首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper characterizes a seasonally inundated Danish floodplain wetland in a state close to naturalness and includes an analysis of the major controls on the wetland water and nitrogen balances. The main inputs of water are precipitation and percolation during ponding and unsaturated conditions. Lateral saturated subsurface flow is low. The studied floodplain owes its wetland status to the hydraulic properties of its sediments: the low hydraulic conductivity of a silt–clay deposit on top of the floodplain maintains ponded water during winter, and parts of autumn and spring. A capillary fringe extends to the soil surface, and capillary rise from groundwater during summer maintains near‐saturated conditions in the root zone, and allows a permanently very high evapotranspiration rate. The average for the growing season of 1999 is 3·6 mm day?1 and peak rate is 5·6 mm day?1. In summer, the evapotranspiration is to a large degree supplied by subsurface storage in a confined peat layer underlying the silt–clay. The floodplain sediments are in a very reduced state as indicated by low sulphate concentrations. All nitrate transported into the wetland is thus denitrified. However, owing to modest water exchange with surrounding groundwater and surface water, denitrification is low; 71 kg NO3–N ha?1 during the study period of 1999. Reduction of nitrate diffusing into the sediments during water ponding accounts for 75% of nitrate removal. Biomass production and nitrogen uptake in above‐ground vegetation is high—8·56 t dry matter ha?1 year?1 and 103 kg N ha?1 year?1. Subsurface ammonium concentrations are high, and convective upward transport into the root zone driven by evapotranspiration amounted to 12·8 kg N ha?1year?1. The floodplain wetland sediments have a high nitrogen content, and conditions are very favourable for mineralization. Mineralization thus constitutes 72% of above‐ground plant uptake. The study demonstrates the necessity of identifying controlling factors, and to combine surface flow with vadose and groundwater flow processes in order to fully comprehend the flow and nitrogen dynamics of this type of wetland. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

2.
This study was designed to improve our understanding of, and mechanistically simulate, nitrate (NO3) dynamics in a steep 9.8 ha rural headwater catchment, including its production in soil and delivery to a stream via surface and subsurface processes. A two‐dimensional modelling approach was evaluated for (1) integrating these processes at a hillslope scale annually and within storms, (2) estimating denitrification, and (3) running virtual experiments to generate insights and hypotheses about using trees in streamside management zones (SMZs) to mitigate NO3 delivery to streams. Total flow was mathematically separated into quick‐ and slow‐flow components; the latter was routed through the HYDRUS software with a nitrogen module designed for constructed wetlands. Flow was monitored for two years. High surface‐soil NO3 concentrations started to be delivered to the stream via preferential subsurface flow within two days of the storm commencing. Groundwater NO3‐N concentrations decreased from 1.0 to less than 0.1 mg l?1 from up‐slope to down‐slope water tables, respectively, which was attributed to denitrification. Measurements were consistent with the flushing of NO3 mainly laterally from surface soil during and following each storm. The model accurately accounted for NO3 turnover, leading to the hypotheses that denitrification was a minor flux (<3 kg N ha?1) compared to uptake (98?127 kg N ha?1), and that SMZ trees would reduce denitrification if they lowered the water table. This research provides an example of the measurement and modelling of NO3 dynamics at a small‐catchment scale with high spatial and temporal resolution. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
为研究太湖流经不同类型缓冲带的入湖河流水体氮污染特征,于2011年9 12月连续对流经4种不同类型缓冲带入湖河流沿程共32个样点进行采样,分析各样点的氮浓度及变化趋势.结果表明,流经农田型缓冲带入湖河流中总氮浓度由缓冲带外进入缓冲带内不断减小,到入湖河口处有轻微上升;流经养殖塘型、村落型缓冲带入湖河流中总氮浓度由缓冲带外进入缓冲带内变化不大,到接近入湖河口时浓度显著升高;流经生态型缓冲带入湖河流中各氮元素形态沿程不断降低.在流经4种类型湖泊缓冲带入湖河流中,流经农田型、养殖塘型和生态型缓冲带的入湖河流以硝态氮为氮元素的主要存在形态,而流经村落型缓冲带的入湖河流中硝态氮和铵态氮同为氮元素的主要存在形态.总氮浓度、铵态氮浓度与缓冲带类型均呈极显著正相关关系,外源污染排入对流经缓冲带的入湖河流中氮元素总量及形态产生较大影响.流经生态型缓冲带入湖河流净化效果最佳,总氮、硝态氮和铵态氮浓度削减率分别为60%、53%和61%.  相似文献   

