首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In the present work a ready reckon (a handbook used for computation/reference) model for the evaluation of slope instability of road sections, particularly in mountainous terrain, is presented. The integrated approach incorporates different aspects of physical and geotechnical parameters, structural kinematics and the role of different clay minerals constituting the slope-forming materials, aimed at deciphering and understanding the mechanisms that controlled the slope instability. The role of the major sets of discontinuities, derived from stereo plots of structural data, with regard to the total number of unstable slopes present in each segment was considered, and the critical section was determined. The intense monsoon season rainfall in the area not only contributed to weathering of the rock mass, but also increased the water content in the clays that were present, leading to a reduction in the stability of natural slopes. The study revealed that where the slopes displayed relative presence of montmorillonite clays, with significant swelling capacity, failures were more frequent.  相似文献   

2.
3.
Renuka Lake in the Lesser Himalaya, Himachal Pradesh is in a valley surrounded by mountains comprised of highly crumpled, shattered, crushed, folded and dislocated rocks consisting of carbonaceous shales-slates often pyrite-ferrous, limestone, quartzites, boulder beds, etc. A detailed and systematic study of the major ion chemistry of the lake, clay mineral composition of the bed and core sediments and the Pb210 isotope estimation in the latter was conducted. The chemistry is dominated by carbonate weathering and (Ca + Mg) and (HCO3 + SO4) accounts for about 90% of the cations and anions. The SO4 content is almost the same as the HCO3. The low contribution of (Na + K) to the total cations and the (Ca + Mg) and HCO3 data tends to indicate that silicate weathering has not been the potential source of major ions to the lake waters. This difference may be related to the increasing susceptibility to weathering of carbonate over silicate rocks exposed in the catchment and also seepage of water at the bottom. The high sulphate content in waters is derived from dissolution of pyrite-ferrous reduced black shales, which constitute a significant lithology in the catchment. The chemical index of alteration (CIA) value in core sediments is on an average 76, which is comparable with average shale (70-75) and the rate of sedimentation 3.3 mm/year based on measurement of Pb210, indicating a fairly high weathering rate in the catchment. Illite is the dominant clay mineral (52-90%) in the bed and core sediments, chlorite constitutes 7-48% and the kaolinite-chlorite mixed silicate layer is l-2%. This is consistent with the shale-slate, sandstone lithology in the valley.  相似文献   

4.
5.
This paper presents the focal-mechanism solution of the Kinnaur (Himachal Pradesh) earthquake of January 19, 1975. Use was made of the first motions of P-waves and polarization (or first motions) of S-waves. The mechanism solution is characterized by a predominant component of normal faulting.  相似文献   

6.
Natural Hazards - Methods capable of assessing the vulnerability of houses for future earthquakes are of fundamental importance for the safety and development of an area. As the detailed assessment...  相似文献   

7.
For the socio-economic development of a country, the highway network plays a pivotal role. It has therefore become an imperative to have landslide hazard assessment along these roads to provide safety. The current study presents landslide hazard zonation maps, based on the information value method and frequency ratio method using GIS on 1:50,000 scale by generating the information about the landslide influencing factors. The study was carried out in the year 2017 on a part of Ravi river catchment along one of the landslide-prone Chamba to Bharmour road corridor of NH-154A in Himachal Pradesh, India. A number of landslide triggering geo-environmental factors like “slope, aspect, relative relief, soil, curvature, Land Use and Land Cover (LULC), lithology, drainage density, and lineament density” were selected for landslide hazard mapping based on landslide inventory. The landslide inventory has been developed using satellite imagery, Google earth and by doing exhaustive field surveys. A digital elevation model was used to generate slope gradient, slope aspect, curvature, and relative relief map of the study area. The other information, i.e., soil maps, geological maps, and toposheets, have been collected from various departments. The landslide hazard zonation map was categorized namely “very high hazard, high hazard, medium hazard, low hazard, and very low hazard.” The results from these two methods have been validated using area under curve (AUC) method. It has been found that hazard zonation map prepared using frequency ratio model had a prediction rate of 75.37% while map prepared using information value method had prediction rate of 78.87%. Hence, on the basis of prediction rate, the landslide hazard zonation map, obtained using information value method, was experienced to be more suitable for the study area.  相似文献   

