首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 959 毫秒
1.
Inorganic minerals form a major component of lacustrine sediments and have the potential to reveal detailed information on previous climatic and hydrological conditions. The ability to extract such information however, has been restricted by a limited understanding of the relationships between minerals and the environment. In an attempt to fill in this gap in our knowledge, 146 surface sediment samples have been investigated from 146 lakes on the Tibetan Plateau. The mineral compositions derived from these samples by X-Ray Diffraction (XRD) were used to examine the relationships between mineral compositions and the environmental variables determined for each site. Statistical techniques including Multivariate regression trees (MRT) and Redundancy Analysis (RDA), based on the mineral spectra and environmental variables, reveal that the electrical conductivity (EC) and Mg/Ca ratios of lake water are the most important controls on the composition of endogenic minerals. No endogenic minerals precipitate under hyper-fresh water conditions (EC lower than 0.13 mS/cm), with calcite commonly forming in water with EC values above 0.13 mS/cm. Between EC values of 0.13 and 26 mS/cm the mineral composition of lake sediments can be explained in terms of variations in the Mg/Ca ratio: calcite dominates at Mg/Ca ratios of less than 33, whereas aragonite commonly forms when the ratio is greater than 33. Where EC values are between 26 and 39 mS/cm, monohydrocalcite precipitates together with calcite and aragonite; above 39 mS/cm, gypsum and halite commonly form. Information on the local geological strata indicates that allogenic (detrital) mineral compositions are primarily influenced by the bedrock compositions within the catchment area. By applying these relationships to the late glacial and Holocene mineral record from Chaka Salt Lake, five lake stages have been identified and their associated EC conditions inferred. The lake evolved from a freshwater lake during the late glacial (before 11.4 cal. ka BP) represented by the lowest EC values (<0.13 mS/cm), to a saline lake with EC values slightly higher than 39 mS/cm during the early and mid Holocene (ca. 11.4–5.3 cal. ka BP), and finally to a salt lake (after 5.3 cal. ka BP). These results illustrate the utility of our mineral-environmental model for the quantitative reconstruction of past environmental conditions from lake sediment records.  相似文献   

2.
Pollen and sediment from Grass Lake, California provide a history of vegetation and climate in the southern Cascade Range from 36 to 19 cal ka, revealing climate changes that led to the glacial advances recorded at Upper Klamath Lake (Rosenbaum and Reynolds 2004a – this issue). Variations in the percentages of conifer and Artemisia (sagebrush) pollen at Grass Lake recorded shifts in vegetation that reflect changes in precipitation. Between 36 and 34 cal ka, a progression from steppe to open pine forest to dense pine forest indicates that precipitation increased. After 32 cal ka, the forest became more open and by 30 cal ka sagebrush steppe surrounded the lake, implying that precipitation decreased. The area was arid for most of the interval between 30 and 19 cal ka. Increases in conifer pollen recorded increases in precipitation from 21 through 19 cal ka, when open pine forest colonized the lake area. Throughout the period from 36 to 19 cal ka, centennial- to millennial-scale intervals with increased conifer pollen imply that the arid interval was interrupted by periods of increased precipitation. Pollen data also provide evidence that the major fluctuations in sand concentration in the Grass Lake core reflect temperature shifts. Changes in sediment particle size are closely related to variations in pollen concentration and accumulation rate, which in turn reflect changes in plant cover, implying that sand was deposited in the lake due to deflation of clay- and silt-sized particles from sparsely-vegetated alpine areas of the watershed. Sand deposition increased as climatic cooling led to reductions in the elevation of upper treeline and alpine conditions affected a larger part of the watershed. There is no evidence of glaciation in the basin, but pollen data show the area was above upper treeline during Cold Period III (34–32 cal ka), one of several very cold intervals. Vegetation decreased at about 28 cal ka and remained sparse for at least 9000 years, implying that the climate became cooler and remained cool until after 19 cal ka. Cold Period II developed at about 25 cal ka and terminated by 23 cal ka. The Grass Lake watershed was again above upper treeline with the onset of Cold Period I, soon after 19 cal ka. Comparison of the Grass Lake record with those from Upper Klamath Lake, Oregon and Tulelake, California suggests a persistent pattern of environmental changes in this time interval throughout the Modoc Plateau region.  相似文献   

