beneath the Deccan pile and loci of ground water, silica sand and probable igneous plug.  相似文献   

17.
The present investigation has been designed to analyze the landform and soil relationship in a geologically complex terrain of Tirora tahsil of Gondia district, Maharashtra using remotely sensed data and GIS technique. The geomorphologic units of the study area were delineated through visual interpretation of IRS–ID LISS-III data based on the spatial variation of the image characteristics. Thirteen landform units have been identified in the tahsil. The slope varied from level to nearly level with an area of about 63.76% of the tahsil. Rest of the area ranged from very gentle to moderately steep slopes. During soil survey, soil profiles were studied for morphological features. Horizon-wise soil samples were collected from the representative soil profiles on each landform unit. The depth of soil varied from 25 to 160 cm and colour from dark brown to very dark grayish brown. The texture ranged from clay loam to clayey in accordance with higher and lower topographic positions respectively. Higher available water holding capacity (AWC 285 mm) is found in low-lying area and low to medium AWC (140 mm) is noticed in the soils developed at higher elevation. The soils reaction (pH) is strongly acidic in nature (pH 5.2) on dissected hills, linear ridge and moderately weathered pediments, whereas, the soils are moderately to slightly acidic in nature (pH 5.5 to 6.5) on hills, shallow weathered pediments, moderately weathered pediments, deeply weathered pediments, narrow valleys, and broad valley floors. Slightly alkaline condition (pH 7.6) was observed on foot slopes and aggraded valley fills. The electrical conductivity of the soils is found almost same in all landforms. The cation exchange capacity of the area varies from 10.5 to 51.5 cmol(p+)kg?1. The base saturation increases with decreasing elevation and slope. The four major soil orders viz, Entisols, Alfisols, Inceptisols and Vertisols are found in the study areas which are further classified into suborder and great group levels. The landform and soil relationship was analyzed to appraise the land resources in the tahsil. The study shows that the application of remotely sensed data and GIS are immensely helpful in land resources appraisal for their management on sustainable basis.  相似文献   

18.
Parts of Indogangetic alluvial plain and southern part of Simla-Himalayas were studied to evaluate the ground water potential zones through hydromorphogeological mapping using various remotely sensed data. Black and white panchromatic aerial photographs were mainly used to differentiate different lithounits whereas MSS and TM FCC were used to delineate the major trends of lineaments. IRS LISS-II CCT was used for digitally generating enhanced False Colour Composite, Principal Component and Filtered products for better correlative studies. Different rocks of Subathu and Siwalik groups form the structural hills of high to low relief which are mainly runoff zones. The alluvial fan forming piedmont zone has been further subdivided into upper and lower piedmont zones. In order to ascertain ground water movement and occurrence, the infiltration and discharge zones were established. Other local potential discharge zones were also considered. Ground water occurs under semi-confined to confined conditions and good prospects of potable water are present in the area.  相似文献   

19.
Hydromorphogeological studies have been carried out around Agnigundala mineralised belt (longitude 70°.39′ - 16°.51′ and latitude 16°.2′ - 16°.15′) using remote sensing IRS-IB and SPOT data for ground water exploration. Based on erosional and depositional characters of various geomorphic units like Hills (Structural and denudational) Pediment, Buried pediment, plains and valley fills have been identified in various lithologies like granite, granite gneiss, biotite schist, phyllite,. quartzite and dolomite. The acclamations of individual geomorphic units through visual interpretation are verified from field data. The groundwater potentials of the individual geomorphologic units have been evaluated to obtain a complete hvdrogcological picture of the area. The field data have further helped in quanlifying various geomorphological units with reference to their potential for ground water occurrence.  相似文献   

20.
Drainage and lineaments play an important role in the flow of groundwater. The objective of this study is to assess the groundwater level and its relation to drainage and lineaments in a hard rock region of a part of Nalgonda district, Andhra Pradesh, southern India. The region predominantly comprise of granites and gneisses. Groundwater level was measured in 42 representative wells in this study area from March 2008 to January 2010 once in every two months. Observed groundwater levels were compared with drainage and dyke density. Groundwater level fluctuation in low drainage density region is generally greater than those in moderate and high drainage density regions. The dykes do not act as barriers for groundwater flow as they are highly weathered. The quantity and flow of groundwater in this region is predominantly controlled by drainage density, intensity of weathering and presence of fractures. Thus the study indicate that the drainage density play a major role in groundwater level fluctuation and as the dykes are weathered, they do not affect the groundwater flow in this shallow unconfined aquifer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号