首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In 2010, the south flank of Mount Meager failed catastrophically, generating the largest (53 ± 3.8 × 106 m3) landslide in Canadian history. We document the slow deformation of the edifice prior to failure using archival historic aerial photographs spanning the period 1948–2006. All photos were processed using Structure from Motion (SfM) photogrammetry. We used the SfM products to produce pre-and post-failure geomorphic maps that document changes in the volcanic edifice and Capricorn Glacier at its base. The photographic dataset shows that the Capricorn Glacier re-advanced from a retracted position in the 1980s then rapidly retreated in the lead-up to the 2010 failure. The dataset also documents 60 years of progressive development of faults, toe bulging, and precursory failures in 1998 and 2009. The 2010 collapse was conditioned by glacial retreat and triggered by hot summer weather that caused ice and snow to melt. Meltwater increased pore water pressures in colluvium and fractured rocks at the base of the slope, causing those materials to mobilize, which in turn triggered several secondary failures structurally controlled by lithology and faults. The landslide retrogressed from the base of the slope to near the peak of Mount Meager involving basement rock and the overlying volcanic sequence. Elsewhere on the flanks of Mount Meager, large fractures have developed in recently deglaciated areas, conditioning these slopes for future collapse. Potential failures in these areas have larger volumes than the 2010 landslide. Anticipated atmospheric warming over the next several decades will cause further loss of snow and glacier ice, likely producing additional slope instability. Satellite- and ground-based monitoring of these slopes can provide advanced warning of future landslides to help reduce risk in populated regions downstream.  相似文献   

2.
The Zymoetz River landslide is a recent example of an extremely mobile type of landslide known as a rock slide–debris flow. It began as a failure of 900,000 m3 of bedrock, which mobilized an additional 500,000 m3 of surficial material in its path, transforming into a large debris flow that traveled over 4 km from its source. Seasonal snow and meltwater in the proximal part of the path were important factors. A recently developed dynamic model that accounts for material entrainment, DAN3D, was used to back-analyze this event. The two distinct phases of motion were modeled using different basal rheologies: a frictional model in the proximal path and a Voellmy model in the distal path, following the initiation of significant entrainment. Very good agreement between the observed and simulated results was achieved, suggesting that entrainment capabilities are essential for the successful simulation of this type of landslide.  相似文献   

3.
Large, rapid, low-gradient landslides are common in clay-rich glacial sediments in northeastern British Columbia. Many of the landslides create upstream impoundments that may persist for years in small watersheds in the region. We have documented such events in the Halden Creek watershed, 60 km southeast of Fort Nelson. The events are recorded geologically in two ways. First, trees are drowned in lakes dammed by the landslides and subsequently buried by deltaic sediments, where they are protected from decay. Bank erosion later exhumes the drowned trees. Second, landslide deposits with entrained wood are exposed along stream banks. We have reconstructed the recent history of landslide damming at Halden Creek by performing radiocarbon dating on exhumed trees and wood in and beneath landslide deposits at 13 sites in the watershed. Drowned trees range in age from 169±59 to 274±49 14C year bp. Wood in and below landslide deposits yielded radiocarbon ages ranging from modern to 965±49 14C year bp.  相似文献   

4.
The Todagin Creek landslide is located at 57.61° N 129.98° W in Northwest British Columbia. A seismic station 90 km north of the landslide recorded the event at 1643 hours coordinated universal time (UTC; 0943 hours Pacific daylight time (PDT)) on October 3, 2006. The signal verifies the discovery and relative time bounds provided by a hunting party in the valley. The landslide initiated as a translational rock slide on sedimentary rock dipping down slope at 34° and striking parallel to the valley. The landslide transformed into a debris avalanche and had a total volume estimated at 4 Mm3. An elevation drop of 771 m along a planar length of 1,885 m resulted in a travel angle (fahrb?schung) of 21.3°. The narrowest part of the landslide through the transport zone is 345 m. The widest part of the divergent toe of the landslide reaches a width of 1,010 m. Landslide debris impounded a lake of approximately 32 ha and destroyed an additional 67 ha of forest. The impoundment took 7 to 10 days to fill, with muddied waters observed downstream on October 13. No clear linkage exists with precipitation and temperature records preceding the landslide, but strong diurnal temperature cycles occurred in the days prior to the event. The Todagin Creek area appears to have an affinity for large landslides with the deposits of three other landslides >5 Mm3 observed in the valley.  相似文献   