3.
Sediment cores collected from embayed lakes along the east-central coast of Lake Michigan are used to construct aeolian sand records of past coastal dune mobility, and to constrain former lake levels in the Lake Michigan basin. Time series analysis of sand cycles based on the weight-percent aeolian sand within lacustrine sediment, reveals statistically significant spectral peaks that coincide with established lake level cycles in Lake Michigan and the Gleissberg sunspot cycle of minima. Longer cycles of ~ 800 and ~ 2200 years were also identified that correspond to solar cycles. Shorter cycles between 80 and 220 years suggest a link between coastal dune mobility, climate, and lake levels in the Lake Michigan basin. Radiocarbon-dated sedimentary contacts of lacustrine sediment overlying wetland sediment record the Nipissing transgression in the Lake Michigan basin. Lake level rise closely mimics the predicted uplift of the North Bay outlet, with lake level rise slowing when outflow was transferred to the Port Huron/Sarnia outlet. The Nipissing highstand was reached after 5000 cal (4.4 ka) BP.  相似文献   

4.
Seven vibro-cores were collected from three shallow lakes of the Gabon (Kamalété, Nguène, Maridor) along a 300-km west–east transect close to the Equator. These lakes are located in very distinct landscapes: coastal forest-savanna mosaic, rain forest and savanna with colonising forest, respectively. Core chronologies were established by radiocarbon dating. Study of these lacustrine archives (textural variables, clay minerals, organic matter components, δ13C, pollen) allowed comparison of late Holocene environmental changes recorded at each site and with results from other studies. Lake Kamalété indicates minor climatic deterioration (increased drying and greater seasonality) between 1,410 and 500 cal. years BP, which is also recognised in southern Cameroon and east-central Africa. Lake Nguène was surrounded by dense moist forest throughout the last 4,110 years, but shows significant deterioration from ~2,800 cal. years BP, a phenomenon seen at nearby sites. Lake Maridor shows a decline of forest initiated a little after 3,800 cal. years BP, which indicates timing that is distinct from the two other sites. This was probably a response to local conditions (i.e. outlet damming). Although the three lakes display generally parallel climatic trends perhaps linked to SST oscillations, there is not perfect coherence between these three sites. Differences among the three basins may be attributable to local factors like groundwater hydrology and slope instabilities of such shallow lake systems in this equatorial region.  相似文献   

5.
Lake Ohrid is considered to be of Pliocene origin and is the oldest extant lake in Europe. A 1,075-cm-long sediment core was recovered from the southeastern part of the lake, from a water depth of 105 m. The core was investigated using geophysical, granulometric, biogeochemical, diatom, ostracod, and pollen analyses. Tephrochronology and AMS radiocarbon dating of plant macrofossils reveals that the sediment sequence spans the past ca. 39,500 years and features a hiatus between ca. 14,600 and 9,400 cal. year BP. The Pleistocene sequence indicates relatively stable and cold conditions, with steppe vegetation in the catchment, at least partial winter ice-cover of the lake, and oxygenated bottom waters at the coring site. The Holocene sequence indicates that the catchment vegetation had changed to forest dominated by pine and summer-green oak. Several of the proxies suggest the impact of abrupt climate oscillations such as the 8.2 or 4.0 ka event. The observed changes, however, cannot be related clearly to a change in temperature or humidity. Human impact started about 5,000 cal. year BP and increased significantly during the past 2,400 years. Water column mixing conditions, inflow from subaquatic springs, and human impact are the most important parameters influencing internal lake processes, notably affecting the composition and characteristics of the sediments.  相似文献   

6.
We studied mineral magnetic properties of a 6-m-long, late Pleistocene through Holocene sediment sequence from Lake Aibi in Dzungaria (Zunggary, Junggar), northern Xinjiang, China. Results were used to infer environmental changes and are compared with previously studied cores from Lake Manas. Both water bodies occupy the deepest parts of the Dzungarian Basin and are remnants of large Holocene lakes. During the Late Pleistocene, the magnetic mineralogy in both lakes was dominated by detrital, iron oxide minerals. Oxic conditions, which dominated during sedimentation and early diagenesis, persisted over the Pleistocene–Holocene transition. Later, during the middle Holocene, lake bottom conditions enabled authigenic formation of iron sulphide minerals such as pyrite (FeS2) in Lake Aibi, and pyrite and greigite (Fe3S4) in Lake Manas. This iron sulphide mineralogy suggests increased biological activity in stagnant, anoxic bottom waters. Anoxic bottom conditions started about 9.8 cal kyr BP in Lake Manas and at about 7.2 cal kyr BP in Lake Aibi. A short dry event recorded in Lake Manas between 6.8 and 5.2 cal kyr BP is not clearly observed in Lake Aibi. In the late Holocene, i.e. the last 2.8 cal kyr, sediments of both lakes are again characterised by iron oxides, suggesting well-mixed, shallow water bodies. For this recent period, it seems that the detrital material in the two lakes had a common origin. Magnetic properties of sediments in Lakes Aibi and Manas show broadly similar environmental evolution during the late Pleistocene and Holocene. Nevertheless, despite the close proximity of the two lakes (~200 km) in the same basin, they display some different magnetic properties and record environmental changes at different times.  相似文献   

