首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tropical cyclone is one of the most devastating weather phenomena all over the world. The Environmental Modeling Center (EMC) of the National Center for Environmental Prediction (NCEP) has developed a sophisticated mesoscale model known as Hurricane Weather Research and Forecasting (HWRF) system for tropical cyclone studies. The state-of-the-art HWRF model (atmospheric component) has been used in simulating most of the features our present study of a very severe tropical cyclone ??Mala??, which developed on April 26 over the Bay of Bengal and crossed the Arakan coast of Myanmar on April 29, 2006. The initial and lateral boundary conditions are obtained from Global Forecast System (GFS) analysis and forecast fields of the NCEP, respectively. The performance of the model is evaluated with simulation of cyclone Mala with six different initial conditions at an interval of 12?h each from 00 UTC 25 April 2006 to 12 UTC 27 April 2006. The best result in terms of track and intensity forecast as obtained from different initial conditions is further investigated for large-scale fields and structure of the cyclone. For this purpose, a number of important predicted fields?? viz. central pressure/pressure drop, winds, precipitation, etc. are verified against observations/verification analysis. Also, some of the simulated diagnostic fields such as relative vorticity, pressure vertical velocity, heat fluxes, precipitation rate, and moisture convergences are investigated for understanding of the characteristics of the cyclone in more detail. The vector displacement errors in track forecasts are calculated with the estimated best track provided by the India Meteorological Department (IMD). The results indicate that the model is able to capture most of the features of cyclone Mala with reasonable accuracy.  相似文献   

2.
Ensemble prediction methodology based on variations in physical process parameterizations in tropical cyclone track prediction has been assessed. Advanced Research Weather Research and Forecasting model with 30-km resolution was used to make 5-day simulation of the movement of Orissa super cyclone (1999), one of the most intense tropical cyclones over the North Indian Ocean. Altogether 36 ensemble members with all possible combinations of three cumulus convection, two planetary boundary layer and six cloud microphysics parameterization schemes were produced. A comparison of individual members indicated that Kain–Fritsch cumulus convection scheme, Mellor–Yamada–Janjic planetary boundary layer scheme and Purdue Lin cloud microphysics scheme showed better performance. The best possible ensemble formulation is identified based on SPREAD and root mean square error (RMSE). While the individual members had track errors ranging from 96–240 km at 24 h to 50–803 km at 120 h, most of the ensemble predictions show significant betterment with mean errors less than 130 km up to 120 h. The convection ensembles had large spread of the cluster, and boundary layer ensembles had significant error disparity, indicating their important roles in the movement of tropical cyclones. Six-member ensemble predictions with cloud microphysics schemes of LIN, WSM5, and WSM6 produce the best predictions with least of RMSE, and large SPREAD indicates the need for inclusion of all possible hydrometeors in the simulation and that six-member ensemble is sufficient to produce the best ensemble prediction of tropical cyclone tracks over Bay of Bengal.  相似文献   

3.
A statistical model for predicting the intensity of tropical cyclones in the Bay of Bengal has been proposed. The model is developed applying multiple linear regression technique. The model parameters are determined from the database of 62 cyclones that developed over the Bay of Bengal during the period 1981–2000. The parameters selected as predictors are: initial storm intensity, intensity changes during past 12 hours, storm motion speed, initial storm latitude position, vertical wind shear averaged along the storm track, vorticity at 850 hPa, Divergence at 200 hPa and sea surface temperature (SST). When the model is tested with the dependent samples of 62 cyclones, the forecast skill of the model for forecasts up to 72 hours is found to be reasonably good. The average absolute errors (AAE) are less than 10 knots for forecasts up to 36 hours and maximum forecast error of order 14 knots occurs at 60 hours and 72 hours. When the model is tested with the independent samples of 15 cyclones (during 2000 to 2007), the AAE is found to be less than 13 knots (ranging from 5.1 to 12.5 knots) for forecast up to 72 hours. The model is found to be superior to the empirical model proposed by Roy Bhowmik et al (2007) for the Bay of Bengal.  相似文献   

