首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The purpose of this study is to produce landslide susceptibility map of a landslide-prone area (Daguan County, China) by evidential belief function (EBF) model and weights of evidence (WoE) model to compare the results obtained. For this purpose, a landslide inventory map was constructed mainly based on earlier reports and aerial photographs, as well as, by carrying out field surveys. A total of 194 landslides were mapped. Then, the landslide inventory was randomly split into a training dataset; 70% (136 landslides) for training the models and the remaining 30% (58 landslides) was used for validation purpose. Then, a total number of 14 conditioning factors, such as slope angle, slope aspect, general curvature, plan curvature, profile curvature, altitude, distance from rivers, distance from roads, distance from faults, lithology, normalized difference vegetation index (NDVI), sediment transport index (STI), stream power index (SPI), and topographic wetness index (TWI) were used in the analysis. Subsequently, landslide susceptibility maps were produced using the EBF and WoE models. Finally, the validation of landslide susceptibility map was accomplished with the area under the curve (AUC) method. The success rate curve showed that the area under the curve for EBF and WoE models were of 80.19% and 80.75% accuracy, respectively. Similarly, the validation result showed that the susceptibility map using EBF model has the prediction accuracy of 80.09%, while for WoE model, it was 79.79%. The results of this study showed that both landslide susceptibility maps obtained were successful and would be useful for regional spatial planning as well as for land cover planning.  相似文献   

2.
Landslide susceptibility maps are vital for disaster management and for planning development activities in the mountainous country like Nepal. In the present study, landslide susceptibility assessment of Mugling?CNarayanghat road and its surrounding area is made using bivariate (certainty factor and index of entropy) and multivariate (logistic regression) models. At first, a landslide inventory map was prepared using earlier reports and aerial photographs as well as by carrying out field survey. As a result, 321 landslides were mapped and out of which 241 (75?%) were randomly selected for building landslide susceptibility models, while the remaining 80 (25?%) were used for validating the models. The effectiveness of landslide susceptibility assessment using GIS and statistics is based on appropriate selection of the factors which play a dominant role in slope stability. In this case study, the following landslide conditioning factors were evaluated: slope gradient; slope aspect; altitude; plan curvature; lithology; land use; distance from faults, rivers and roads; topographic wetness index; stream power index; and sediment transport index. These factors were prepared from topographic map, drainage map, road map, and the geological map. Finally, the validation of landslide susceptibility map was carried out using receiver operating characteristic (ROC) curves. The ROC plot estimation results showed that the susceptibility map using index of entropy model with AUC value of 0.9016 has highest prediction accuracy of 90.16?%. Similarly, the susceptibility maps produced using logistic regression model and certainty factor model showed 86.29 and 83.57?% of prediction accuracy, respectively. Furthermore, the ROC plot showed that the success rate of all the three models performed more than 80?% accuracy (i.e. 89.15?% for IOE model, 89.10?% for LR model and 87.21?% for CF model). Hence, it is concluded that all the models employed in this study showed reasonably good accuracy in predicting the landslide susceptibility of Mugling?CNarayanghat road section. These landslide susceptibility maps can be used for preliminary land use planning and hazard mitigation purpose.  相似文献   

3.
The main goal of this study is to produce landslide susceptibility maps of a landslide-prone area (Haraz) in Iran by using both fuzzy logic and analytical hierarchy process (AHP) models. At first, landslide locations were identified by aerial photographs and field surveys, and a total of 78 landslides were mapped from various sources. Then, the landslide inventory was randomly split into a training dataset 70?% (55 landslides) for training the models and the remaining 30?% (23 landslides) was used for validation purpose. Twelve data layers, as the landslide conditioning factors, are exploited to detect the most susceptible areas. These factors are slope degree, aspect, plan curvature, altitude, lithology, land use, distance from rivers, distance from roads, distance from faults, stream power index, slope length, and topographic wetness index. Subsequently, landslide susceptibility maps were produced using fuzzy logic and AHP models. For verification, receiver operating characteristics curve and area under the curve approaches were used. The verification results showed that the fuzzy logic model (89.7?%) performed better than AHP (81.1?%) model for the study area. The produced susceptibility maps can be used for general land use planning and hazard mitigation purpose.  相似文献   