7.
Piston cores from deep-water bottom deposits in Lake Ontario contain shallow-water sediments such as, shell-rich sand and silt, marl, gyttja, and formerly exposed shore deposits including woody detritus, peat, sand and gravel, that are indicative of past periods of significantly lower water levels. These and other water-level indicators such as changes in rates of sedimentation, mollusc shells, pollen, and plant macrofossils were integrated to derive a new water-level history for Lake Ontario basin using an empirical model of isostatic adjustment for the Great Lakes basin to restore dated remnants of former lake levels to their original elevations. The earliest dated low-level feature is the Grimsby-Oakville bar which was constructed in the western end of the lake during a near stillstand at 11–10.4 (12.9–12.3 cal) ka BP when Early Lake Ontario was confluent with the Champlain Sea. Rising Lake Ontario basin outlet sills, a consequence of differential isostatic rebound, severed the connection with Champlain Sea and, in combination with the switch of inflowing Lake Algonquin drainage northward to Ottawa River valley via outlets near North Bay and an early Holocene dry climate with enhanced evaporation, forced Lake Ontario into a basin-wide lowstand between 10.4 and 7.5 (12.3 and 8.3 cal) ka BP. During this time, Lake Ontario operated as a closed basin with no outlets, and sites such as Hamilton Harbour, Bay of Quinte, Henderson Harbor, and a site near Amherst Island existed as small isolated basins above the main lake characterized by shallow-water, lagoonal or marsh deposits and fossils indicative of littoral habitats and newly exposed mudflats. Rising lake levels resulting from increased atmospheric water supply brought Lake Ontario above the outlet sills into an open, overflowing state ending the closed phase of the lake by ~7.5 (8.3 cal) ka BP. Lake levels continued to rise steadily above the Thousand Islands sill through mid-to-late Holocene time culminating at the level of modern Lake Ontario. The early and middle Holocene lake-level changes are supported by temperature and precipitation trends derived from pollen-climate transfer functions applied to Roblin Lake on the north side of Lake Ontario.  相似文献   

8.
Serpent River Bog lies north of North Channel, 10 m above Lake Huron and 15 m below the Nipissing Great Lake level. A 2.3 m Holocene sequence contains distinct alternating beds of inorganic clastic clay and organic peat that are interpreted as evidence of successive inundation and isolation by highstands and lowstands of the large Huron-Basin lake. Lowstand phases are confirmed by the presence of shallow-water pollen and plant macrofossil remains in peat units. Twelve 14C dates on peat, wood and plant macrofossils combined with previously published 14C ages of lake-level indicators confirm much of the known early Holocene lake-level history with one notable exception. A new Late Mattawa highstand (8,390 [9,400 cal]–8,220 [9,200 cal] BP) evidenced by a sticky blue-grey clay bed is tied to outburst floods of glacial Lake Minong during erosion of the Nadoway drift barrier in the eastern Lake Superior basin. A subsequent Late Mattawa highstand (8,110 [9,040 cal]–8,060 [8,970 cal] BP) is attributed to enhanced meltwater inflows that first had deposited thick varves throughout Superior Basin. Inundation by the Nadoway floods and possibly the last Mattawa flood were likely responsible for termination of the Olson Forest (southern Lake Michigan). A pollen diagram supports the recognized progression of Holocene vegetation, and defines a subzone implying a very dry, cool climate about 7.8–7.5 (8.6–8.3 cal) ka BP based on the Alnus crispa profile during the Late Stanley lowstand. A new date of 9,470 ± 25 (10,680–10,750 cal) BP on basal peat over lacustrine clay at Espanola West Bog supports the previous interpretation of the Early Mattawa highstand at ca. 9,500 (10,740 cal) BP. The organic and clastic sediment units at these two bogs are correlated with other records showing coherent evidence of Holocene repeated inundation and isolation around northern Lake Huron. Taken together the previous and new lake-level data suggest that the Huron and Georgian basin lakes were mainly closed lowstands throughout early Holocene time except for short-lived highstands. Three of the lowstands were exceptionally low, and likely caused three episodes of offshore sediment erosion which had been previously identified as seismo-stratigraphic sequence boundaries.  相似文献   