4.
A study was made of the nitrogen (N) inputs to, and exports from, a stream draining a pasture catchment near Hamilton, New Zealand, in order to plan measures for minimizing N losses to natural waters. An estimated 7 kg N ha?1 was exported from the catchment during 1981 of which 86 per cent was in reduced forms (Kjeldahl-N, TKN) and the remainder as nitrate-N (NO3-N). Virtually all of the reduced N inputs came from saturated overland flow whereas NO3-N inputs were dominantly subsurface derived. The TKN exported by individual storm events could be predicted (R2 = 0.97) from peak flow and from the peak flow rate in the seven days preceding the storm. A TKN balance for eight events showed that except for large floods (return period approximately a year) the stream system was a net sink for TKN. During large floods, scouring of the organic rich seepage areas resulted in the stream system itself being a net source of TKN. Microbial assays for nitrification and denitrification activity indicated that the main nitrate source was the well-aerated greywacke and ash soils and that the permanently saturated seepage zones were a significant nitrate sink. An in-stream nitrate addition experiment showed that up to 20mg N m?2 h?1 was removed from the stream. Simultaneous measurements of in situ denitrification activity demonstrated that only about 1 per cent of this removal could be accounted for by denitrification. It was inferred that plant uptake was responsible for the remainder. Retention of near-stream seepage areas is suggested as a measure for minimizing NO3-N export, whilst removal of stock from seasonally saturated areas during periods of saturatior should reduce soil loss and hence TKN inputs to the stream.  相似文献   

5.
Subsurface brines with high nitrate (NO3?) concentration are common in desert environments as atmospheric nitrogen is concentrated by the evaporation of precipitation and little nitrogen uptake. However, in addition to having an elevated mean concentration of ~525 mg/L (as N), NO3? in the coastal sabkhas of Abu Dhabi is enriched in 15N (mean δ15N ~17‰), which is an enigma. A NO3? solute mass balance analysis of the sabkha aquifer system suggests that more than 90% of the nitrogen is from local atmospheric deposition and the remainder from ascending brine. In contrast, isotopic mass balances based on Δ17O, δ15N, and δ18O data suggest approximately 80 to 90% of the NO3? could be from ascending brine. As the sabkha has essentially no soil, no vegetation, and no anthropogenic land or water use, we propose to resolve this apparent contradiction with a density‐driven free‐convection transport model. In this conceptual model, the density of rain is increased by solution of surface salts, transporting near‐surface oxygenated NO3? bearing water downward where it encounters reducing conditions and mixes with oxygen‐free ascending geologic brines. In this environment, NO3? is partially reduced to nitrogen gas (N2), thus enriching the remaining NO3? in heavy isotopes. The isotopically fractionated NO3? and nitrogen gas return to the near‐surface oxidizing environment on the upward displacement leg of the free‐convection cycle, where the nitrogen gas is released to the atmosphere and new NO3? is added to the system from atmospheric deposition. This recharge/recycling process has operated over many cycles in the 8000‐year history of the shallow aquifer, progressively concentrating and isotopically fractionating the NO3?.  相似文献   