4.
Bay of Bengal cyclone extreme water level estimate uncertainty   总被引:1,自引:3,他引:1  
  相似文献   

5.
6.
Natural Hazards - The impacts of El Niño-Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) on tropical cyclone (TC) activity (intensity, frequency, genesis location, track and average...  相似文献   

7.
Sadhuram  Y.  Rao  B. P.  Rao  D. P.  Shastri  P. N. M.  Subrahmanyam  M. V. 《Natural Hazards》2004,32(2):191-209
Monthly maps of cyclone heat potential (CHP) in the Bay of Bengalhave been prepared by using Levitus climatological data set. Seasonal variability ofCHP in the Bay of Bengal has been studied using the CTD data sets collected duringfive cruises during the period, 1993–1996. High value (>30 kcal/cm2) of CHP coincided with anticyclonic gyre (ACG) and the low value of CHP (16 kcal/cm2) coincided with thecyclonic gyre (CG). This emphasizes the importance of gyres in the distribution ofCHP, which play an important role in the intensification of cyclones/depressions.CHP is >14 kcal/cm2 over Andaman Sea, southern and Central Bay of Bengal where the generation and movement of cyclones take place during post south west monsoon season (October–November). A depression formed on 07.11.95 at 11°N; 91°E and intensified into a cyclonic storm by 8th November evening and crossed Orissa Coast on 9th November 1995. A few days before its formation, the value of CHP at the origin of thiscyclone was about 20 kcal/cm2. To understand the exact role of CHP in theformation and intensification of cyclones/depressions over Bay of Bengal, more intense and systematic data sets are essential.  相似文献   

8.
Prakash  Kumar Ravi  Nigam  Tanuja  Pant  Vimlesh  Chandra  Navin 《Natural Hazards》2021,106(3):1981-2001
Natural Hazards - Oceanic eddies span over a wide range of sizes and affect the thermodynamic properties of water column. By modifying the thermal structure of the upper ocean, these eddies...  相似文献   

9.
This study entails the implementation of an experimental real time forecast capability for tropical cyclones over the Bay of Bengal basin of North Indian Ocean. This work is being built on the experience gained from a number of recent studies using the concept of superensemble developed at the Florida State University (FSU). Real time hurricane forecasts are one of the major components of superensemble modeling at FSU. The superensemble approach of training followed by real time forecasts produces the best forecasts for tracks and intensity (up to 5 days) of Atlantic hurricanes and Pacific typhoons. Improvements in track forecasts of about 25–35% compared to current operational forecast models has been noted over the Atlantic Ocean basin. The intensity forecasts for hurricanes are only marginally better than the best models. In this paper, we address tropical cyclone forecasts over the Bay of Bengal for the years 1996–2000. The main result from this study is that the position and intensity errors for tropical cyclone forecasts over the Bay of Bengal from the multimodel superensemble are generally less than those of all of the participating models during 1- to 3-day forecasts. Some of the major tropical cyclones, such as the November 1996 Andhra Pradesh cyclone and October 1999 Orissa super cyclone were well handled by this superensemble approach. A conclusion from this study is that the proposed approach may be a viable way to construct improved forecasts of Bay of Bengal tropical cyclone positions and intensity.  相似文献   