9.
通过分析河西走廊花海古湖泊沉积物中的盐类矿物组成,结合年代序列,重建了花海晚冰期以来湖泊演化过程及其对气候变化的响应。结果表明:晚冰期及新仙女木时期,花海湖泊以芒硝沉积为主,属硫酸盐型湖泊,湖水的盐度较高且周期性波动频繁;全新世早期(10.47 cal ka BP以前),湖泊以洪泛堆积和风成沉积为主,揭示了湖泊萎缩、甚至干涸;全新世早期至全新世中期(10.47~8.87 cal ka BP)盐类矿物以碳酸盐沉积为主,为碳酸盐型湖泊,湖水淡化,湖泊水位开始逐渐回升;全新世中期(8.87~5.50 cal ka BP)盐类矿物呈现一定的波动变化,其中,8.8 cal ka BP 时期盐类矿物以硫酸盐沉积为主,湖泊由碳酸盐型转化为硫酸盐型,湖水咸化,盐度升高;随后盐类矿物以碳酸盐沉积为主,湖泊由硫酸盐型转化为碳酸盐型,湖水盐度降低、湖泊扩张;全新世中晚期(5.50 cal ka BP以来)出现沉积间断,表明中晚全新世时期湖泊逐渐萎缩。在全新世期间,花海湖泊千年尺度演化过程揭示了该区域气候干湿状况受亚洲季风和西风共同控制的影响。  相似文献   

10.
Reader Lake and Elbow Lake, two high-altitude lakes in the Uinta Mountains of Utah, are located approximately 2 km apart, at similar elevations, and within identical vegetation communities. Loss on ignition, carbon to nitrogen ratios, biogenic silica, and sediment grain size were analyzed throughout percussion cores retrieved from both lakes to construct continuous time series spanning 14 to ca. 2 ka BP. Given the proximity of the lakes, it is assumed that both were subjected to the same climatic forcing over this time. Accordingly, the first goal of this study was to consider these two multiproxy datasets in concert to yield an integrated paleoclimate record for this region. Close inspection of the records identified discrepancies indicating that the lakes responded to climate changes in different ways despite their proximity and similar setting. Clarifying these differences and understanding why the two lakes behaved differently at certain times was the second goal of this study. Overall, the paleoclimatic records document lake formation in the latest Pleistocene following glacier retreat. Buried glacier ice at the location of Reader Lake may have persisted through the Younger Dryas. Both lakes became biologically productive ca. 11.5 ka BP, and the first appearance of conifer needles indicates that trees had replaced alpine tundra in these watersheds by 10.5 ka BP. The interval from 10 to 6 ka BP was marked by a dramatic increase in precipitation, perhaps related to enhanced monsoonal circulation driven by the insolation maximum. The two lakes recorded this event in notably contrasting ways given their differing hydrogeomorphic settings. Precipitation decreased from 6 to 4 ka BP, and low water levels and drought conditions marked the interval from 4.0 to 2.7 ka BP. The integrated paleoclimate record developed from these cores provides a useful point of comparison with other records from the region. The differences between the records from these closely spaced lakes underscore the need to consider hydrogeomorphic setting when evaluating the suitability of a lake for a paleolimnological study.  相似文献   

11.
Holocene lake level fluctuations were reconstructed from a 2.7-m sediment core from Nam Co, Central Tibet, China dating to >7.2 cal ka BP. Results were compared to existing lake records from the Tibetan Plateau to infer variations in the strength of the Asian Monsoon. Geomorphological features in the Nam Co catchment, such as beach ridges and lake terraces, indicate high lake stands during the late Glacial. A major low stand is suggested for the Last Glacial Maximum (LGM). Sands and sandy silts at the base of the core are transgressive facies, with material transported by melt water and deposited under rising lake level conditions that followed the LGM low stand. Variations in grain size, major elements, biomarker stable isotopes and minerals in the core suggest a climate evolution reflected in at least five depositional units and subunits. Sediments in Unit I (~7.2 to ~5.4 cal ka BP) were deposited at highest lake levels. Large amounts of allogenic minerals and allochthonous organic matter suggest high precipitation and melt water input, implying positive water balance. Increasing aquatic productivity points to favourable environmental conditions. Unit II (~5.4 to ~4.0 cal ka BP) marks a transition between favourable, stable hydrological conditions and lake level decrease. Lower lake levels were a consequence of drier climate with less monsoonal precipitation, higher evaporation rates, and increased moisture recycling in the catchment. Unit III (~4.0 to ~1.4 cal ka BP) reflects the driest periods recorded, at ~3.7 cal ka BP and 1.6 cal ka BP. Lake shrinkage and salinization was interrupted as suggested by the deposition of Unit IV (~1.4 to ~0.8 cal ka BP), when increased precipitation and runoff that might be related to the Medieval Warm Period, led to a stable, but still low lake level. Unit V (800 cal years BP—present) is characterized by progressive lake shrinkage due to intense evaporation. Large fluctuations in geochemical variables indicate humid and arid periods, respectively, at Nam Co between ~450 and ~200 cal years BP, with the latter assumed to correspond to the Little Ice Age. Modern hydrological data indicate the lake level is rising. Comparison of the Nam Co record with other lake records from the Tibetan Plateau suggests general agreement with the broader picture of Holocene environmental evolution. The timing of dry and wet climate conditions at lake sites across Tibet indicates a gradually decreasing influence of the southern monsoon during the Holocene, from NW to SE. Nevertheless, further research is needed to improve our understanding of Holocene spatio-temporal hydrological variations across the Asian continent.  相似文献   