6.
Investigating factors controlling the temporal patterns of nitrogen (N) and dissolved organic carbon (DOC) exports on the basis of a comparative study of different land uses is beneficial for managing water resources, especially in agricultural watersheds. We focused our research on an agricultural watershed (AW) and a forested watershed (FW) located in the Shibetsu watershed of eastern Hokkaido, Japan, to investigate the temporal patterns of N and DOC exports and factors controlling those patterns at different timescales (inter‐annual, seasonal, and hydrological event scales). Results showed that the annual patterns of N and DOC exports significantly varied over time and were probably controlled by climate. Higher discharge volumes in 2003, a wet year, showed higher N and DOC loadings in both watersheds. However, this process was also regulated by land use associated with N inputs. Higher concentrations and loadings were shown in the agricultural watershed. At the seasonal scale, N and DOC exports in the AW and the FW were more likely controlled by sources associated with land use. The Total N (TN) and Nitrate‐N (NO3?‐N) had higher concentrations during snowmelt season in the AW, which may be attributed to manure application in late autumn or early winter in the agricultural watershed. Concentrations of TN, NO3?‐N, dissolved organic nitrogen (DON), and DOC showed higher values during the summer rainy season in the FW, related to higher litter decomposition during summer and autumn and the fertilizer application in the agricultural area during summer. Higher DOC concentrations and loadings were observed during the rainy season in the AW, which is probably attributed to higher DOC production related to temperature and microbial activity during summer and autumn in grasslands. Correlations between discharge and concentrations differed during different periods or in different watersheds, suggesting that weather discharge can adequately represent the fact that N export depends on N concentrations, discharge level, and other factors. The differing correlations between N/DOC concentrations and the Si concentration indicated that the N/DOC exports might occur along different flow paths during different periods. During baseflow, the high NO3?‐N exports were probably derived from deep groundwater and might have percolated from uplands during hydrological events. During hydrological events, NO3?‐N exports may occur along near‐surface flow paths and in deep groundwater, whereas DOC exports could be related to near‐surface flow paths. At the event scale, the relationships between discharge and concentrations of N and DOC were regulated by antecedent soil moisture (shallow groundwater condition) in each watershed. These results indicated that factors controlling N and DOC exports varied at different timescales in the Shibetsu area and that better management of manure application during winter in agricultural lands is urgently needed to control water pollution in streams. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
Wetlands often form the transition zone between upland soils and watershed streams, however, stream–wetland interactions and hydrobiogeochemical processes are poorly understood. We measured changes in stream nitrogen (N) through one riparian wetland and one beaver meadow in the Archer Creek watershed in the Adirondack Mountains of New York State, USA from 1 March to 31 July 1996. In the riparian wetland we also measured changes in groundwater N. Groundwater N changed significantly from tension lysimeters at the edge of the peatland to piezometer nests within the peatland. Mean N concentrations at the peatland perimeter were 1·5, 0·5 and 18·6 µmol L?1 for NH4+, NO3? and DON (dissolved organic nitrogen), respectively, whereas peatland groundwater N concentration was 56·9, 1·5 and 31·6 µmol L?1 for NH4+, NO3? and DON, respectively. The mean concentrations of stream water N species at the inlet to the wetlands were 1·5, 10·1 and 16·9 µmol L?1 for NH4+, NO3? and DON, respectively and 1·6, 28·1 and 8·4 µmol L?1 at the wetland outlet. Although groundwater total dissolved N (TDN) concentrations changed more than stream water TDN through the wetlands, hydrological cross‐sections for the peatland showed that wetland groundwater contributed minimally to stream flow during the study period. Therefore, surface water N chemistry was affected more by in‐stream N transformations than by groundwater N transformations because the in‐stream changes, although small, affected a much greater volume of water. Stream water N input–output budgets indicated that the riparian peatland retained 0·16 mol N ha?1 day?1 of total dissolved N and the beaver meadow retained 0·26 mol N ha?1 day?1 during the study period. Nitrate dominated surface water TDN flux from the wetlands during the spring whereas DON dominated during the summer. This study demonstrates that although groundwater N changed significantly in the riparian peatland, those changes were not reflected in the stream. Consequently, although in‐stream changes of N concentrations were less marked than those in groundwater, they had a greater effect on stream water chemistry—because wetland groundwater contributed minimally to stream flow. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
Spatial patterns of N dynamics in soil were evaluated within two small forested watersheds in Japan. These two watersheds were characterized by steep slopes (>30°) and high stream NO3 drainage rates (8·4 to 25·1 kg N ha−1 yr−1) that were greater than bulk precipitation N input rates (7·5 to 13·5 kg N ha−1 yr−1). Higher rates of nitrification potential at near-stream zones were reflected in greater NO3 contents for soil at the near-stream zones compared with ridge zones. Both stream discharge rates and NO3 concentrations in deep unsaturated soil at the near-stream zones were positively correlated to NO3 concentrations in stream water. These relationships, together with high soil NO3 contents at the near-stream zones, suggest that the near-stream zone was an important source of NO3 to stream water. Nitrate flux from these near-stream zones was also related to the drainage of cations (K+, Ca2+ and Mg2+). The steep slope of the watersheds resulted in small saturated areas that contributed to the high NO3 production (high nitrification rates) in the near-stream zone. © 1998 John Wiley & Sons, Ltd.  相似文献   