5.
On November 28, 2003, at about 00:30 PST, 35 km east of Prince Rupert in northwestern British Columbia, an extremely rapid, retrogressive liquefaction earth flow, or a clay flow-slide, severed the natural gas pipeline. As a result, Prince Rupert residents were without natural gas heat for 10 days. The landslide has a steep main scarp that is 45 m high by 345 m wide. It consists of glaciomarine sediments mantled by rubbly colluvium lying on, and against smooth bedrock of the valley wall. It covers an area of 32 ha, and displaced about 4.7 M m3 of material. This displaced material flowed up and down river over a distance of 1.7 km, blocked the river, and caused flooding upstream for a distance of 10 km. This landslide is the most recent of four large landslides that have occurred over the last four decades in glaciomarine sediments in northwestern British Columbia.  相似文献   

6.
We present numerical simulations of the April 27, 1975, landslide event in the northern extreme of Kitimat Arm, British Columbia. The event caused a tsunami with an estimated wave height of 8.2 m at Kitimat First Nations Settlement and 6.1 m at Clio Bay, at the northern and southern ends of Kitimat Arm, respectively. We use the nonhydrostatic model NHWAVE to perform a series of numerical experiments with different slide configurations and with two approaches to modeling the slide motion: a solid slide with motion controlled by a basal Coulomb friction and a depth-integrated numerical slide based on Newtonian viscous flow. Numerical tests show that both models are capable of reproducing observations of the event if an adequate representation of slide geometry is used. We further show that comparable results are obtained using estimates of either Coulomb friction angle or slide viscosity that are within reasonable ranges of values found in previous literature.  相似文献   

7.
During the past 8000 years, large volcanic debris flows from Mount Meager, a Quaternary volcano in southwest British Columbia, have reached several tens of kilometres downstream in Lillooet River valley, with flow velocities of many metres per second and flow depths of several metres. These debris flows inundated areas that have become settled in the past 100 years and are now experiencing rapid urban growth. Notably, Pemberton, 65 km from Mount Meager, has doubled in size in the past five years. Approval of subdivision and building permits in Pemberton and adjacent areas requires assessment and mitigation of flood hazards, but large, rare debris flows from Mount Meager are not considered in the permitting process. Unlike floods, some volcanic debris flows occur without warning. We quantify the risk to residents in Lillooet River valley from non-eruption triggered volcanic debris flows based on Holocene landslide activity at Mount Meager. The calculated risk exceeds, by orders of magnitude, risk tolerance thresholds developed in Hong Kong, Australia, England, and in one jurisdiction in Canada. This finding poses a challenge for local governments responsible for public safety.  相似文献   

8.
Recent investigations of a limestone solution cave on the Queen Charlotte Islands (Haida Gwaii) have yielded skeletal remains of fauna including late Pleistocene and early Holocene bears, one specimen of which dates to ca. 14,400 14C yr B.P. This new fossil evidence sheds light on early postglacial environmental conditions in this archipelago, with implications for the timing of early human migration into the Americas.  相似文献   