8.
Landslide Lake Outburst Floods (LLOFs) are common in the Himalayan river basins. These are caused by breaching of lakes created by landslides. The active and palaeo-landslide mapping along the Satluj and Spiti Rivers indicate that these rivers were blocked and breached at many places during the Quaternary period. In the present article, we document LLOFs during 2000 and 2005 caused by the breaching of landslide lakes created in the Trans-Himalayan region along the Satluj River and Paree Chu (stream), respectively, both in the Tibetan region of China and its impact on the channel and infrastructure in the Kinnaur district of Himachal Pradesh, India. It has been observed that the loss of life and property due to these LLOFs is directly related to the disposition of the Quaternary materials and the different morphological zones observed in the area.  相似文献   

9.
The Middle–Upper Siwalik Groups (Plio–Pleistocene) are exposed at Haripur-Kolar, Himachal Pradesh, India. The succession is 2800-m thick and has been subdivided into Unit M1 of the Middle Siwalik and four units U1–U4 of the Upper Siwalik Group, on the basis of facies associations, and type and degree of development of palaeosols. The available magnetostratigraphic ages for bases of Units U1, U3 and U4 are 5.5, 2.6 and 1.77 Ma, respectively. The top of the section has been dated as 19 ka.

Lithofacies association and palaeocurrent analysis indicates that the Middle and Upper Siwalik Groups were formed mainly by a basin transverse fluvial system. Two types of river systems, which differ in their size, can be documented in Unit-M1, Unit U1 and Unit-U2: one trunk river system similar to the modern Kosi and the other smaller river system, which formed tributaries to the former. The large rivers were mainly braided in nature. The Unit U3 and lower part of Unit U4 were deposited in the piedmont depositional system mainly by small braided streams and the upper part of the Unit U4 was deposited during a period of arid climate by sediment gravity-flows.

Integration of fluvial lithofacies and pedofacies helps to identify two fluvial depositional systems from the modern Indo-Gangetic Plains. The Lowland System involved deposition on alluvial megafans and interfan areas, which resulted in sand-rich and mud-rich sequences with weekly developed soils. The Upland System allowed large tracts to act as high ground for thousands of years, thereby giving rise to sandstone poor intervals with moderately to strongly developed soils. Occurrence of moderately to strongly developed soils was controlled by uplifting and tilting of large tectonic blocks, without any relation to distance from the main channels. Rate of subsidence apparently controlled the occurrence of Lowland and Upland systems. Deposition of the Unit M1, Unit U1 and Unit U2 took place under Upland and Lowland systems, very similar to those identified from the modern Indo-Gangetic Plains. The warm and humid climate between 5.3 and 2.6 Ma led to the formation of red Alfisols with calcrete nodules at places. Slightly cooler and drier climate starting at about 2.6 Ma and approximately coinciding with the onset of global-scale glaciation, produced poorly developed yellow soil with common development of nodular calcretic horizon and calcitc material disseminated in the groundmass. At ca. 0.9 Ma, a probable significant change to still drier and cooler climate produced typical sediment gravity-flows in the piedmont system, that continued until at least up to 19 ka.  相似文献   


10.
The increased socio-economic significance of landslides has resulted in the application of statistical methods to assess their hazard, particularly at medium scales. These models evaluate where, when and what size landslides are expected. The method presented in this study evaluates the landslide hazard on the basis of homogenous susceptible units (HSU). HSU are derived from a landslide susceptibility map that is a combination of landslide occurrences and geo-environmental factors, using an automated segmentation procedure. To divide the landslide susceptibility map into HSU, we apply a region-growing segmentation algorithm that results in segments with statistically independent spatial probability values. Independence is tested using Moran’s I and a weighted variance method. For each HSU, we obtain the landslide frequency from the multi-temporal data. Temporal and size probabilities are calculated using a Poisson model and an inverse-gamma model, respectively. The methodology is tested in a landslide-prone national highway corridor in the northern Himalayas, India. Our study demonstrates that HSU can replace the commonly used terrain mapping units for combining three probabilities for landslide hazard assessment. A quantitative estimate of landslide hazard is obtained as a joint probability of landslide size, of landslide temporal occurrence for each HSU for different time periods and for different sizes.  相似文献   