12.
Study of Lake Pepin and Lake St. Croix began more than a century ago, but new information has permitted a closer look at the geologic history of these two riverine lakes located on the upper Mississippi River system. Drainages from large proglacial lakes Agassiz and Duluth at the end of the last glaciation helped shape the current valleys. As high-discharge outlet waters receded, tributary streams deposited fans of sediment in the incised river valleys. These tributary fans dammed the main river, forming riverine lakes. Lake Pepin was previously thought to be a single long continuous lake, extending for 80 km from its dam at the Chippewa River fan all the way up to St. Paul, with an arm extending up the St. Croix valley. Recent borings taken at bridge and dam locations show more than a single section of lake sediments, indicating a more complex history. The Minnesota and Mississippi Rivers did not always follow their current paths. Valleys cut into bedrock but now buried by glacial sediment indicate former river courses, with the most recent of these from the last interglacial period marked at the surface by chains of lakes. The morphology of the Mississippi valley bottom, and thus the morphology of Lake Pepin as it filled the valley, is reflect in part by the existence of these old valleys but also by the presence of glacial outwash terraces and the alluvial fans of tributary streams. A sediment core taken in Lake Pepin near Lake City had a piece of wood in gravels just below lake sediments that dated to 10.3 ka cal. BP, indicating that the lake formed as the Chippewa River fan grew shortly after the floodwaters of Lakes Agassiz and Duluth receded. Data from new borings indicate small lakes were dammed behind several tributary fans in the Mississippi River valley between the modern Lake Pepin and St. Paul. One tributary lake, here called Early Lake Vermillion, may have hydraulically dammed the St. Croix River, creating an incipient Lake St. Croix. The tributary fans from the Vermillion River, the Cannon River, and the Chippewa River all served to segment the main river valley into a series of riverine lakes. Later the growth of the Chippewa fan surpassed that of the Vermillion and Cannon fans to create a single large lake, here called late Lake Pepin, which extended upstream to St. Paul. Sediment cores taken from Lake Pepin did not have significant organic matter to develop a chronology from radiocarbon dating. Rather, magnetic features were matched with those from a Lake St. Croix core, which did have a known radiocarbon chronology. The Pepin delta migration rate was then estimated by projecting the elevations of the top of the buried lake sediments to the dated Lake Pepin core, using an estimated slope of 10 cm/km, the current slope of Lake Pepin sediment surface. By these approximations, the Lake Pepin delta prograded past Hastings 6.0 ka cal BP and Red Wing 1.4 ka cal BP. This is one of eight papers dedicated to the “Recent Environmental History of the Upper Mississippi River” published in this special issue of the Journal of Paleolimnology. D. R. Engstrom served as guest editor of the special issue.  相似文献   

13.
孙庆峰  程波  赵黎 《中国沙漠》2014,34(5):1237-1247
在青藏高原北缘共和盆地达连海钻取了40.92 m沉积柱,其14C年代有10个控制点,底部年龄最大值为14.5 cal ka BP,沉积柱为末次冰消期以来的湖泊沉积物。在沉积柱中按20 cm/70 a分辨率选出200个样品进行了黏土矿物、粒度、碳酸盐、沉积速率等非生物指标与生物指标的孢粉等多项指标的综合分析。结果表明:末次冰消期以来,达连海沉积柱中非生物指标与生物指标反映的气候和环境变化阶段的显著性不同,反映的气候环境的变化阶段也不尽一致,出现气候环境的相位差。冰消期黏土矿物非生物指标与孢粉生物指标有约1.0~1.2 ka的相位差;早、中全新世黏土矿物反映的气候变化时段较孢粉指标指示的时段滞后约1.0 ka;在晚全新世黏土矿物反映的气候变化较孢粉滞后约0.1 ka。造成黏土矿物和孢粉反映气候环境相位差的原因是孢粉和黏土矿物对气候响应的差异性、黏土矿物和孢粉搬运方式的不同、气候条件及其转换、地貌等多因素的综合影响。  相似文献   