9.
Element analysis of modern-day floodplains provides a framework for characterizing associations amongst depositional forms, the processes responsible for them and their local depositional environment. From interpretation of the spatial association of elements, mechanisms of floodplain evolution can be analysed. The Squamish River, in southwestern British Columbia, is a high-energy, gravel-based river, which exhibits a distinct downstream gradation in channel planform type. The floodplain sedimentology of this river is evaluated using an element approach. Five elements, defined on the basis of their morphological outline, position within sediment sequences and sedimentological character, describe the floodplain sedimentology: (i) top-stratum, (ii) chute channel; (iii) ridge; (iv) bar platform; (v) basal channel gravels. The sedimentological composition of each element is described. Each of these units relates directly to morphostratigraphic units which make up contemporary bars of the Squamish River. Associations among facies defined at the bedform scale, morphostratigraphic units on bar surfaces and elemental floodplain features are described and explained. The vertical stacking arrangement of elements is analysed in trenches (dug perpendicular to the main channel) and in bank exposures. Two elemental sedimentology models are proposed. In the first model, bar platform sands are discontinuous above basal channel gravels. Chute channel, ridge and proximal topstratum elements form thick sequences above. The second model is characterized by sequences in which distal top-stratum deposits are observed. In these instances, bar platform sands are better preserved beneath the distal top-stratum element, with proximal top-stratum elements above. The applicability of these models is determined primarily by position on the floodplain. Chute channel reworking of floodplain sediments and replacement by top-stratum elements is the dominant process marginal to contemporary bars. Sites in which channel avulsion has resulted in preservation of distal top-stratum deposits in the midsequence of the present-day channel banks determine the occurrence of the second model. Although channel planform style changes down-valley in the study reach from braided to meandering, these two models apply in each reach. It is concluded that processes operative at the element scale, rather than the channel planform scale, determine floodplain sedimentology.  相似文献   

10.
Debris flows and debris avalanches are the most widespread and hazardous types of landslides on the British Columbia north coast. Triggered by heavy rain, they pose risks to forestry workers in sparsely developed regions. The scarcity of long-term quality rain gauges and the lack of weather radar information create significant challenge in predicting the timing of landslides, which could be used to warn and, when necessary, evacuate forestry personnel. Traditional methods to relate rainfall antecedents and rainfall intensity to known landslide dates have proven to be unsatisfactory in this study due to extreme spatial variability of rainfall, enhanced by the orographic effect and the scarcity of rain gauges in a very large area. This has led to an integration of meteorological variables in a landslide advisory system that classifies three types of approaching storms by the 850-mbar wind speed and direction, the occurrence of subtropical moisture flow, and the existence of a warm layer characterized by high thickness values of the 500- to 1,000-mbar pressure levels. The storm classification was combined with a 4-week antecedent rainfall and the 24-h rainfall measured near or in the watershed where logging operations are taking place. This system, once implemented, is thought to reduce loss of life, injury, and economic losses associated with forestry works in the study area.  相似文献   

11.
Tunnicliffe, J., Church, M. & Enkin, R. J. 2012 (January): Postglacial sediment yield to Chilliwack Lake, British Columbia, Canada. Boreas, Vol. 41, pp. 84–101. 10.1111/j.1502‐3885.2011.00219.x. ISSN 0300‐9483. Seismic records and evidence from sediment cores at Chilliwack Lake provide the basis for a long‐term (postglacial) sediment budget for a 324‐km2 Cordilleran catchment. Chilliwack Lake (11.8 km2 surface area), situated in the North Cascade Mountains, near Chilliwack, British Columbia, was formed behind a valley‐wide recessional moraine in the final phase of post‐Fraser alpine glaciation. Seismic surveys highlight the postglacial lacustrine record, which is underlain by a thick layer of sediments related to deglacial sedimentation. Sediment cores provide details of grain‐size fining from the delta to the distal lake basin. The cores also show a record of intermittent fire and debris flows. Magnetic measurements of lake sediments provide information on grain size, as well as a dating framework. The total postglacial lake‐floor deposit volume is estimated to be 397 ± 27 × 106 m3. Including estimates of fan and delta deposition, the specific postglacial yield to the lake is calculated to be ~86 ± 13 Mg km2 a?1. The sediment volume in the uppermost (Holocene) lacustrine layer is 128 ± 9 × 106 m3, representing ~41 ± 4 Mg km2 a?1 in the Holocene. Compared with other Cordilleran lakes of similar size, particularly those with glacial cover in the watershed, Chilliwack Lake has experienced relatively modest rates of sediment accumulation. This study provides an important contribution to a growing database of long‐term (postglacial) sediment yield data for major Cordilleran lakes, essential for advancing our understanding of the pace of landscape evolution in formerly glaciated mountainous regions.  相似文献   