9.
《Journal of Hydrology》2006,316(1-4):195-212
As the increase of nitrate concentration in groundwater has often been ascribed to an inappropriate use of liquid manure, the main purpose of this study was to better understand the factors controlling nitrate dynamics in the unsaturated zone of soils subjected to characteristic agronomic practices, and to contribute to improving Action Programmes, with reference to EU Directive 91/676, for nitrate vulnerable zones (NVZ).Water infiltration and nitrate leaching have been studied in experimental fields located inside nitrate vulnerable zones of the Emilia-Romagna region (Northern Italy), characterized by different pedological and hydrogeological properties and equipped with meteorological station, tensiometers, ceramic-cup samplers and piezometers. This article describes the results obtained from one of these sites, monitored over a 6-year period, which was cereal cropped and treated with pig slurry. MACRO and SOILN field-scale models have been used in order to verify the reliability of simulated water flow and nitrogen transport.The results demonstrate how nitrogen inputs from slurry, substantially higher than crop uptake, cause nitrate accumulation in the surface layer of the soil especially in warm periods (concentrations of up to 300 mg NO3–N l−1 were found in soil water). Even if the soil texture was fine, the shrinking–swelling properties of clay minerals determined fast drainage conditions (related to macroporosity), so that during the early rainy periods nitrates leached through the first meters of the unsaturated zone, at least down to 4 m. This shows that nitrate accumulation should be limited before these periods, i.e. by reducing manure application rates, especially if the soil is to be left uncultivated.The model results confirm the observed role of macroporosity in accelerating the breakthrough of surface applied soluble compounds and provide evidence that MACRO and SOILN may be suitable tools for predicting such phenomena, even though their calibration requires some further refinements.  相似文献   

10.
Peatlands provide a setting that is well suited for cranberry agriculture in the Northeastern United States. However, misconceptions exist about the amounts and forms of nitrogen (N) and phosphorus (P) export from cranberry farms. In this study, we report inorganic and organic forms of N and P export from five peatlands cultivated for cranberry production in southeastern, Massachusetts, United States. We then compare N loading rates among cranberry farms in southeastern Massachusetts, row crop farms in the Midwestern United States, and uncultivated peatlands in the United States and United Kingdom. Based on a fluvial mass balance analysis, we find that nonriparian cranberry farms export 2.56 kg of P ha−1 year−1of total P and 12.1 kg of N ha−1 year−1of total N. Total N export from riparian or “flow through” farms is two times higher than nonriparian farms due to less retention of N fertilizer in the vadose zone of riparian farms. Gross total N export from riparian and nonriparian cranberry farms consists of 35% particulate organic N, 26% dissolved organic N, 31% ammonium (NH4+), and 8% nitrate (NO3). The low proportions of NO3 export (13% of total dissolved N [TDN]) for cranberry farms differ from NO3 export for row crop farms (75% of TDN; p < .001) but not for uncultivated peatlands (17% of TDN; p = .61). Despite being highly modified by fertilizers and artificial drainage, low NO3 export (2.2 kg of N ha−1 year−1) from cranberry farms is consistent with field measurements of rapid N turnover in uncultivated peatlands. This finding suggests that state-funded wetland restoration efforts to restore denitrification in retired cranberry farms may be limited by NO3 rather than soil moisture or organic matter.  相似文献   