14.
Three lake sediment sequences (lakes Nero, Chashnitsy, Zaozer’e) from the Rostov-Jaroslavl’ region north of Moscow were studied to provide information on palaeoclimatic and palaeoenvironmental changes during the past 15,000 cal yr. The multi-proxy study (i.e., pollen, macrofossils, mineral magnetic measurements, total carbon, nitrogen and sulphur) is chronologically constrained by AMS 14C measurements. Lake Nero provided the longest sedimentary record back to ca. 15,000 cal yr BP, while sediment accumulation began around ca. 11,000 cal yr BP in the two other lakes, possibly due to melting of permafrost. Limnic plant macrofossil remains suggest increased lake productivity and higher mean summer temperatures after 14,500 cal yr BP. While the late glacial vegetation was dominated by Betula and Salix shrubs and various herbs, it appears that Betula sect. Albae became established as early as 14,000 cal yr BP. Major hydrological changes in the region led to distinctly lower lake levels, starting 13,000 cal yr BP in Lake Nero and ca. 9000 cal yr BP in lakes Chashnitsy and Zaozer’e, which are situated at higher elevations. These changes resulted in sedimentary hiatuses in all three lakes that lasted 3500–4500 cal yr. Mixed broad-leaved – coniferous forests were widespread in the area between 8200 and 6100 cal yr BP and developed into dense, species-rich forests between 6100 and 2500 cal yr BP, during what was likely the warmest interval of the studied sequences. Agricultural activity is documented since 500 cal yr BP, but probably began earlier, since Rostov was a major capital by 862 A.D. This apparent gap may be caused by additional sedimentary hiatuses around 2500 and 500 cal yr BP.  相似文献   

15.
Climatic and environmental changes since the last glacial period are important to our understanding of global environmental change. There are few records from Southern Tibet, one of the most climatically sensitive areas on earth. Here we present a study of the lake sediments (TC1 core) from Lake Chen Co, Southern Tibet. Two sediment cores were drilled using a hydraulic borer in Terrace 1 of Lake Chen Co. AMS 14C dating of the sediments showed that the sequence spanned >30,000 years. Analyses of present lake hydrology indicated that glacier melt water is very important to maintaining the lake level. Sediment variables such as grain size, TOC, TN, C/N, Fe/Mn, CaCO3, and pollen were analyzed. Warm and moderately humid conditions dominated during the interval 30,000–26,500 cal year BP. From 26,500 to 20,000 cal year BP, chemical variables and pollen assemblages indicate a cold/dry environment, and pollen amounts and assemblages suggest a decline in vegetation. From 20,000 to 18,000 cal year BP, the environment shifted from cold/dry to warm/humid and vegetation rebounded. The environment transitioned to cold/humid during 16,500–10,500 cal year BP, with a cold/dry event around 14,500 cal year BP. After 10,500 cal year BP, the environment in this region tended to be warm/dry, but exhibited three stages. From 10,500 to 9,000 cal year BP, there was a short warm/humid period, but a shift to cold/dry conditions occurred around 9,000 cal year BP. Thereafter, from 9,000 to 6,000 cal year BP, there was a change from cold/dry to warm/humid conditions, with the warmest period around 6,000 cal year BP. After 6,000 cal year BP, the environment cooled rapidly, but then displayed a warming trend. Chemical variables indicate that a relatively warm/dry event occurred around 5,500–5,000 cal year BP, which is supported by time-lagged pollen assemblages around 4,800 cal year BP. Our lake sediment sequence exhibits environmental changes since 30,000 cal year BP, and most features agree with records from the Greenland GISP2 ice core and with other sequences from the Tibetan Plateau. This indicates that environmental changes inferred from Lake Chen Co, Southern Tibet were globally significant.  相似文献   