12.
In July 2005, a debris flow and a water flood occurred on two adjacent gullies in the White River area, on northern Vancouver Island in British Columbia, Canada. The 16,000 m3 debris flow buried approximately 7.5 ha of second-growth trees, buried approximately 500 m of a forestry road, and reached two fish-bearing streams. The water flood eroded approximately 240 m of the same forestry road and plugged four culverts before overtopping and inundating the road. To better plan for future events, risk analyses of debris flows, debris floods, and water floods were carried out for the two gullies involved, plus a third adjacent gully. The elements at risk that were analyzed included, in order of priority: users of the forestry road, the fish-bearing streams, the forestry road itself, and a timber bridge. Using a series of qualitative, but defined, relative-risk matrices, the following components of specific risk were estimated for each of the three types of events on each of the three gullies for each of the four elements at risk: probability of occurrence, probability that the event will reach or otherwise affect the site of the element at risk, the probability that the element at risk will be at the site when the event occurs, and the probability of loss or damage resulting from the element being at the site when the event occurs.  相似文献   

13.
The four superimposed coal zones A, B, C, D lie in the Hat Creek graben in folded and faulted Eocene strata.The tonsteins of Hat Creek although numerous, distinctive and matchable, have yet to be studied in detail. A composite log of DDH 106 (606 m long) was therefore constructed using 76 consecutive samples and earlier drill records, to show Coal Zones A, B, C, D; seam and interseam material; up to 72 tonsteins each 0.5 to 18 cm thick; and layers of petrified wood and siderite.Zone A contains 28 tonsteins, one every 6.4 m; Zone B 5, one every 16.4 m; Zone C 9, one every 8.2 m; Zone D 17, one every 6.4 m. Local overturning is indicated sedimentologically and possibly by the order petrified wood/tonstein/siderite, and the similar tonstein density of Zones A and D.Tonsteins from 329 m, 247 m, 229 m, 212 m — numbered 1, 2, 3, 4 — examined microscopically and by XRD, XRF, AA and Infra-red spectrophotometry, consist of crandallite (CaA1 phosphate), phytoclasts, kaolinite, ankerite, calcite, quartz, anatase/apatite, and siderite/allophane. Elemental values are variable: TiO2 for Nos. 1 and 4 indicate a silicic magma, for No. 2 a mafic magma while No. 3 is neither. TiO2/Al2O3 ratios show No. 1 to be silicic whereas Nos. 2, 3, 4 are neither. SiO2/Al2O3 ratios are inconclusive. An upward increase in K/Rb from 1 to 3 indicates either incrasing ‘mafic-ness’ or an increase in contaminant K. Rb/Sr values are low while Ba/Sr have more in common with mafic than silicic rock.Future work on the tonsteins should include optical and SEM analysis of the shards; quantitative trace element modelling to determine magma sources, and; elemental analysis of the associated coal to determine whether in addition to the volcanic explosions represented by the tonsteins, the original coal swamps were subjected to a continuous drizzle of volcanc dust. As it is, the TiO2 and TiO2/Al2O for 64 samples of coal would, if these elements were of magmatic and not detrital origin, indicate silicic dust.  相似文献   