11.
Three main reservoirs were identified that contribute to the shallow subsurface flow regime of a valley drained by a fourth‐order stream in Brittany (western France). (i) An upland flow that supplied a wetland area, mainly during the high‐water period. It has high N‐NO3? and average Cl? concentrations. (ii) A deep confined aquifer characterized by low nitrate and low chloride concentrations that supplied the floodplain via flow upwelling. (iii) An unconfined aquifer under the riparian zone with high Cl? and low N‐NO3? concentrations where biological processes removed groundwater nitrate. This aquifer collected the upland flow and supplied a relict channel that controlled drainage from the whole riparian zone. Patterns of N‐NO3? and Cl? concentrations along riparian transects, together with calculated high nitrate removal, indicate that removal occurred mainly at the hillslope–riparian zone interface (i.e. first few metres of wetland), whereas dilution occurred in lower parts of the transects, especially during low‐water periods and at the beginning of recharge periods. Stream flow was modelled as a mixture of water from the three reservoirs. An estimation of these contributions revealed that the deep aquifer contribution to stream flow averaged 37% throughout the study period, while the contribution of the unconfined reservoir below the riparian zone and hillslope flow was more variable (from ca 6 to 85%) relative to rainfall events and the level of the riparian water table. At the entire riparian zone scale, NO3? removal (probably from denitrification) appeared most effective in winter, despite higher estimated upland NO3? fluxes entering the riparian zone during this period. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

12.
The changes of NH3-N, NO3-N, NO2-N and TN/TP were studied during growth and non-growth season in 33 subtropical shallow lakes in the middle and lower reaches of the Yangtze River. There were significant positive correlations among all nutrient concentrations, and the correlations were better in growth season than in non-growth season. When TP>0.1 mgL?1, NH3-N increased sharply in non-growth season with increasing TP, and NO3-N increased in growth season but decreased in non-growth season with TP. These might be attributed to lower dissolved oxygen and low temperature in non-growth season of the hypereutrophic lakes, since nitrification is more sensitive to dissolved oxygen and temperature than antinitrification. When 0.1 mgL?1>TP>0.035 mgL?1, TN and all kinds of inorganic nitrogen were lower in growth season than in non-growth season, and phytoplankton might be the vital regulating factor. When TP<0.035 mgL?1, inorganic nitrogen concentrations were relatively low and NH3-N, NO2-N had significant correlations with phytoplankton, indicating that NH3-N and NO2-N might be limiting factors to phytoplankton. In addition, TN/TP went down with decline in TP concentration, and TN and inorganic nitrogen concentrations were obviously lower in growth season than in non-growth season, suggesting that decreasing nitrogen (especially NH3-N and NO3-N) was an important reason for the decreasing TN/TP in growth season. The ranges of TN/TP were closely related to trophic level in both growth and non-growth seasons, and it is apparent that in the eutrophic and hypertrophic state the TN/TP ratio was obviously lower in growth season than in non-growth season. The changes of the TN/TP ratio were closely correlated with trophic levels, and both declines of TN in the water column and TP release from the sediment were important factors for the decline of the TN/TP ratio in growth season.  相似文献   

13.
胡维平  濮培民  李万春 《湖泊科学》1998,10(S1):507-518
A model on a physico-biological engineering experiment for purifying water in Wulihu Bay of Lake Taihu by using Trapa natans var. bispinosa was constructed. The state variables in water in the physico-biological engineering were ammonium nitrogen (NH4+-N); nitrate nitrogen (NO3--N); nitrite nitrogen (NO2--N); phosphate phosphorus (PO43--P); dissolved oxygen (DO); nitrogen (N) and phosphorus (P) in detritus; biomass density, N and P in phytoplankton and in Trapa natans var. bispinosa, N and P in the substance adsorbed by the membrane of the engineering and the rootstocks of Trapa natans var. bispinosa. The state variables in bottom mud layer were PO43--P in the core water,exchangeable P and N. The external forcing functions were solar radiation, water temperature, NH4+-N; NO3--N; NO2--N; PO43--P; N and P in detritus; DO; phytoplankton concentrations in inflow water and the retention time of the water in physico-biological engineering channel. The main physical, chemical and biological processes considered in the model were:growth of Trapa natans var. bispinosa and phytoplankton; oxidation of NH4+-N and NO2--N, of detritus break down; N and P sorption by the enclosure cloth of the experimental engineering and by the rootstocks of Trapa natans var. bispinosa in water; reaeration of water; uptake of P, NH4+-N, NO3--N by phytoplankton and Trapa natans var. bispinosa:mortality of the phytoplankton and Trapa natans var. bispinosa:settling of detritus; and nutrient release from sediment. Comparison of calculated results and observed results showed that the model was constructed reasonably for the experiment. The mechanism of purifying lake water in the experiment engineering was discussed by the use of the model.  相似文献   

