首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Global magnetic field calculations, using potential field theory, are performed for Carrington rotations 1601–1610 during the Skylab period. The purpose of these computations is to quantitatively test the spatial correspondence between calculated open and closed field distributions in the solar corona with observed brightness structures. The two types of observed structures chosen for this study are coronal holes representing open geometries and theK-coronal brightness distribution which presumably outlines the closed field regions in the corona. The magnetic field calculations were made using the Adams-Pneuman fixed-mesh potential field code based upon line-of-sight photospheric field data from the KPNO 40-channel magnetograph. Coronal hole data is obtained from AS&E's soft X-ray experiment and NRL's Heii observations and theK-coronal brightness distributions are from HAO'sK-coronameter experiment at Mauna Loa, Hawaii.The comparison between computed open field line locations and coronal holes shows a generally good correspondence in spatial location on the Sun. However, the areas occupied by the open field seem to be somewhat smaller than the corresponding areas of X-ray holes. Possible explanations for this discrepancy are discussed. It is noted that the locations of open field lines and coronal holes coincide with the locations ofmaximum field strength in the higher corona with the closed regions consisting of relatively weaker fields.The general correspondence between bright regions in theK-corona and computed closed field regions is also good with the computed neutral lines lying at the top of the closed loops following the same general warped path around the Sun as the maxima in the brightness. One curious feature emerging from this comparison is that the neutral lines at a given longitude tend systematically to lie somewhat closer to the poles than the brightness maxima for all rotations considered. This discrepancy in latitude increases as the poles are approached. Three possible explanations for this tendency are given: perspective effects in theK -coronal observations, MHD effects due electric currents not accounted for in the analysis, and reported photospheric field strengths near the poles which are too low. To test this latter hypothesis, we artificially increased the line-of-sight photospheric field strengths above 70° latitude as an input to the magnetic field calculations. We found that, as the polar fields were increased, the discrepancy correspondingly decreased. The best agreement between neutral line locations and brightness maxima is obtained for a polar field of about 30 G.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

2.
Mean density models of the solar corona show evidence for two distinctive density regimes characterized by different density gradients. High density gradients are identified with regions of predominantly open magnetic lines of force and low density gradients are identified with regions of predominantly closed magnetic lines of force. Spectroscopic data yielding equivalent widths of forbidden lines of Fe x and Fe xiv strongly suggest that the coronal temperature for r > 2.5 R decreases considerably less rapidly in equatorial regions than r –2/7, which is the decrease predicted by conduction models with open field lines.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

3.
During the total solar eclipse of 11 June, 1983, an imaging dual-channel Fabry-Pérot interferometer was used to obtain line profiles simultaneously in the green 5303 Å [Fe xiv] and the red 6374 Å [Fe x] coronal lines at various positions in the corona. Extensive microdensitometry followed by multi-Gaussian curve-fitting analysis has resulted in the determination of coronal temperatures and velocity separations between different pockets of coronal gas in the line of sight over a large extent of the corona. Fewer high temperature zones are to be found in the corona of 1983 compared with our similar green-line measurements of the solar maximum corona of 1980. The data are consistent with a temperature maximum occurring at 1.2 R , as found at the 1980 eclipse, but our new data are insufficient to observe farther out than this radius and so determine the position of a maximum. The velocity field in the corona at the 1983 eclipse is less structured compared with that at the 1980 eclipse and is mainly confined to the zone 20–30km s–1.  相似文献   

4.
A discussion of a program for the computation of coronal emission line polarization is presented. The starting point is a general formulation of the scattering function for magnetic dipole transitions between any two total angular momentum levels, J J, J ± 1. Illustration of the behavior of the scattering function for different transitions is given. The integration of the scattering function over the solar disk and along the line of sight accounting for arbitrary distribution of magnetic fields as well as an inhomogeneous temperature and density structure of the corona is considered next.Sample results are presented for the numerical computation of the angle of maximum polarization and the degree of maximum polarization to be expected from idealized magnetic field configurations such as radial and dipole. A computation is included for a realistic field configuration predicted to exist at the time of the 1966 eclipse. The magnetic field input to the scattering calculation is based upon the potential field extension of photospheric magnetic fields. It is the purpose of the sample calculations to demonstrate how the measurement of emission polarization measurements can be interpreted in terms of the direction of coronal magnetic fields. Factors which lend ambiguity to such interpreations are clearly illustrated from the examples. These include the Hanle-effect depolarization and the depolarization at the Van Vleck angle.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