14.
Bands of large (up to 4 cm long) three-dimensional crystallographic dendrites form the terrace fronts in an old travertine mound exposed near Clinton, British Columbia. The dendrites, with their long axes perpendicular to the terrace front, are characterized by numerous levels of branching. Each branch is formed of multitudes of skeletal rhombs, four- and six(?)-sided bipyramidal crystals, or prismatic hexagonal crystals that are precisely aligned along crystallographic precepts. Although individual branches are formed of one type of subcrystal, neighbouring branches may be formed of different subcrystal types.Highly supersaturated waters that were generated by rapid CO2 degassing of the spring water during its turbulent flow over the steep terrace fronts probably drove dendrite precipitation. The presence of growth lines indicates that growth was episodic. Type I growth lines probably formed annually in response to seasonal climate changes whereas Type II growth lines, which formed less frequently, may reflect changes in the flow velocity and/or flow patterns of the spring waters.Early diagenetic modification of the dendrites involved crystal face enlargement, cements formed of trigonal prisms or needle-fiber crystals, microbial infestation that mediated substrate dissolution, and/or deposition of detrital calcite crystals that formed in the water column. Much of the diagenetic modification may have taken place during the periods when the dendrites had temporarily stopped growing.The dendrites in the Clinton travertine are an excellent example of complex, episodic calcite crystal growth that was extensively modified by early diagenetic processes in a surface environment. The same spring waters from which the dendrites were precipitated mediated much of the early diagenesis.  相似文献   

15.
The Grand Forks aquifer, located in south-central British Columbia, Canada was used as a case study area for modeling the sensitivity of an aquifer to changes in recharge and river stage consistent with projected climate-change scenarios for the region. Results suggest that variations in recharge to the aquifer under the different climate-change scenarios, modeled under steady-state conditions, have a much smaller impact on the groundwater system than changes in river-stage elevation of the Kettle and Granby Rivers, which flow through the valley. All simulations showed relatively small changes in the overall configuration of the water table and general direction of groundwater flow. High-recharge and low-recharge simulations resulted in approximately a +0.05 m increase and a –0.025 m decrease, respectively, in water-table elevations throughout the aquifer. Simulated changes in river-stage elevation, to reflect higher-than-peak-flow levels (by 20 and 50%), resulted in average changes in the water-table elevation of 2.72 and 3.45 m, respectively. Simulated changes in river-stage elevation, to reflect lower-than-baseflow levels (by 20 and 50%), resulted in average changes in the water-table elevation of –0.48 and –2.10 m, respectively. Current observed water-table elevations in the valley are consistent with an average river-stage elevation (between current baseflow and peak-flow stages).
Resumen El acuífero de los Grand Forks, situado al sur de la Columbia Británica central (Canadá) ha sido utilizado como lugar de estudio para modelar la sensibilidad de un acuífero a los cambios en la recarga y el caudal de los ríos de acuerdo con escenarios previstos de cambio climático en la región. Los resultados sugieren que las variaciones en la recarga al acuífero bajo los diversos escenarios, que han sido modelados en régimen estacionario, tienen un impacto mucho menor en las aguas subterráneas que los cambios en el caudal de los ríos Kettle y Granby, que discurren por el valle. Todas las simulaciones muestran diferencias relativamente pequeñas en la configuración regional de los niveles freáticos y en la dirección general del flujo subterráneo. Las simulaciones de recarga elevada y baja causan un incremento de 0,05 m y un decremento de 0,025 m, respectivamente, en los niveles del acuífero. Los cambios de la elevación del río, simulados para reflejar niveles de flujo mayores que los valores pico (en un 20% y un 50%) resultan en cambios medios de los niveles del acuífero de 2,72 m y 3,45 m, respectivamente. Los cambios simulados en la elevación del río para flujos inferiores al caudal de base (en un 20% y en un 50%) provocan descensos en los niveles de 0,48 y 2,10 m, respectivamente. Los niveles actuales del acuífero en el valle son coherentes con una elevación media del nivel en el río (entre el caudal de base actual y los picos de caudal).