14.
Quantifying the effects of anthropogenic processes on groundwater in arid regions can be complicated by thick unsaturated zones with long transit times. Human activities can alter water and nutrient fluxes, but their impact on groundwater is not always clear. This study of basins in the Trans‐Pecos region of Texas links anthropogenic land use and vegetation change with alterations to unsaturated zone fluxes and regional increases in basin groundwater NO3? concentrations. Median increases in groundwater NO3? (by 0.7–0.9 mg‐N/l over periods ranging from 10 to 50+ years) occurred despite low precipitation (220–360 mm/year), high potential evapotranspiration (~1570 mm/year), and thick unsaturated zones (10–150+ m). Recent model simulations indicate net infiltration and groundwater recharge can occur beneath Trans‐Pecos basin floors, and may have increased due to irrigation and vegetation change. These processes were investigated further with chemical and isotopic data from groundwater and unsaturated zone cores. Some unsaturated zone solute profiles indicate flushing of natural salt accumulations has occurred. Results are consistent with human‐influenced flushing of naturally accumulated unsaturated zone nitrogen as an important source of NO3? to the groundwater. Regional mass balance calculations indicate the mass of natural unsaturated zone NO3? (122–910 kg‐N/ha) was sufficient to cause the observed groundwater NO3? increases, especially if augmented locally with the addition of fertilizer N. Groundwater NO3? trends can be explained by small volumes of high NO3? modern recharge mixed with larger volumes of older groundwater in wells. This study illustrates the importance of combining long‐term monitoring and targeted process studies to improve understanding of human impacts on recharge and nutrient cycling in arid regions, which are vulnerable to the effects of climate change and increasing human reliance on dryland ecosystems.  相似文献   

15.
邓焕广  张智博  刘涛  殷山红  董杰  张菊  姚昕 《湖泊科学》2019,31(4):1055-1063
为了解城市湖泊不同水生植被区水体温室气体的溶存浓度及其影响因素,于2015年4-11月按每月2次的频率采用顶空平衡法对聊城市铃铛湖典型植被区——菹草区、莲藕区和睡莲区表层水中CO2、CH4和N2O的溶存浓度进行监测,计算水中温室气体的饱和度和排放通量,并测定水温(T)、pH、溶解氧(DO)、叶绿素a及营养盐浓度等理化指标,以探究水体环境因子对温室气体溶存浓度的影响.结果表明,铃铛湖各植被区水体温室气体均处于过饱和状态,是大气温室气体的"源";莲藕区CH4浓度、饱和度和排放通量均显著高于菹草区,而各植被区N2O和CO2均无显著性差异;不同植被区湖水中DO、总氮(TN)、总磷(TP)和硝态氮(NO3--N)浓度具有显著差异,其中DO、TN和NO3--N浓度均表现为菹草区最高,莲藕区最低,而TP浓度则正好相反;各植被区温室气体浓度和水环境参数间的相关分析和多元回归分析的结果表明,水生植物可通过影响水体的理化性质对温室气体的产生和排放产生显著差异影响,在菹草区亚硝态氮(NO2--N)、NO3--N、T和DO是控制水体温室气体浓度的主要因子;睡莲区为TP和pH;莲藕区则为pH、NO2--N和DO.  相似文献   

16.
Water and nutrient fluxes were studied during a 12-month period in an alerce (Fitzroya cupressoides) forest, located in a remote site at the Cordillera de la Costa (40°05′S) in southern Chile. Measurements of precipitation, throughfall, stemflow, effective precipitation, soil infiltration and stream flow were carried out in an experimental, small watershed. Simultaneously, monthly water samples were collected to determine the concentrations and transport of organic-N, NO3-N, total-P, K+, Ca2+, Na+ and Mg2+ in all levels of forest. Concentration of organic-N, NO3-N, total-P and K+ showed a clear pattern of enrichment in the throughfall, stemflow, effective precipitation and soil infiltration. For Ca2+ and Mg2+, enrichment was observed in the effective precipitation, soil infiltration and stream flow. Annual transport of K+, Na+, Ca2+ and Mg2+ showed that the amounts exported from the forest via stream flow (K+=0·95, Na+=32·44, Ca2+=8·76 and Mg2+=7·16 kg ha−1 yr−1) are less than the inputs via precipitation (K+=6·39, Na+=40·99, Ca2+=15·13 and Mg2+=7·61 kg ha−1 yr−1). The amounts of organic-N and NO3-N exported via stream flow (organic-N=1·04 and No3-N=3·06 kg ha−1 yr−1) were relatively small; however, they represented greater amounts than the inputs via precipitation (organic-N=0·74 and NO3-N=0·97 kg ha−1 yr−1), because of the great contribution of this element in the superficial soil horizon, where the processes of decomposition of organic material, mineralization and immobilization of the nutrients occurs. © 1998 John Wiley & Sons, Ltd.  相似文献   