10.
The aim of the present study is to understand the impact of oceanic heat potential in relation to the intensity of tropical cyclones (TC) in the Bay of Bengal during the pre-monsoon (April–May) and post-monsoon (October–November) cyclones for the period 2006–2010. To accomplish this, the two-layer gravity model (TLGM) is employed to estimate daily tropical cyclone heat potential (TCHP) utilizing satellite altimeter data, satellite sea surface temperature (SST), and a high-resolution comprehensive ocean atlas developed for Indian Ocean, subsequently validated with in situ ARGO profiles. Accumulated TCHP (ATCHP) is estimated from genesis to the maximum intensity of cyclone in terms of minimum central pressure along their track of all the cyclones for the study period using TLGM generated TCHP and six-hourly National Centre for Environmental Prediction Climate Forecast System Reanalysis data. Similarly, accumulated sea surface heat content (ASSHC) is estimated using satellite SST. In this study, the relationship between ATCHP and ASSHC with the central pressure (CP) which is a function of TC intensity is developed. Results reveal a distinct relationship between ATCHP and CP during both the seasons. Interestingly, it is seen that requirement of higher ATCHP during pre-monsoon cyclones is required to attain higher intensity compared to post-monsoon cyclones. It is mainly attributed to the presence of thick barrier layer (BL) resulting in higher enthalpy fluxes during post-monsoon period, where as such BL is non-existent during pre-monsoon period.  相似文献   

11.
In situ measurements of near-surface ozone (\(\hbox {O}_{3})\), carbon monoxide (CO), and methane (\(\hbox {CH}_{4})\) were carried out over the Bay of Bengal (BoB) as a part of the Continental Tropical Convergence Zone (CTCZ) campaign during the summer monsoon season of 2009. \(\hbox {O}_{3}\), CO and \(\hbox {CH}_{4}\) mixing ratios varied in the ranges of 8–54 ppbv, 50–200 ppbv and 1.57–2.15 ppmv, respectively during 16 July–17 August 2009. The spatial distribution of mean tropospheric \(\hbox {O}_{3}\) from satellite retrievals is found to be similar to that in surface \(\hbox {O}_{3}\) observations, with higher levels over coastal and northern BoB as compared to central BoB. The comparison of in situ measurements with the Monitoring Atmospheric Composition & Climate (MACC) global reanalysis shows that MACC simulations reproduce the observations with small mean biases of 1.6 ppbv, –2.6 ppbv and 0.07 ppmv for \(\hbox {O}_{3}\), CO and \(\hbox {CH}_{4}\), respectively. The analysis of diurnal variation of \(\hbox {O}_{3}\) based on observations and the simulations from Weather Research and Forecasting coupled with Chemistry (WRF-Chem) at a stationary point over the BoB did not show a net photochemical build up during daytime. Satellite retrievals show limitations in capturing \(\hbox {CH}_{4}\) variations as measured by in situ sample analysis highlighting the need of more shipborne in situ measurements of trace gases over this region during monsoon.  相似文献   

12.
This paper describes measurement of air-sea parameters and estimation of sensible and latent heat fluxes by the “Inertial-Dissipation” technique over south Bay of Bengal. The data were collected on ORV Sagar Kanya during BOBMEX-Pilot cruise during the period 23rd October 1998 to 12th November 1998 over south Bay of Bengal. The fluxes are estimated using the data collected through fast response sensors namely Gill anemometer, Sonic anemometer and IR Hygrometer. In this paper the analyses carried out for two days, one relatively cloud free day on November 3rd and the other cloudy with rain on November 1st, are presented. Sea surface and air temperatures are higher on November 3rd than on November 1st. Sensible heat flux for both the days does not show any significant variation over the period of estimation, whereas latent heat flux is more for November 3rd than November 1st. An attempt is made to explain the variation of latent heat flux with a parameter called thermal stability on the vapor transfer from the water surface, which depends on wind speed and air to sea surface temperature difference.  相似文献   

13.
Much progress has been made in the area of tropical cyclone prediction using high-resolution mesoscale models based on community models developed at National Centers for Environmental Predication (NCEP) and National Center for Atmospheric Research (NCAR). While most of these model research and development activities are focused on predicting hurricanes in the Atlantic and Eastern Pacific domains, there has been much interest in using these models for tropical cyclone prediction in the North Indian Ocean region, particularly for Bay of Bengal storms that are known historically causing severe damage to life and property. In this study, the advanced operational hurricane modeling system developed at NCEP, known as the Hurricane Weather Research and Forecast (HWRF) model, is used to simulate two recent Bay of Bengal tropical cyclones??Nargis of November 2007 and Sidr of April 2008. The advanced NCEP operational vortex initialization procedure is adapted for simulating these Bay of Bengal tropical cyclones. Two additional regional models, the NCAR Advanced Research WRF and NCAR/Penn State University Mesoscale Model version 5 (MM5) are also used in simulating these storms. Results from these experiments highlight the superior performance of HWRF model over other models in predicting the Bay of Bengal cyclones. These results also suggest the need for a sophisticated vortex initialization procedure in conjunction with a model designed exclusively for tropical cyclone prediction for operational considerations.  相似文献   