Résumé L'aquifère de Grand Forks, situé en Colombie britannique (Canada), a été utilisé comme zone d'étude pour modéliser la sensibilité d'un aquifère à des modifications de la recharge et du niveau de la rivière, correspondant à des scénarios envisagés de changement climatique dans cette région. Les résultats font apparaître que les variations de recharge de l'aquifère pour différents scénarios de changement climatique, modélisées pour des conditions de régime permanent, ont un impact sur le système aquifère beaucoup plus faible que les changements du niveau des rivières Kettle et Granby, qui coulent dans la vallée. Toutes les simulations ont montré des différences relativement faibles dans la configuration d'ensemble de la nappe et dans la direction générale des écoulements. Des simulations de conditions de recharge forte et de recharge faible produisent respectivement une remontée de 0,05 m et un abaissement de 0,025 m, approximativement, des cotes de la nappe pour l'ensemble de l'aquifère. Des changements simulés de la cote du niveau de la rivière, pour refléter des niveaux plus hauts que ceux des pics de crues (de 20 et de 50%), produisent respectivement des remontées de la nappe de 2,72 et 3,45 m en moyenne. Des changements simulés de l'altitude du niveau de la rivière, pour refléter des niveaux plus bas que ceux de basses eaux (de 20 et de 50%), produisent respectivement des abaissements de la nappe de 0,48 et 2,10 m en moyenne. Les altitudes courantes observées de la nappe dans la vallée sont cohérentes avec une cote moyenne du niveau de la rivière (entre les niveaux courants de basses eaux et de crues).

  相似文献   

16.
Sequences of tills, buried paleosols, wood and tephra in lateral moraines provide a record of Holocene advances and retreats of the Bugaboo Glacier in British Columbia. The oldest paleosol is tentatively classified as a Spodosol (Cryorthod). It incorporates Mazama tephra (6,800 B.P.) and charcoal and humus dated at 3,390 and 4.400B.P., respectively, and records early and middle Holocene warming and/or drying. This paleosol overliesa latest Pleistocene or early Holocene till associated with a nearby end moraine and assigned to the regionally known 'Crowfoot Advance'. Less-developed paleosols (Cryumbrepts) are formed on Neoglacial tills deposited shortly before 3,000 B. P., between c. 2,500 to 1,900 B. P., and between c. 900 B.P. and the 19th century. The paleosols and surface soils form microcatenas with morphological variations due to differences in original topography and vegetation. The chronology derived from these paleosols and tills generally agrees with, but increases the resolution of, what is known of Holocene glacier histories in the Canadian Cordillera.  相似文献   

17.
Municipal flood hazard mapping: the case of British Columbia,Canada   总被引:1,自引:0,他引:1  
Historical responses to flood hazards have stimulated development in hazardous areas. Scholars recommend an alternative approach to reducing flood losses that combines flood hazard mapping with land use planning to identify and direct development away from flood-prone areas. Creating flood hazard maps to inform municipal land use planning is an expensive and complex process that can require resources not always available at the municipal government level. Senior levels of government in some countries have addressed deficiencies in municipal capacity by assuming an active role in producing municipal flood hazard maps. In other countries, however, senior governments do not contribute to municipal flood hazard mapping. Despite a large body of research on the importance of municipal land use planning for addressing flood hazards, little is known about the extent of flood hazard information that is available to municipalities that do not receive outside assistance from senior governments for flood hazard mapping. We assess the status of flood hazard maps in British Columbia, where municipalities do not receive outside assistance in creating the maps. Our analysis shows that these maps are generally outdated and/or lacking a variety of features that are critical for supporting effective land use planning. We recommend that senior levels of government play an active role in providing municipalities with (1) detailed and current information regarding flood hazards in their jurisdiction and (2) compelling incentives to utilize this information.  相似文献   

18.
This paper is devoted to stability analysis of the Zheng-Gang landslide in the Gu-Shui hydropower station in China. Based on the geological field investigations, the formation processes, the deformation mechanism related to rainfalls and the instability mode are first analyzed. Large scale direct shear tests on soils in the slip zone are performed in order to characterize influences of the content of particle and water on natural shear strength. Due to the difficulty to consider the lateral constrain and curvature effects of the bottom sliding surface, different three-dimensional models are established using the limit equilibrium method and the large strain Lagrange finite difference method. The results of stability analysis are in good agreement with the field observations. It is shown that the natural landslide is in a limit state and the creep deformation along the slipping surface is the main mechanism of landslide instability under in situ conditions.  相似文献   