4.
This study presents a landslide susceptibility assessment for the Caspian forest using frequency ratio and index of entropy models within geographical information system. First, the landslide locations were identified in the study area from interpretation of aerial photographs and multiple field surveys. 72 cases (70 %) out of 103 detected landslides were randomly selected for modeling, and the remaining 31 (30 %) cases were used for the model validation. The landslide-conditioning factors, including slope degree, slope aspect, altitude, lithology, rainfall, distance to faults, distance to streams, plan curvature, topographic wetness index, stream power index, sediment transport index, normalized difference vegetation index (NDVI), forest plant community, crown density, and timber volume, were extracted from the spatial database. Using these factors, landslide susceptibility and weights of each factor were analyzed by frequency ratio and index of entropy models. Results showed that the high and very high susceptibility classes cover nearly 50 % of the study area. For verification, the receiver operating characteristic (ROC) curves were drawn and the areas under the curve (AUC) calculated. The verification results revealed that the index of entropy model (AUC = 75.59 %) is slightly better in prediction than frequency ratio model (AUC = 72.68 %). The interpretation of the susceptibility map indicated that NDVI, altitude, and rainfall play major roles in landslide occurrence and distribution in the study area. The landslide susceptibility maps produced from this study could assist planners and engineers for reorganizing and planning of future road construction and timber harvesting operations.  相似文献   

5.
The main goal of this study was to investigate the application of the weights-of-evidence and certainty factor approaches for producing landslide susceptibility maps of a landslide-prone area (Haraz) in Iran. For this purpose, the input layers of the landslide conditioning factors were prepared in the first stage. The landslide conditioning factors considered for the study area were slope gradient, slope aspect, altitude, lithology, land use, distance from streams, distance from roads, distance from faults, topographic wetness index, stream power index, stream transport index and plan curvature. For validation of the produced landslide susceptibility maps, the results of the analyses were compared with the field-verified landslide locations. Additionally, the receiver operating characteristic curves for all the landslide susceptibility models were constructed and the areas under the curves were calculated. The landslide locations were used to validate results of the landslide susceptibility maps. The verification results showed that the weights-of-evidence model (79.87%) performed better than certainty factor (72.02%) model with a standard error of 0.0663 and 0.0756, respectively. According to the results of the area under curve evaluation, the map produced by weights-of-evidence exhibits satisfactory properties.  相似文献   

6.
The main objective of this study is to investigate potential application of frequency ratio (FR), weights of evidence (WoE), and statistical index (SI) models for landslide susceptibility mapping in a part of Mazandaran Province, Iran. First, a landslide inventory map was constructed from various sources. The landslide inventory map was then randomly divided in a ratio of 70/30 for training and validation of the models, respectively. Second, 13 landslide conditioning factors including slope degree, slope aspect, altitude, plan curvature, stream power index, topographic wetness index, sediment transport index, topographic roughness index, lithology, distance from streams, faults, roads, and land use type were prepared, and the relationships between these factors and the landslide inventory map were extracted by using the mentioned models. Subsequently, the multi-class weighted factors were used to generate landslide susceptibility maps. Finally, the susceptibility maps were verified and compared using several methods including receiver operating characteristic curve with the areas under the curve (AUC), landslide density, and spatially agreed area analyses. The success rate curve showed that the AUC for FR, WoE, and SI models was 81.51, 79.43, and 81.27, respectively. The prediction rate curve demonstrated that the AUC achieved by the three models was 80.44, 77.94, and 79.55, respectively. Although the sensitivity analysis using the FR model revealed that the modeling process was sensitive to input factors, the accuracy results suggest that the three models used in this study can be effective approaches for landslide susceptibility mapping in Mazandaran Province, and the resultant susceptibility maps are trustworthy for hazard mitigation strategies.  相似文献   

7.

The main purpose of this study was to compare and evaluate the performance of two multicriteria models for landslide susceptibility assessment in Constantine, north-east of Algeria. The landslide susceptibility maps were produced using the analytic hierarchy process (AHP) and Fuzzy AHP (FAHP) via twelve landslides conditioning factors, including the slope gradient, lithology, land cover, distance from drainage network, distance from the roads, distance from faults, topographic wetness index, stream power index, slope curvature, Normalized Difference Vegetation Index, slope aspect and elevation. In this study, the mentioned models were used to derive the weighting value of the conditioning factors. For the validation process of these models, the receiver operating characteristic analysis, and the area under the curve (AUC) were applied by comparing the obtained results to The landslide inventory map which prepared using the archives of scientific publications, reports of local authorities, and field survey as well as analyzing satellite imagery. According to the AUC values, the FAHP model had the highest value (0.908) followed by the AHP model (0.777). As a result, the FAHP model is more consistent and accurate than the AHP in this case study. The outcome of this paper may be useful for landslide susceptibility assessment and land use management.