5.
A survey of the infrared coronal spectrum between 1 and 3 was made from a high altitude aircraft during the 7 March, 1970, solar eclipse. The observations were made with a Fourier transform spectrometer and were confined to the outer chromosphere and inner corona. In addition to well known chromospheric lines of Hi and Hei, nine additional lines were seen. Evidence is presented for the tentative assignment of these lines to forbidden transitions in highly ionized atoms of magnesium, aluminum, silicon, sulphur, and chromium.  相似文献   

6.
7.
The purpose of this paper is to report on some intensity measurements of the Fe xiii lines at 10 747 Å and 10 798 Å made during the total eclipse of 12 November, 1966. Infrared spectra were taken of the solar corona at a dispersion of 90 Å per mm, using an RCA image converter and spectrograph aboard the NASA CV 990 aircraft off the coast of southern Brazil. The spectra have been reduced to equivalent width in terms of the coronal continuum and values derived for different points in the corona.The observed equivalent widths of the lines lie in the range 10 to 30 Å for the 10 747 line and 5 to 12 Å for the 10 798 line. The ratio of these equivalent widths is found to vary from 2.3 in the inner corona to 6 at a point 1.36 solar radii from the center of the Sun.The above results are discussed in terms of the excitation mechanisms involved in producing the lines. In particular, the results are compared with the recent theoretical calculations of Chevalier and Lambert, who are the first to include the effects of proton collisions in the excitation of the 3p 2 3 P levels of Fexiii. Our observations are consistent with an electron density of 4 × 108 in the inner corona; a value which compares favorably with those derived by other observers from the strength of the K continuum. These are, to our knowledge, the first eclipse observations of the infrared Fe xiii lines which indicate that proton collisions are important in the excitation of the coronal lines. The coronal abundance of iron is estimated from the equivalent width of the 10 747 line, and in common with other observers we find an overabundance as compared to the photospheric abundance by a factor of 10.  相似文献   

8.
9.
The large-scale density structure of the white-light solar corona has been compared to the organization of the solar magnetic field as identified by the appearance of neutral lines in the photosphere in order to examine whether any consistent relationship exists between the two. Data from the High Altitude Observatory's Mk-III K-coronameter have been used to describe the coronal density structure, and observations from several sources, beginning with observations from the University of Hawaii Stokes Polarimeter have been used to establish the magnetic field distribution. Stanford magnetograms as well as the neutral line inferred from potential field models have also been examined. During the period covering Carrington rotations 1717 to 1736 brightness enhancements in the low corona tend to lie over the global neutral sheet identified in the photospheric magnetic field. The brightest of these enhancements, however, are associated with neutral lines through active regions. These associations are not 1-1, but do hold both in stable and evolving conditions of the corona. We find a significant number of long-lived neutral lines, including filaments seen in H, for which there are not coronal enhancements.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

10.
The influence of the solar wind on large-scale temperature and density distributions in the lower corona is studied. This influence is most profoundly felt through its effect upon the geometry of coronal magnetic fields since the presence of expansion divides the corona into magnetically open and closed regions. Each of these regions is governed by entirely different energy transport processes. This results in significant temperature differences since only the open field regions suffer outward conductive heat losses. Because the temperature influences the density in an exponential manner, large density inhomogeneities are to be expected.An approximate method for calculating the temperature and density distribution in a known magnetic field geometry is outlined and numerical estimates are carried out for representative coronal conditions. These estimates show that temperature differences of a factor of about two and density differences of ten can be expected in the lower corona even for uniform base conditions. As a result, we do not regard the so-called coronal holes necessairly as locations of reduced mechanical heating. Alternatively, we suggest that they are regions of open magnetic field lines being continuously drained of energy contert by the solar wind expansion and outward thermal conduction.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

11.
It is evident from eclipse photographs that gas-magnetic field interactions are important in determining the structure and dynamical properties of the solar corona and interplanetary medium. Close to the Sun in regions of strong field, the coronal gas can be contained within closed loop structures. However, since the field in these regions decreases outward rapidly, the pressure and inertial forces of the solar wind eventually dominate and distend the field outward into interplanetary space. The complete geometrical and dynamical state is determined by a complex interplay of inertial, pressure, gravitational, and magnetic forces. The present paper is oriented toward the understanding of this interaction. The helmet streamer type configuration with its associated neutral point and sheet currents is of central importance in this problem and is, therefore, considered in some detail.Integration of the relevant partial differential equations is made tractable by an iterative technique consisting of three basic stages, which are described at length. A sample solution obtained by this method is presented and its physical properties discussed.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