11.
The fractionation of P in Pandoh Lake surface sediments has been investigated for the first time in order to understand its environmental availability and sources, and the eutrophication status of this lake. Inorganic-P is present mainly as authigenic-P (step-III). The authigenic P concentration is higher in winter relative to the summer and monsoon seasons and ranged from 35.9 to 46.9 μg/g. The loosely sorbed or exchangeable-P (step-I), Fe(III)-bound-P (step-II) and detrital inorganic-P (step-IV) were higher in the monsoon season and varied from 3.70 to 11.1 μg/g, 16.9 to 32.0 μg/g and 9.89 to 17.0 μg/g, respectively. Organic-P reached a maximum in the summer season and ranged from 8.00 to 14.9 μg/g. Authigenic-P and detrital inorganic-P show seasonal changes, as pH influences the interaction between P and CaCO3 in the water column. In the winter season, phosphate is precipitated out of the water column and fixed in the sediments as a result of an increase in pH. Calcite-bound-P in the sediments may be redissolved by decreasing pH in the summer season. Relatively high rates of mineralization during the monsoon results in the seasonal pattern of organic-P fractionation to sediment as follows: monsoon = winter < summer. Iron, Ca, organic matter and silt and clay contents seem to play a significant role in regulating the seasonal P budget. Principal component analysis (PCA) was used to identify the factors which influence sedimentary P in the different seasons.  相似文献   

12.
The lakes of the Himalaya are degrading due to increase in toxic heavy metal loading. This study reports the last 50-year heavy metal pollution loading in the Rewalsar Lake, Himachal Pradesh, India. Sediment cores were recovered to study the pollution loading in the lake sediments. The 137Cs and 210Pb isotope-based sedimentation rate suggest rapid sedimentation in the lake during the last ~50 years. The concentrations of Mn, Cu, Zn, Cd, Pb, Co, Ni, Cr metals in the lake sediments owe its contributions both to the natural and anthropogenic sources. Prior to ca 1990 AD, metal loading was dominated by the lithogenic input, whereas post ca 1990 AD the metal loading was controlled by the anthropogenic factors. The Pb concentration in the lake gradually increased during 1990–2004 and then decreased significantly till present. The higher concentration of Pb seems to be derived from the fossil fuel burning, while the Cr concentration in the lake indicates the use of fertilizer in the catchment area. The lowest concentrations of elements around ca 1990 AD seem to have occurred due to channelization of the lake feeding system.  相似文献   

13.
Temporal change in the glacier coverage is analyzed for the period between 1962 and 2003 in Parbati valley, Himachal Pradesh. It is observed that the total glacier cover has been decreased by 17% ranging between 8 and 100% for individual glacier. The pattern of de-glaciation shows a high degree of shrinkage in outer zone of Parbati valley, while least shrinkage is observed in the inner valley. The present study is conducted to establish relationship between glacio-geomorphic parameters and glaciers shrinkage pattern to predict the future glacier cover in warming scenario. A systematic change is observed for glacio-geomorphic parameters associated with temporal change in glacier cover. It is observed that mean and minimum elevation, slope, relief and duration of insolation have changed substantially. Maximum elevation, plan/profile curvatures and aspect have shown less change from 1962 to 2003. A correlation matrix between glacio-geomorphic parameters for glaciers between 1962 and 2003 shows that the recent glaciers are much more controlled by terrain characteristics than that in the recent past.  相似文献   

14.
Gabbros at Purimetla occur in close association with the alkaline pluton. Petrography and petrochemistry of these gabbros indicate their tholeiitic nature. Chemical variation of these tholeiites suggests that an initial undersaturated tholeiitic magma yielded oversaturated fractions in the final stages of differentiation. Their regional distribution suggests that basic magmatism preceded the emplacement of the alkaline rocks in the Prakasam alkaline province.  相似文献   

15.
Fluorine distribution in waters of Nalgonda District, Andhra Pradesh, India   总被引:5,自引:0,他引:5  
Geochemical and hydrochemical studies were conducted in Nalgonda District (A.P.), to explore the causes of high fluorine in waters, causing a widespread incidence of fluorosis in the local population. Samples of granitic rocks, soils, stream sediments, and waters were analyzed for F and other salient chemical parameters. Samples from the area of Hyderabad city were analyzed for comparison. The F content of waters in areas with endemic fluorosis ranges from 0.4 to 20 mg/l. The low calcium content of rocks and soils, and the presence of high levels of sodium bicarbonate in soils and waters are important factors favoring high levels of F in waters.  相似文献   