  相似文献   

8.
The present study investigates a potential application of different resolution topographic data obtained from airborne LiDAR and an integrated ensemble weight-of-evidence and analytic hierarchy process (WoE–AHP) model to spatially predict slope failures. Previously failed slopes of the Pellizzano (Italy) were remotely mapped and divided into two subsets for training and testing purposes. 1, 2, 5, 10, 15, and 20 m topographic data were processed to extract nine terrain attributes identified as conditioning factors for landslides: slope degree, aspect, altitude, plan curvature, profile curvature, stream power index, topographic wetness index, sediment transport index, and topographic roughness index. Landslide (slope failure) susceptibility maps were produced using a single WoE (Model 1), an ensemble WoE–AHP model that used all conditioning factors (Model 2), and an ensemble WoE–AHP model that only used highly nominated conditioning factors (Model 3). The validation results proved the efficiency of high-resolution (≤ 5 m) topographic data and the ensemble model, particularly when all factors were used in the modeling process (Model 2). The average success rates and prediction rates for Model 2 that used ≤ 5 m resolution datasets were 84.26 and 82.78%, respectively. The finding presented in this paper can aid in planning more efficient LiDAR surveys and the handling of large datasets, and in gaining a better understanding of the nature of the predictive models.  相似文献   

9.
The aim of this study is to produce landslide susceptibility mapping by probabilistic likelihood ratio (PLR) and spatial multi-criteria evaluation (SMCE) models based on geographic information system (GIS) in the north of Tehran metropolitan, Iran. The landslide locations in the study area were identified by interpretation of aerial photographs, satellite images, and field surveys. In order to generate the necessary factors for the SMCE approach, remote sensing and GIS integrated techniques were applied in the study area. Conditioning factors such as slope degree, slope aspect, altitude, plan curvature, profile curvature, surface area ratio, topographic position index, topographic wetness index, stream power index, slope length, lithology, land use, normalized difference vegetation index, distance from faults, distance from rivers, distance from roads, and drainage density are used for landslide susceptibility mapping. Of 528 landslide locations, 70 % were used in landslide susceptibility mapping, and the remaining 30 % were used for validation of the maps. Using the above conditioning factors, landslide susceptibility was calculated using SMCE and PLR models, and the results were plotted in ILWIS-GIS. Finally, the two landslide susceptibility maps were validated using receiver operating characteristic curves and seed cell area index methods. The validation results showed that area under the curve for SMCE and PLR models is 76.16 and 80.98 %, respectively. The results obtained in this study also showed that the probabilistic likelihood ratio model performed slightly better than the spatial multi-criteria evaluation. These landslide susceptibility maps can be used for preliminary land use planning and hazard mitigation purpose.  相似文献   

10.
For landslide susceptibility mapping, this study applied, verified and compared the Bayesian probability model, the weights-of-evidence to Panaon Island, Philippines, using a geographic information system. Landslide locations were identified in the study area from the interpretation of aerial photographs and field surveys, and a spatial database was extracted from SRTM (Shuttle Radar Topographic Mission) DEM (Digital Elevation Model) imagery, aerial photograph, topographic map, and geological map. The factors that influence landslide occurrence, such as slope, aspect, curvature, topographic wetness index and stream power index of topography, were calculated from SRTM imagery. Distance from drainage was extracted from topographic database. Lithology and distance from fault were extracted and calculated from geological database. Terrain mapping unit was classified from aerial photographs. The spatial association between the factors and the landslides was calculated as the contrast values, W + and W using the weights-of-evidence model. Tests of conditional independence were performed for the selection of the factors, allowing the large number of combinations of factors to be analyzed. For each factor rating, the contrast values, W + and W were overlaid for landslide susceptibility mapping. The results of the analysis showed that contrast rating (78.60%) for each factor’s multiclass had better accuracy of 5.90% than combinations of factor assigned to binary class with W + and W (72.70%).  相似文献   