14.
During the period 12–16 June 1996 a tropical cyclonic storm formed over the southwest Bay of Bengal and moved in a north-northeasterly direction. The thermodynamic characteristics of this system are investigated by utilizing the surface and upper air observations collected onboardORV Sagar Kanya over the Bay of Bengal region. The response of the cyclonic storm is clearly evident from the ship observations when the ship was within the distance of 600–800 km from the cyclonic storm. This study explores why (i) the whole atmosphere from surface to 500 hPa had become warm and moist during the cyclonic storm period as compared to before and after the formation of this system and (ii) the lower layer of the atmosphere had become stable during the formative stage of the cyclonic storm.  相似文献   

15.
Rajasree  V. P. M.  Bhate  Jyoti N.  Kesarkar  Amit P.  Singh  Vikas 《Natural Hazards》2021,109(1):371-388
Natural Hazards - Tropical cyclogenesis and rapid weakening are subjects of considerable interest in the literature. This paper addresses the genesis and rapid weakening of a North Indian Ocean...  相似文献   

16.
17.
Mohanty  Sachiko  Rao  A. D.  Pradhan  Himansu 《Natural Hazards》2017,87(2):1109-1124

The influence of seasonal and cyclonic winds is studied on the characteristics of internal waves (IWs) over the western Bay of Bengal (BoB) by using MITgcm model. As the BoB experiences reversal of seasonal winds and also tropical cyclones during pre-monsoon and post-monsoon months, its effect is seen through the computation of spectral estimates of the IWs. It is seen that the peak estimate is associated with the semidiurnal frequency at all the depths and is found higher in May compared to November. This is attributed to the presence of shallow mixed layer depth and deep thermocline due to the upwelling favorable winds. The computation of isopycnal displacement infers that the internal tides are present from 40 to 120 m depth in case of upwelling favorable winds of May, whereas, the presence of internal tides is restricted between 90 and 120 m for the downwelling favorable winds of November. During May, the available potential energy is also seen in a narrow coastal stretch, whilst it is absent in November. During the Hudhud cyclone period of October 7–14, 2014, it is noticed from the spectral estimates that the IWs of tidal frequency are replaced by inertial frequency with a periodicity of about 2 days as a consequence of strong cyclonic winds. The progressive vector diagram shows the mean current is initially westward up to October 17, 2014 and then northeastward with well-defined clockwise circulation. The maximum radius of inertial oscillation of 15 km is observed. After the cyclone ceases, the estimate associated with inertial frequency slowly diminishes and enhances the estimates related to internal tides. The simulations also suggest that the internal tides are absent for about 6 weeks as a response of the cyclonic winds.