19.
Anastomosing rivers, systems of multiple interconnected channels that enclose floodbasins, constitute a major category of rivers for which various sedimentary facies models have been developed. While the sedimentary products of anastomosing rivers are relatively well‐known, their genesis is still debated. A rapidly growing number of ancient alluvial successions being interpreted as of anastomosing river origin, including important hydrocarbon reservoirs, urge the development of robust models for the genesis of anastomosis, to facilitate better interpretation of ancient depositional settings and controls. The upper Columbia River, British Columbia, Canada, is the most‐studied anastomosing river and has played a key role in the development of an anastomosing river facies model. Two hypotheses for the origin of upper Columbia River anastomosis include the following: (i) downstream control by aggrading cross‐valley alluvial fans; and (ii) upstream control by excessive bedload input from tributaries. Both upstream and downstream control may force aggradation and avulsions in the upper Columbia River. In order to test both hypotheses, long‐term (millennia‐scale) floodplain sedimentation rates and avulsion frequencies are calculated using 14C‐dated deeply buried organic floodplain material from cross‐valley borehole transects. The results indicate a downstream decrease in floodplain sedimentation rate and avulsion frequency along the anastomosed reach, which is consistent with dominant upstream control by sediment overloading. The data here link recent avulsion activity to increased sediment supply during the Little Ice Age (ca 1100 to 1950 ad ). This link is supported by data showing that sediment supply to the upper Columbia study reach fluctuated in response to Holocene glacial advances and retreats in the hinterland. Upstream control of anastomosis has considerable implications for the reconstruction of the setting of interpreted ancient anastomosing systems. The present research underscores that anastomosing systems typically occur in relatively proximal settings with abundant sediment supplied to low‐gradient floodplains, a situation commonly found in intermontane and foreland basins.  相似文献   

20.
Ages of channels of the anastomosing upper Columbia River, south‐eastern British Columbia, Canada, were investigated in a cross‐valley transect by 14C dating of subsurface floodplain organic material from beneath levees. The avulsion history within the transect was deduced from these data, and morphological stages in channel development were recognized. Additionally, floodplain sedimentation rates were established. The new data demonstrate that the upper Columbia River is a long‐lived, dynamic anastomosing system. Results show that anastomosis at the study location has persisted since at least 2700 cal. years BP, with avulsions occurring frequently. At least nine channels have formed in the studied cross‐valley transect within the past 3000 years. Channel lifetimes from formation to abandonment appear to be highly variable, ranging from approximately 800 to 3000 years. Log jams provoking avulsions and/or silting up of old channels are proposed as reasons for this variability. Long‐term average floodplain sedimentation rates appear to be significantly lower than previously proposed by Smith (1983, Int. Assoc. Sedimentol. Spec. Publ., 6, 155–168). A long‐term (4550 years) average of 1·75 mm year?1 (after compaction) was based on 14C dates, while a short‐term sedimentation rate of 0·8 mm was determined for a single, relatively small, seasonal flood in 1994 using sediment traps. However, short‐term sedimentation rates vary considerably over the floodplain, with levees aggrading up to four times faster than floodbasins. Channels of the upper Columbia River anastomosed reach follow a consistent pattern in their development, with each stage being characterized by different morphology and processes. Channel evolution comprises the following succession: (1) avulsion stage, in which a crevasse splay channel deepens by scour and levee sedimentation; (2) widening and deepening stage, in which bank slumping and bed scouring dominates; (3) infilling stage, in which either channel narrowing (bank accretion) or channel shallowing (bed accretion) takes place; and (4) abandonment stage, in which the residual (remnant) channel is filled exclusively by silt, clay and organic material. Vertical stacking (super‐ imposition) of active channels on recent channel‐fill sand bodies is a notable feature of the upper Columbia River, which suggests that reoccupation of residual channels is a common process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号