11.
The objective of this study was to produce and evaluate a landslide susceptibility map for weathered granite soils in Deokjeok-ri Creek, South Korea. The relative effect (RE) method was used to determine the relationship between landslide causative factors (CFs) and landslide occurrence. To determine the effect of CFs on landslides, data layers of aspect, elevation, slope, internal relief, curvature, distance to drainage, drainage density, stream power index, sediment transport index, topographic wetness index, soil drainage character, soil type, soil depth, forest type, timber age, and geology were analyzed in a geographical information system (GIS) environment. A GIS-based landslide inventory map of 748 landslide locations was prepared using data from previous reports, aerial photographic interpretation, and extensive field work. A RE model was generated from a training set consisting of 673 randomly selected landslides in the inventory map, with the remaining 75 landslides used for validation of the susceptibility map. The results of the analysis were verified using the landslide location data. According to the analysis, the RE model had a success rate of 86.3 % and a predictive accuracy of 88.6 %. The validation results showed satisfactory agreement between the susceptibility map and the existing data on landslide locations. The results of this study can therefore be used to mitigate landslide-induced hazards and to plan land use.  相似文献   

12.
The Mugling–Narayanghat road section falls within the Lesser Himalaya and Siwalik zones of Central Nepal Himalaya and is highly deformed by the presence of numerous faults and folds. Over the years, this road section and its surrounding area have experienced repeated landslide activities. For that reason, landslide susceptibility zonation is essential for roadside slope disaster management and for planning further development activities. The main goal of this study was to investigate the application of the frequency ratio (FR), statistical index (SI), and weights-of-evidence (WoE) approaches for landslide susceptibility mapping of this road section and its surrounding area. For this purpose, the input layers of the landslide conditioning factors were prepared in the first stage. A landslide inventory map was prepared using earlier reports, aerial photographs interpretation, and multiple field surveys. A total of 438 landslide locations were detected. Out these, 295 (67 %) landslides were randomly selected as training data for the modeling using FR, SI, and WoE models and the remaining 143 (33 %) were used for the validation purposes. The landslide conditioning factors considered for the study area are slope gradient, slope aspect, plan curvature, altitude, stream power index, topographic wetness index, lithology, land use, distance from faults, distance from rivers, and distance from highway. The results were validated using area under the curve (AUC) analysis. From the analysis, it is seen that the FR model with a success rate of 76.8 % and predictive accuracy of 75.4 % performs better than WoE (success rate, 75.6 %; predictive accuracy, 74.9 %) and SI (success rate, 75.5 %; predictive accuracy, 74.6 %) models. Overall, all the models showed almost similar results. The resultant susceptibility maps can be useful for general land use planning.  相似文献   

13.
Landslide susceptibility mapping (LSM) is important for catastrophe management in the mountainous regions. They focus on generating susceptibility maps beginning from landslide inventories and considering the main predisposing parameters. The aim of this study was to assess the susceptibility of the occurrence of debris flows in the Zêzere River basin and its surrounding area using logistic regression (LR) and frequency ratio (FR) models. To achieve this, a landslide inventory map was created using historical information, satellite imagery, and extensive field works. One hundred landslides were mapped, of which 75% were randomly selected as training data, while the remaining 25% were used for validating the models. The landslide influence factors considered for this study were lithology, elevation, slope gradient, slope aspect, plan curvature, profile curvature, normalized difference vegetation index (NDVI), distance to roads, topographic wetness index (TWI), and stream power index (SPI). The relationships between landslide occurrence and these factors were established, and the results were then evaluated and validated. Validation results show that both methods give acceptable results [the area under curve (AUC) of success rates is 83.71 and 76.38 for LR and FR, respectively]. Furthermore, the AUC results for prediction accuracy revealed that LR model has the highest predictive performance (AUC of predicted rate?=?80.26). Hence, it is concluded that the two models showed reasonably good accuracy in predicting the landslide susceptibility in the study area. These two models have the potential to aid planners in development and land-use planning and to offer tools for hazard mitigation measures.  相似文献   

14.
Mehrabi  Mohammad 《Natural Hazards》2022,111(1):901-937

This study deals with landslide susceptibility mapping in the northern part of Lecco Province, Lombardy Region, Italy. In so doing, a valid landslide inventory map and thirteen predisposing factors (including elevation, slope aspect, slope degree, plan curvature, profile curvature, distance to waterway, distance to road, distance to fault, soil type, land use, lithology, stream power index, and topographic wetness index) form the spatial database within geographic information system. The used predictive models comprise a bivariate statistical approach called frequency ratio (FR) and two machine learning tools, namely multilayer perceptron neural network (MLPNN) and adaptive neuro-fuzzy inference system (ANFIS). These models first use landslide and non-landslide records for comprehending the relationship between the landslide occurrence and predisposing factors. Then, landslide susceptibility values are predicted for the whole area. The accuracy of the produced susceptibility maps is measured using area under the curve (AUC) index, according to which, the MLPNN (AUC?=?0.916) presented the most accurate map, followed by the ANFIS (AUC?=?0.889) and FR (AUC?=?0.888). Visual interpretation of the susceptibility maps, FR-based correlation analysis, as well as the importance assessment of predisposing factors, all indicated the significant contribution of the road networks to the crucial susceptibility of landslide. Lastly, an explicit predictive formula is extracted from the implemented MLPNN model for a convenient approximation of landslide susceptibility value.