16.
国道G316线天水市稍子坡滑坡群成因分析   总被引:1,自引:0,他引:1  
国道316线天水稍子坡段(K2556—K2562)滑坡十分发育,是甘肃境内滑坡灾害最为严重的路段之一。特别是雨季或丰水年,滑坡活动频繁,对公路安全运营造成很大危害和威胁。1999年及2000年雨季该路段发生滑坡灾害15处,正在改建的公路路基30%被破坏,增加工程投资2000多万元,并拖延了工期。本区滑坡多为老滑坡的复活,具有发育密集、复活性强等特点。特殊的地质构造及易滑地层广泛分布,老滑坡的发育和独特的水文地质条件是该滑坡成群发育的地质基础。大量降水入渗,不合理的人为开挖和填方活动是滑坡的主要诱发因素。  相似文献   

17.
18.
The functional factors responsible for fluoride (F?)-bearing groundwater used for drinking as well as for cooking in the area of Gummanampadu Sub-basin, Guntur District, Andhra Pradesh, India are discussed. The study area is a part of an Archean Gneissic Complex, consisting of banded-biotite-hornblende-gneisses, over which the Proterozoic Cumbhum quartzites, shales, phyllites, and dolomitic limestones occur. The chemistry of groundwater is dominated by carbonates (HCO3 ? and CO3 2?) at a higher pH. This results in a higher total alkalinity over total hardness, causing an excess alkalinity. Sodium ion is dominated among the cations (Ca2+, Mg2+, and K+). The concentration of F? (2.1–3.7 mg/L) is higher than that of desirable national limit (1.2 mg/L) prescribed for drinking purpose. A significant positive correlation exists between F? and pH as well as that between F? and HCO3 ? + CO3 2?. This indicates that the alkaline condition is the prime conducive factor for dissolving F?-bearing minerals more effectively leading to a higher concentration of F? in the groundwater. Furthermore, a positive chloro-alkaline index reflects the ion exchange, and an oversaturation with respect to CaCO3 indicates the evaporation. In addition, a negative relation between the well depth and F? shows the effect of solubility and/or leaching of salts in different depth levels. These factors regulate the concentration of F? in the groundwater. On the other hand, a positive correlation of F? with SO4 2? as well as with K+ shows the human land use activities (namely, use of chemical fertilizers, disposal of domestic wastes, etc.), which add F? to the groundwater. A significant number of the residents of the study area suffer from the health disorders related to fluorosis, which is a consequence of higher concentration of F? in the drinking water. Thus, this study emphasizes the need for supply of safe drinking water, nutritional diet, rainwater-harvesting structures, and public education to realize “health for all” motto of World Health Organization.  相似文献   

19.
Either naturally occurring process or human activities may have a significant impact on the quality of sub-surface waters which further limit its use. Multivariate statistical techniques such as factor analysis (FA), cluster analysis (CA) were applied for the evaluation of spatial variations and the interpretation of ground water quality data around Bacheli and Kirandul area. The major anions, cations and heavy metals were determined for each of 20 samples collected in pre-monsoon seasons. Hydrochemical parameters like EC, pH, TDS, TH, TA, Na+, K+, Ca2+, Cl-, F-, SO42-, As, Sb, Se, Pb, Cd, Zn, Cu were estimated in pre monsoon and post monsoon seasons. Different geochemical controls of the investigated parameters were also assessed. Factor 1 explains 33.47% of the total variance and indicates atmospheric controls and silicate mineral weathering process. Factor 2 explains 13.83% of total variance, indicating silicate mineral weathering process resulting in elevated pH. Generally, water types tend towards magnesium-bicarbonate-chloride.  相似文献   

20.
Assessment of soil loss through Sediment Yield Index (SYI) is important for watershed planning, prioritization, and development. In the absence of measured sediment data, SYI expressing the relative sediment yield from different basins work as a basis for grading another basin to adopt erosion control measures. An attempt was made to evaluate SYI in wider scale by using cost-effective tools like remote sensing and geographical information system (GIS). SYI was calculated for Madia subwatershed, which consists of 29 microwatersheds and located in Sagar District, Madhya Pradesh (M.P.) The IRS LISS III data and Shuttle Radar Topography Mission (SRTM) digital elevation models (DEM) of 90-m resolution were used to identify land use characteristics and geomorphometric analysis. Major land use was observed as agricultural land (24.7 %), water bodies (16.7 %), forest area (10.2 %), and settlement (21.3 %). In categorization, similar overall accuracy was observed for dense forest, barren land, settlement, and water bodies. The highest SYI with a value more than 20 was observed in microwatershed Mw6, Mw7, and Mw24, which comprises 33 % of the total watershed area. It gives the information about the watershed area that requires very high priority.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号