16.
A combination of pollen and macrofossil analyses from six lakes at altitudes between 370 and 999 m above sea level (a.s.l.) in the Torneträsk area reflect the Holocene vegetation history. The main field study area has been the Abisko valley at altitudes around 400 m a.s.l. The largest lake, Vuolep Njakajaure has annually laminated (varved) sediments. The chronology and sedimentation rates in the pollen-influx calculations are based on varve yrs in this lake and on radiocarbon dated terrestrial plant macrofossils in the other lakes. A strong increase of mountain birch (Betula pubescens ssp. tortuosa) during the early Holocene with a tree-line c. 300 m above the present, indicates that the summer temperature was c. 1.5 °C higher than today, assuming that the land uplift has been 100 m since then. Scattered stands of pine (Pinus sylvestris) may have been growing in the area immediately after the deglaciation but a forest consisting of pine and mountain birch expanded first at low elevations and reached the eastern parts of the Torneträsk area at c. 8300 cal BP and the western parts at c. 7600 cal BP. The highest pine-birch forest limit was not reached until 6300 cal BP (110 m above present pine limit). Warm and dry conditions during the pine forest maximum led to lowering of the water level documented in Lake Badsjön in the Abisko valley about 1-1.5 m lower than today. Pine and mountain birch were growing at the maximum altitude until c. 4500 cal BP. Assuming that land uplift has been in the range of 20-40 m since the mid-Holocene, this implies that the temperature was then c. 1.5-2 °C higher than today. Rising lake-levels and lowering limits of pine and mountain birch since c. 4500 cal BP indicate a more humid and cool climate during the late Holocene.  相似文献   

17.
The evolution of the early Great Lakes was driven by changing ice sheet geometry, meltwater influx, variable climate, and isostatic rebound. Unfortunately none of these factors are fully understood. Sediment cores from Fenton Lake and other sites in the Lake Superior basin have been used to document constantly falling water levels in glacial Lake Minong between 9,000 and 10,600 cal (8.1–9.5 ka) BP. Over three meters of previously unrecovered sediment from Fenton Lake detail a more complex lake level history than formerly realized, and consists of an early regression, transgression, and final regression. The initial regression is documented by a transition from gray, clayey silt to black sapropelic silt. The transgression is recorded by an abrupt return to gray sand and silt, and dates between 9,000 and 9,500 cal (8.1–8.6 ka) BP. The transgression could be the result of increased discharge from Lake Agassiz overflow or the Laurentide Ice Sheet, and hydraulic damming at the Lake Minong outlet. Alternatively ice advance in northern Ontario may have blocked an unrecognized low level northern outlet to glacial Lake Ojibway, which switched Lake Minong overflow back to the Lake Huron basin and raised lake levels. Multiple sites in the Lake Huron and Michigan basins suggest increased meltwater discharges occurred around the time of the transgression in Lake Minong, suggesting a possible linkage. The final regression in Fenton Lake is documented by a return to black sapropelic silt, which coincides with varve cessation in the Superior basin when Lake Agassiz overflow and glacial meltwater was diverted to glacial Lake Ojibway in northern Ontario.  相似文献   

18.
West Hawk Lake (WHL) is located within the glacial Lake Agassiz basin, 140 km east of Winnipeg, Manitoba. The small lake lies in a deep, steep-sided, meteorite impact crater, which has been partly filled by 60 m of sediment that today forms a flat floor in the central part of the basin below 111 m of water. Four cores, 5–11 m in length, were collected using a Kullenberg piston gravity corer. All sediment is clay, contains no unconformities, and has low organic content in all but the upper meter. Sample analyses include bulk and clay mineralogy, major and minor elements, TOC, stable isotopes of C, N, and O, pollen, charcoal, diatoms, and floral and faunal macrofossils. The sequence is divided into four units based mainly on thickness and style of lamination, diatoms, and pollen. AMS radiocarbon dates do not provide a clear indication of age in the postglacial sequence; possible explanations include contamination by older organic inwash and downward movement of younger organic acids. A chronological framework was established using only selected AMS dates on plant macrofossils, combined with correlations to dated events outside the basin and paleotopographic reconstructions of Lake Agassiz. The 822 1-cm-thick varves in the lower 8 m of the cored WHL sequence were deposited just prior to 10,000 cal years BP (∼8,900 14C years BP), during the glacial Lake Agassiz phase of the lake. The disappearance of dolomite near the top of the varved sequence reflects the reduced influence of Lake Agassiz and the carbonate bedrock and glacial sediment in its catchment. The lowermost varves are barren of organisms, indicating cold and turbid glacial lake waters, but the presence of benthic and planktonic algae in the upper 520 varves indicates warming; this lake phase coincides with a change in clay mineralogy, δ18O and δ13C in cellulose, and in some other parameters. This change may have resulted from a major drawdown in Lake Agassiz when its overflow switched from northwest to east after formation of the Upper Campbell beach of that lake 9,300–9,400 14C years ago. The end of thick varve deposition at ∼10,000 cal years BP is related to the opening of a lower eastern outlet of Lake Agassiz and an accompanying drop in West Hawk Lake level. WHL became independent from Lake Agassiz at this time, sedimentation rates dropped, and only ∼2.5 m of sediment was deposited in the next 10,000 years. During the first two centuries of post-Lake Agassiz history, there were anomalies in the diatom assemblage, stable O and C isotopes, magnetic susceptibility, and other parameters, reflecting an unstable watershed. Modern oligotrophic conditions were soon established; charcoal abundance increased in response to the reduced distance to the shoreline and to warmer conditions. Regional warming after ∼9,500 cal years BP is indicated by pollen and diatoms as well as C and O isotope values. Relatively dry conditions are suggested by a rise in pine and decrease in spruce and other vegetation types between 9,500 and 5,000 cal years BP (∼8,500–4,400 14C years BP), plus a decrease in δ13Ccell values. After this, there was a shift to slightly cooler and wetter conditions. A large increase in organic content and change in elemental concentration in the past several thousand years probably reflects a decline in supply of mineral detritus to the basin and possibly an increase in productivity.  相似文献   