17.
Measured, calculated and simulated values were combined to develop an annual nitrogen budget for Loch Vale Watershed (LVWS) in the Colorado Front Range. Nine-year average wet nitrogen deposition values were 1·6 (s=0·36) kg NO3-N ha−1, and 1·0 (s=0·3) kg NH4-N ha−1. Assuming dry nitrogen deposition to be half that of measured wet deposition, this high elevation watershed receives 3·9 kg N ha−1. Although deposition values fluctuated with precipitation, measured stream nitrogen outputs were less variable. Of the total N input to the watershed (3·9 kg N ha−1 wet plus dry deposition), 49% of the total N input was immobilized. Stream losses were 2·0 kg N ha−1 (1125 kg measured dissolved inorganic N in 1992, 1–2 kg calculated dissolved organic N, plus an average of 203 kg algal N from the entire 660 ha watershed). Tundra and aquatic algae were the largest reservoirs for incoming N, at approximately 18% and 15% of the total 2574 kg N deposition, respectively. Rocky areas and forest stored the remaining 11% and 5%, respectively. Fully 80% of N losses from the watershed came from the 68% of LVWS that is alpine. © 1997 John Wiley & Sons, Ltd.  相似文献   

18.
Preliminary vadose zone nitrate extraction experiments have revealed the extractant (2N KCl) volume affects the determination of nitrate and its nitrogen isotope ratio. In five cores, extractable NO3-N concentrations increased an average of 1.7 times after the soil-to-extractant ratio was increased from 1:1 to 1:10. An increased extractant volume resulted in a large positive shift of stable nitrogen values (δ15N), which averaged +6.2%. An underestimation of available NO3-N for leaching and transport through the vadose zone and a biased source interpretation from the δ15N values probably would occur if a procedure which leads to incomplete extraction of nitrate is used.  相似文献   

19.
Alan R. Hill 《水文研究》2012,26(20):3135-3146
The effect of preferential flow in soil pipes on nitrate retention in riparian zones is poorly understood. The characteristics of soil pipes and their influence on patterns of groundwater transport and nitrate dynamics were studied along four transects in a 1‐ to >3‐m deep layer of peat and marl overlying an oxic sand aquifer in a riparian zone in southern Ontario, Canada. The peat‐marl deposit, which consisted of several horizontal layers with large differences in bulk density, contained soil pipes that were generally 0.1 to 0.2 m in diameter and often extended vertically for 1 to >2 m. Springs that produced overland flow across the riparian area occurred at some sites where pipes extended to the peat surface. Concentrations of NO3?–N (20–30 mg L?1) and dissolved oxygen (DO) (4–6 mg L?1) observed in peat pipe systems and surface springs were similar to values in the underlying sand aquifer, indicating that preferential flow transported groundwater with limited nitrate depletion. Low NO3?–N concentrations of <5 mg L?1 and enriched δ15N values indicated that denitrification was restricted to small areas of the peat where pipes were absent. Groundwater DO concentrations declined rapidly to <2 mg L?1 in the peat matrix adjacent to pipes, whereas high NO3?–N concentrations of >15 mg L?1 extended over a larger zone. Low dissolved organic carbon values at these locations suggest that supplies of organic carbon were not sufficient to support high rates of denitrification, despite low DO conditions. These data indicate that it is important to develop a greater understanding of pipes in peat deposits, which function as sites where the transport of large fluxes of water with low biogeochemical reaction rates can limit the nitrate removal capacity of riparian zones. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号