  相似文献   

18.
MODIS (Moderate Resolution Imaging Spectroradiometer) level-3 aerosol data, NCEP (National Centers for Environmental Prediction) reanalysis winds and QuikSCAT ocean surface winds were made use of to examine the role of atmospheric circulation in governing aerosol variations over the Bay of Bengal (BoB) during the first phase of the ICARB (Integrated Campaign for Aerosols, gases and Radiation Budget) campaign (March 18–April 12, 2006). An inter-comparison between MODIS level-3 aerosol optical depth (AOD) data and ship-borne MICROTOPS measurements showed good agreement with correlation 0.92 (p < 0.0001) and a mean MODIS underestimation by 0.01. During the study period, the AOD over BoB showed high values in the northern/north western regions, which reduced towards the central and southern BoB. The wind patterns in lower atmospheric layers (> 850 hPa) indicated that direct transport of aerosols from central India was inhibited by the presence of a high pressure and a divergence over BoB in the lower altitudes. On the other hand, in the upper atmospheric levels, winds from central and northern India stretched south eastwards and converged over BoB with a negative vorticity indicative of a downdraft. These wind patterns pointed to the possibility of aerosol transport from central India to BoB by upper level winds. This mechanism was further confirmed by the significant correlations that AOD variations over BoB showed with aerosol flux convergence and flux vorticity at upper atmospheric levels (600–500 hPa). AOD in central and southern BoB away from continental influences displayed an exponential dependence on the QuikSCAT measured ocean surface wind speed. This study shows that particles transported from central and northern India by upper atmospheric circulations as well as the marine aerosols generated by ocean surface winds contributed to the AOD over the BoB during the first phase of ICARB.  相似文献   

19.
This paper describes the near surface characteristics and vertical variations based on the observations made at 17.5‡N and 89‡E from ORV Sagar Kanya in the north Bay of Bengal during the Bay of Bengal Monsoon Experiment (BOBMEX) carried out in July–August 1999. BOBMEX captured both the active and weak phases of convection. SST remained above the convection threshold throughout the BOBMEX. While the response of the SST to atmospheric forcing was clearly observed, the response of the atmosphere to SST changes was not clear. SST decreased during periods of large scale precipitation, and increased during a weak phase of convection. It is shown that the latent heat flux at comparable wind speeds was about 25–50% lower over the Bay during BOBMEX compared to that over the Indian Ocean during other seasons and tropical west Pacific. On the other hand, the largest variations in the surface daily net heat flux are observed over the Bay during BOBMEX. SST predicted using observed surface fluxes showed that 1-D heat balance model works sometime but not always, and horizontal advection is important. The high resolution Vaisala radiosondes launched during BOBMEX could clearly bring out the changes in the vertical structure of the atmosphere between active and weak phases of convection. Convective Available Potential Energy of the surface air decreased by 2–3 kJ kg-1 following convection, and recovered in a time period of one or two days. The mid tropospheric relative humidity and water vapor content, and wind direction show the major changes between the active and weak phases of convection.  相似文献   

20.
The genesis potential parameter (GPP) consists of two dynamical variables low-level relative vorticity and vertical wind shear, and two thermodynamic variables middle tropospheric relative humidity and instability are analysed during pre-cyclone watch period over the Bay of Bengal. The pre-cyclone watch period is taken as the period prior to 72-h from the formation of a Depression. The GPP values for 30 tropical disturbances that formed over the Bay of Bengal during the period 2001–2010 are analysed. An independent evaluation of the parameter and possible applications to operational forecasting are presented using data from the year 1998 to 1999. The variables of GPP are calculated using the ECMWF interim reanalysis 1.5° × 1.5° resolution data, averaged within an area of 5° × 5° box on the centre of tropical disturbances and also over the 5° × 5° boxes over the adjacent surrounding areas. The results show that maximum value is observed over the genesis region at 48- and 24-h lead time for both the cases of cyclones and Depressions. The threshold value of GPP is found to be 9.3, 6.3 and 2.7 during pre-cyclone watch period at 24-, 48- and 72-h lead time, respectively. A distinction in GPP values above threshold value for cyclonic and a Depression system is also observed for the cyclogenesis region in 69, 75 and 75 % of cases at 72-, 48- and 24-h lead time, respectively. However, the individual case studies show that the GPP could indicate the genesis of a tropical cyclone with a 2-day lead time. The mean GPP values are 11.8, 8.5 and 3.8 for cyclonic systems and 6.9, 4.2 and 1.6 for Depression systems over an area of a box 5° × 5° on the systems at 24-, 48- and 72-h lead time, respectively, from the stage of Depression. The result of the study is found to be providing probable area of genesis and intensification of a tropical disturbance at a 2 day lead time from the stage Depression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号