12.
A model is presented which describes the 3-dimensional non-radial solar wind expansion between the Sun and the Earth in a specified magnetic field configuration subject to synoptically observed plasma properties at the coronal base. In this paper, the field is taken to be potential in the inner corona based upon the Mt. Wilson magnetograph observations and radial beyond a certain chosen surface. For plasma boundary conditions at the Sun, we use deconvoluted density profiles obtained from synopticK-coronameter brightness observations. The temperature is taken to be 2 × 106 K at the base of closed field lines and 1.6 x 106K at the base of open field lines. For a sample calculation, we employ data taken during the period of the 12 November 1966 eclipse. Although qualitative agreement with observations at 1 AU is obtained, important discrepancies emerge which are not apparent from spherically symmetric models or those models which do not incorporate actual observations in the lower corona. These discrepancies appear to be due to two primary difficulties - the rapid geometric divergence of the open field lines in the inner corona as well as the breakdown in the validity of the Spitzer heat conduction formula even closer to the Sun than predicted by radial flow models. These two effects combine to produce conductively dominated solutions and lower velocities, densities, and field strengths at the Earth than those observed. The traditional difficulty in solar wind theory in that unrealistically small densities must be assumed at the coronal base in order to obtain observed densities at 1 AU is more than compensated for here by the rapid divergence of field lines in the inner corona. For these base conditions, the value ofβ(ratio of gas pressure to magnetic pressure) is shown to be significantly greater than one over most of the lower corona - suggesting that, for the coronal boundary conditions used here, the use of a potential or force-free magnetic field configuration may not be justified. The calculations of this paper point to the directions where future research on solar-interplanetary modelling should receive priority:
  1. better models for the coronal magnetic field structure
  2. improved understanding of the thermal conductivity relevant for the solar wind plasma.
  相似文献   

13.
The High Altitude Observatory Coronagraph/Polarimeter, to be flown on the National Aeronautics and Space Administration's Solar Maximum Mission satellite, is designed to produce images of the solar corona in seven wavelength bands in the visible spectral range. The spectral bands have been chosen to specifically exclude or include chromospheric spectral lines, so as to allow discrimination between ejecta at high (coronal) and low (chromospheric) temperatures, respectively. In addition, the instrument features spectral filters designed to permit an accurate color separation of the F and K coronal components, and a narrow band (5.5 Å) filter to observe the radiance and polarization of the Fe xiv 5303 Å line. The effective system resolution is better than 10 arc sec and the instrument images a selected quadrant (or smaller field) on an SEC vidicon detector. The total height range that may be recorded encompasses 1.6 to more than 6.0R (from Sun center). The instrument is pointed independently of the SMM spacecraft, and its functions are controlled through the use of a program resident within the onboard spacecraft computer. Major experimental goals include: (a) Observation of the role of the corona in the flare process and of the ejecta from the flare site and the overlying corona; (b) the study of the direction of magnetic fields in stable coronal forms, and, perhaps, ejecta; and (c) examination of the evolution of the solar corona near the period of solar maximum activity.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

14.
H. Zirin 《Solar physics》1970,11(3):497-512
Climax coronagraph observations of the accessible Fe lines, as well as the Caxv 5694 line at the time of the 1962 total eclipse, are analyzed. The spectra show that the ionization equilibrium of iron is not substantially changed in an intense coronal condensation, at least for the stages x through xv. The only exception is Fexv 7059, for which density effects are important. The stability of the ionization distribution is explained by the dynamic nature of the Fe ionization, with ions entering on the high side (Fexvi and up) due to rapid heating and then cooling through the visible stages.Comparison of the ionization distributions inferred from radiative and collisional excitation of the iron lines shows that the excitation must be by collisions everywhere at the heights examined (less than 50 000 km).The iron abundance in the corona is found to be 10–4 that of hydrogen, but this figure would be reduced by the amount of cyclic excitation.The peak electron density in the condensation is 8 × 109, and the peak value of the 5694 line/ continuum ratio is 2.5, in good agreement with calculations by Chevalier and Lambert.The ratio of the infrared Fexiii lines is measured along the limb and found to vary with electron density as expected, the 10 747/10 798 ratio is 7 or less at densities much below 109 and saturates at a value of 2 for densities above that amount.  相似文献   

15.
The strength of the Sun's polar fields   总被引:3,自引:0,他引:3  
The magnetic field strength within the polar caps of the Sun is an important parameter for both the solar activity cycle and for our understanding of the interplanetary magnetic field. Measurements of the line-of-sight component of the magnetic field generally yield 0.1 to 0.2 mT near times of sunspot minimum. In this paper we report measurements of the polar fields made at the Stanford Solar Observatory using the Fe i line 525.02 nm. We find that the average flux density poleward of 55° latitude is about 0.6 mT peaking to more than 1 mT at the pole and decreasing to 0.2 mT at the polar cap boundary. The total open flux through either polar cap thus becomes about 3 × 1014 Wb. We also show that observed magnetic field strengths vary as the line-of-sight component of nearly radial fields.  相似文献   