  相似文献   

15.
The main goal of this paper is to generate a landslide susceptibility map through evidential belief function (EBF) model by using Geographic Information System (GIS) for Qianyang County, Shaanxi Province, China. At first, a detailed landslide inventory map was prepared, and the following ten landslide-conditioning factors were collected: slope angle, slope aspect, curvature, plan curvature, profile curvature, altitude, distance to rivers, geomorphology, lithology, and rainfall. The landslides were detected from the interpretation of aerial photographs and supported by field surveys. A total of 81 landslides were randomly split into the following two parts: the training dataset 70 % (56 landslides) were used for establishing the model and the remaining 30 % (25 landslides) were used for the model validation. The ArcGIS was used to analyze landslide-conditioning factors and evaluate landslide susceptibility; as a result, a landslide susceptibility map was generated by using EBF and ArcGIS 10.0, thus divided into the following five susceptibility classes: very low, low, moderate, high, and very high. Finally, when we validated the accuracy of the landslide susceptibility map, both the success-rate and prediction-rate curve methods were applied. The results reveal that a final susceptibility map has the success rate of 83.31 % and the prediction rate of 79.41 %.  相似文献   

16.
The crucial and difficult task in landslide susceptibility analysis is estimating the probability of occurrence of future landslides in a study area under a specific set of geomorphic and topographic conditions. This task is addressed with a data-driven probabilistic model using likelihood ratio or frequency ratio and is applied to assess the occurrence of landslides in the Tevankarai Ar sub-watershed, Kodaikkanal, South India. The landslides in the study area are triggered by heavy rainfall. Landslide-related factors—relief, slope, aspect, plan curvature, profile curvature, land use, soil, and topographic wetness index proximity to roads and proximity to lineaments—are considered for the study. A geospatial database of the related landslide factors is constructed using Arcmap in GIS environment. Landslide inventory of the area is produced by detailed field investigation and analysis of the topographical maps. The results are validated using temporal data of known landslide locations. The area under the curve shows that the accuracy of the model is 85.83%. In the reclassified final landslide susceptibility map, 14.48% of the area is critical in nature, falling under the very high hazard zone, and 67.86% of the total validation dataset landslides fall in this zone. This landslide susceptibility map is a vital tool for town planning, land use, and land cover planning and to reduce risks caused by landslides.  相似文献   

17.
The present study is aimed at producing landslide susceptibility map of a landslide-prone area (Anfu County, China) by using evidential belief function (EBF), frequency ratio (FR) and Mahalanobis distance (MD) models. To this aim, 302 landslides were mapped based on earlier reports and aerial photographs, as well as, carrying out several field surveys. The landslide inventory was randomly split into a training dataset (70%; 212landslides) for training the models and the remaining (30%; 90 landslides) was cast off for validation purpose. A total of sixteen geo-environmental conditioning factors were considered as inputs to the models: slope degree, slope aspect, plan curvature, profile curvature, the new topo-hydrological factor termed height above the nearest drainage (HAND), average annual rainfall, altitude, distance from rivers, distance from roads, distance from faults, lithology, normalized difference vegetation index (NDVI), sediment transport index (STI), stream power index (SPI), soil texture, and land use/cover. The validation of susceptibility maps was evaluated using the area under the receiver operating characteristic curve (AUROC). As a results, the FR outperformed other models with an AUROC of 84.98%, followed by EBF (78.63%) and MD (78.50%) models. The percentage of susceptibility classes for each model revealed that MD model managed to build a compendious map focused at highly susceptible areas (high and very high classes) with an overall area of approximately 17%, followed by FR (22.76%) and EBF (31%). The premier model (FR) attested that the five factors mostly influenced the landslide occurrence in the area: NDVI, soil texture, slope degree, altitude, and HAND. Interestingly, HAND could manifest clearer pattern with regard to landslide occurrence compared to other topo-hydrological factors such as SPI, STI, and distance to rivers. Lastly, it can be conceived that the susceptibility of the area to landsliding is more subjected to a complex environmental set of factors rather than anthropological ones (residential areas and distance to roads). This upshot can make a platform for further pragmatic measures regarding hazard-planning actions.  相似文献   