19.
Multiple proxies record aridity in the northern Great Lakes basin ~8,800–8,000 cal (8,000–7,200) BP when water levels fell below outlets in the Michigan, Huron and Georgian Bay basins. Pollen-climate transfer function calculations on radiocarbon-dated pollen profiles from small lakes from Minnesota to eastern Ontario show that a drier climate was sufficient to lower the Great Lakes, in particular Georgian Bay, to closed basins. The best modern climate analog for the early Holocene late Lake Hough stage in the Georgian Bay basin is Black Bass Lake near Brainerd MN. Modern annual precipitation at Brainerd is ~35% lower than at Huntsville ON, in the Georgian Bay catchment; warmer summers and colder, less snowy winters make Brainerd drier than the Georgian Bay snow belt. These values parallel transfer function reconstructions for the early Holocene from pollen records at five small lakes in the Georgian Bay drainage basin. Higher evaporation and evapotranspiration due to greater seasonality during the early Holocene produced a deficit in effective moisture in Georgian Bay that is recorded by the jack/red pine pollen zone that spanned ~8,800–8,200 cal (8,000–7,500) BP. This deficit drove late Lake Hough ~5 m below Lake Stanley in the Huron basin, following diversion of Laurentide Ice sheet meltwater from the Great Lakes basin. The level of Georgian Bay largely depends not on fluvial input from its own drainage basin, but rather from Lake Superior, where the early Holocene moisture deficit was greater. Reconstruction of paleoclimates in Minnesota, northwestern Ontario and Wisconsin produced a closed lake in the Superior basin, which removed the main water input to Georgian Bay. Once the inflow through the St. Marys River was reduced and inflow from other tributary streams was adjusted for isostatic and climatic differences, input was <5% of modern values. Consequent high evaporation rates produced a significant fall in lake level in the Georgian Bay basin and a negative water budget. This reduction in basin supply, together with the high conductivity of stagnant water in late Lake Hough inferred from microfossils in lowstand sediments, peaked at the end of the jack/red pine zone, ~8,300–8,200 (7,450 ± 90) BP. These major hydrologic changes resulting from climate change in the recent geologic past draw attention to possible declines of the Great Lakes under future climates.  相似文献   

20.
青藏高原扎布耶盐湖晚全新世气候环境演化   总被引:7,自引:1,他引:6  
青藏高原晚全新世气候变化具有不稳定性.在高原中部扎布耶盐湖边缘取得158.5cm沉积物,通过年代、孢粉、介形虫、粘土矿物、地球化学等多种环境指标,给出了湖区3.8cal. ka BP以来的气候环境演化.孢粉中草本花粉占绝对优势,其中又以蒿属为主,植被类型为水分条件稍好些的半荒漠化草原.粘土矿物主要是伊利石和绿泥石,伊/蒙混层矿物少量,说明湖区风化作用主要是物理风化.(Ca Mg)/CO2-3摩尔比值为0.22~0.96,小于1,CO2-3与Na 结合形成大量钠碳酸盐矿物如单斜钠钙石、氯碳钠镁石、水碱等.硼砂的出现说明湖区沉积环境稳定,但3.8~1.99 cal. ka BP硼等元素和碳酸盐含量变化幅度较大,湖区气候寒冷干燥,但冷暖干湿波动频繁.3.4~3.34 cal. ka BP介形虫壳大多破碎,说明此阶段水动力条件强,水体不稳定.1.99 cal. ka BP至今,气候相对温暖潮湿,波动较少.太阳辐射和西南季风强度的变化是造成气候变化的主要原因,冰川冻土对寒冷气候的放大作用也是湖区气候变化的一个重要原因.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号