16.
Rušin  V.  Rybansky  M. 《Solar physics》2002,207(1):47-61
We present results of a study of the green corona (530.3 nm, Fexiv) and photospheric magnetic fields over the period 1976–1999 when both quantities were observed by ground-based observatories. By comparing both the limb green-line intensities and photospheric magnetograms we have found a relation between the strength of magnetic field and coronal intensities. This relation enables us to extend solar surface magnetic fields since 1976 back to 1939. From 1947 to 1992 the magnetic field strength grew at the cycle maxima by a factor of 1.5–2. On the other hand, both the green corona intensity and magnetic field strength in the present cycle are smaller compared to cycle 22, by a factor of 2. No relationship was found between the green corona intensities and magnetic field polarity as was previously supposed. Behavior for the green corona intensities is different between high-latitude and mid-latitude regions, and this break occurs at the heliographic latitude of ± 45°. Homogeneous coronal data set cannot be directly used to derive `the tilt angle', even though some similarities between the green coronal holes, poleward branches in the green corona and prominences and the tilt angle can be found.  相似文献   

17.
The effect of a background signal on the signal-to-noise ratio is discussed, with particular application to ground-based observations of emission lines in the solar corona with the proposed Advanced Technology Solar Telescope. The concepts of effective coronal aperture and effective coronal integration time are introduced. Specific expressions are developed for the 1 measurement errors for coronal intensity, coronal electron density, coronal velocity, and coronal magnetic field measurements using emission lines and including a background.  相似文献   

18.
He i 10830 Å images show that early in sunspot cycles 21 and 22, large bipolar magnetic regions strongly affected the boundaries of the nearby polar coronal holes. East of each eruption, the hole boundary immediately contracted poleward, leaving a band of enhanced helium network. West of the eruption, the boundary remained diffuse and gradually expanded equatorward into the leading, like-polarity part of the bipolar magnetic region. Comparisons between these observations and simulations based on a current-free coronal model suggest that:
  1. The Sun's polar magnetic fields are confined to relatively small caps of high average field strength, apparently by a poleward meridional flow.
  2. The enhanced helium network at high latitude marks the location of relatively strong polar fields that have become linked to the newly erupted bipolar region in that hemisphere.
  3. The distortion of the polar-hole boundary is accompanied by a corresponding distortion of the equatorial neutral sheet in the outer corona, in which the amount of warping depends on the magnitude of the erupted flux relative to the strength of the Sun's polar magnetic fields.
  相似文献   

19.
The common observation that where photospheric magnetic fields are strong, the overlying corona is bright is examined quantitatively. White light coronal brightness is employed because it is independent of coronal temperature and is directly related to coronal electron density. Brightness data for the inner corona on 7 March, 1970, taken from isodensitometer traces having a resolution of 10 arc sec, are utilized. The data were obtained from photographs which exhibit distinct chromospheric features 5 arc sec or smaller. These data are quantitatively compared, using cross correlation and scatter plot techniques, with the corresponding photospheric magnetic field data provided by Kitt Peak National Observatory. Cross correlation coefficients are computed between latitudes ±55° at specified heights. In general, a statistically significant positive correlation is found. The correlation decreases with height in the corona. However, a range of values in several parameters remains to be investigated so the physical significance of the presently observed correlation is not yet entirely clear. We expect that refinement of our input parameters will produce a more sensitive correlation and lead to an expression for the relationship of electron density to photospheric magnetic field strength.NAS/NRC Research Associate.  相似文献   

20.
The principal polar-crown coronal helmet structures were selected from nearly three years (May, 1965–January, 1968) of K-coronameter observations made at Haleakala and Mauna Loa, Hawaii. Six isolated and long-lived helmet systems were found at latitudes of 45° and above. Their developments are compared with underlying chromospheric and photospheric activity and a simple phenomenological model is presented showing that a coronal system is formed over an active region. Thereafter the center of gravity of the system gradually drifts poleward with the trailing unipolar magnetic region (UMR), and it becomes a high latitude coronal helmet, arched over a polar crown filament.By comparison of these coronal helmets with observations of the outer corona (to circa 4 R ) made at solar eclipse, lunar sunset, and with balloon and rocket-borne externally occulted corona-graphs, it appears that ground-based K-coronameter measurements to a distance of 1.5–2.0 R are sufficient to detect the coronal streamers.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号