18.
In the Three Gorges of China, there are frequent landslides, and the potential risk of landslides is tremendous. An efficient and accurate method of generating landslide susceptibility maps is very important to mitigate the loss of lives and properties caused by these landslides. This paper presents landslide susceptibility mapping on the Zigui-Badong of the Three Gorges, using rough sets and back-propagation neural networks (BPNNs). Landslide locations were obtained from a landslide inventory map, supported by field surveys. Twenty-two landslide-related factors were extracted from the 1:10,000-scale topographic maps, 1:50,000-scale geological maps, Landsat ETM + satellite images with a spatial resolution of 28.5 m, and HJ-A satellite images with a spatial resolution of 30 m. Twelve key environmental factors were selected as independent variables using the rough set and correlation coefficient analysis, including elevation, slope, profile curvature, catchment aspect, catchment height, distance from drainage, engineering rock group, distance from faults, slope structure, land cover, topographic wetness index, and normalized difference vegetation index. The initial, three-layered, and four-layered BPNN were trained and then used to map landslide susceptibility, respectively. To evaluate the models, the susceptibility maps were validated by comparing with the existing landslide locations according to the area under the curve. The four-layered BPNN outperforms the other two models with the best accuracy of 91.53 %. Approximately 91.37 % of landslides were classified as high and very high landslide-prone areas. The validation results show sufficient agreement between the obtained susceptibility maps and the existing landslide locations.  相似文献   

19.
The logistic regression and statistical index models are applied and verified for landslide susceptibility mapping in Daguan County, Yunnan Province, China, by means of the geographic information system (GIS). A detailed landslide inventory map was prepared by literatures, aerial photographs, and supported by field works. Fifteen landslide-conditioning factors were considered: slope angle, slope aspect, curvature, plan curvature, profile curvature, altitude, STI, SPI, and TWI were derived from digital elevation model; NDVI was extracted from Landsat ETM7; rainfall was obtained from local rainfall data; distance to faults, distance to roads, and distance to rivers were created from a 1:25,000 scale topographic map; the lithology was extracted from geological map. Using these factors, the landslide susceptibility maps were prepared by LR and SI models. The accuracy of the results was verified by using existing landslide locations. The statistical index model had a predictive rate of 81.02%, which is more accurate prediction in comparison with logistic regression model (80.29%). The models can be used to land-use planning in the study area.  相似文献   

20.
Landslides every year impose extensive damages to human beings in various parts of the world; therefore, identifying prone areas to landslides for preventive measures is essential. The main purpose of this research is applying different scenarios for landslide susceptibility mapping by means of combination of bivariate statistical (frequency ratio) and computational intelligence methods (random forest and support vector machine) in landslide polygon and point formats. For this purpose, in the first step, a total of 294 landslide locations were determined from various sources such as aerial photographs, satellite images, and field surveys. Landslide inventory was randomly split into a testing dataset 70% (206 landslide locations) for training the different scenarios, and the remaining 30% (88 landslides locations) was used for validation purposes. To providing landslide susceptibility maps, 13 conditioning factors including altitude, slope angle, plan curvature, slope aspect, topographic wetness index, lithology, land use/land cover, distance from rivers, drainage density, distance from fault, distance from roads, convergence index, and annual rainfall are used. Tolerance and the variance inflation factor indices were used for considering multi-collinearity of conditioning factors. Results indicated that the smallest tolerance and highest variance inflation factor were 0.31 and 3.20, respectively. Subsequently, spatial relationship between classes of each landslide conditioning factor and landslides was obtained by frequency ratio (FR) model. Also, importance of the mentioned factors was obtained by random forest (RF) as a machine learning technique. The results showed that according to mean decrease accuracy, factors of altitude, aspect, drainage density, and distance from rivers had the greatest effect on the occurrence of landslide in the study area. Finally, the landslide susceptibility maps were produced by ten scenarios according to different ensembles. The receiver operating characteristics, including the area under the curve (AUC), were used to assess the accuracy of the models. Results of validation of scenarios showed that AUC was varying from 0.668 to 0.749. Also, FR and seed cell area index indicators show a high correlation between the susceptibility classes with the landslide pixels and field observations in all scenarios except scenarios 10RF and 10SVM. The results of this study can be used for landslides management and mitigation and development activities such as construction of settlements and infrastructure in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号