首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Hawaiian Lee Countercurrent (HLCC) is an eastward surface current flowing against the broad westward flow of the North Pacific subtropical circulation. Analyses of satellite altimeter data over 16 years revealed that the HLCC is characterized by strong interannual variations. The strength and meridional location of the HLCC axis varied significantly year by year. The eastward velocity of the HLCC was higher when the location of the axis was stable. Mechanisms for the interannual variations were explored by analyses of the altimeter data and results from a simple baroclinic model. The interannual variations in the strength of the HLCC did not correlate with those of the wind stress curl (WSC) dipole formed on the leeward side of the Hawaii Islands, although the WSC dipole has been recognized as the generation mechanism of the HLCC. Meridional gradients of the sea surface height anomaly (SSHA) across the HLCC generated by baroclinic Rossby waves propagating westward from the east of the Hawaii Islands were suggested as a possible mechanism for the interannual variations in the HLCC. The spatial patterns in the observed SSHAs were reproduced by a linear baroclinic Rossby wave model forced by wind fields from a numerical weather prediction model. Further analysis of the wind data suggested that positive and negative anomalies of WSC associated with changes in the trade winds in the area east of the Hawaii Islands are a major forcing for generating SSHAs that lead to the HLCC variations with a time lag of about 1 year.  相似文献   

2.
A Subtropical Countercurrent (STCC) is a narrow eastward jet on the equator side of a subtropical gyre, flowing against the broad westward Sverdrup flow. Together with theories, recent enhanced observations and model simulations have revealed the importance of mode waters in the formation and variability of North Pacific STCCs. There are three distinct STCCs in the North Pacific, maintained by low potential vorticity (PV) that mode waters carry from the north. Model simulations show that changes in mode water ventilation result in interannual to interdecadal variations and long-term changes of STCCs. STCCs affect the atmosphere through their surface thermal effects, inducing anomalous cyclonic wind curl and precipitation along them. Thus, mode waters are not merely passive water masses but have dynamical and climatic effects. For temporal variability, atmospheric forcings are also suggested to be important in addition to the variability of mode waters. STCCs exist in other oceans and they are also flanked by mode waters on their poleward sides, suggesting that they are maintained by similar dynamics.  相似文献   

3.
In the past nearly two decades, the Argo Program has created an unprecedented global observing array with continuous in situ salinity observations, providing opportunities to extend our knowledge on the variability and effects of ocean salinity. In this study, we utilize the Argo data during 2004–2017, together with the satellite observations and a newly released version of ECCO ocean reanalysis, to explore the decadal salinity variability in the Southeast Indian Ocean(SEIO) and its impacts on the regional sea level changes. Both the observations and ECCO reanalysis show that during the Argo era, sea level in the SEIO and the tropical western Pacific experienced a rapid rise in 2005–2013 and a subsequent decline in 2013–2017. Such a decadal phase reversal in sea level could be explained, to a large extent, by the steric sea level variability in the upper 300 m. Argo data further show that, in the SEIO, both the temperature and salinity changes have significant positive contributions to the decadal sea level variations. This is different from much of the Indo-Pacific region, where the halosteric component often has minor or negative contributions to the regional sea level pattern on decadal timescale. The salinity budget analyses based on the ECCO reanalysis indicate that the decadal salinity change in the upper 300 m of SEIO is mainly caused by the horizontal ocean advection. More detailed decomposition reveals that in the SEIO, there exists a strong meridional salinity front between the tropical low-salinity and subtropical high salinity waters. The meridional component of decadal circulation changes will induce strong cross-front salinity exchange and thus the significant regional salinity variations.  相似文献   

4.
Seasonal and interannual variability of the Subtropical Countercurrent (STCC) in the western North Pacific are investigated using observations by satellites and Argo profiling floats and an atmospheric reanalysis. The STCC displays a clear seasonal cycle. It is strong in late winter to early summer with a peak in June, and weak in fall. Interannual variations of the spring STCC are associated with an enhanced subtropical front (STF) below the surface mixed layer. In climatology, the SST front induces a band of cyclonic wind stress in May north of the STCC on the background of anticyclonic curls that drive the subtropical gyre. The band of cyclonic wind and the SST front show large interannual variability and are positively correlated with each other, suggesting a positive feedback between them. The cyclonic wind anomaly is negatively correlated with the SSH and SST below. The strong (weak) cyclonic wind anomaly elevates (depresses) the thermocline and causes the fall (rise) in the SSH and SST, accelerating (decelerating) STCC to the south. It is suggested that the anomalies in the SST front and STCC in the preceding winter affect the subsequent development of the cyclonic wind anomaly in May. Results from our analysis of interannual variability support the idea that the local wind forcing in May causes the subsequent variations in STCC.  相似文献   

5.
A long-term warming pattern of global subsurface ocean was detected separately from other natural variations. Three dominant modes were extracted: a long-term warming mode, a mode related to the El Niño/Southern Oscillation, and a mode related to the Atlantic Multidecadal Oscillation. The long-term warming mode explained 78 % of the global mean temperature variance from the surface to a depth of 300 m, and the other two modes could explain most of the residual variance. Subsurface warming associated with the long-term warming mode was strong in the subtropics. In contrast, there was a local minimum of warming in the northern hemisphere subarctic ocean, and warming was suppressed in subsurface waters south of the equator. Atmospheric changes associated with the long-term warming mode showed negative (positive) sea level pressure anomalies at high (middle) latitudes in both hemispheres, and an intensification and/or a poleward expansion of mid-latitude westerlies. Wind stress curl changes were negative in the subtropics and positive in the subarctic of the northern hemisphere; changes that were consistent with the strong warming in the subtropics and the local minimum of warming in the subarctic. Warming of Southern Ocean subsurface waters coincided with southward migration and intensification of westerly winds, whereas surface warming to the south of 50°S was suppressed, probably by strengthened northward Ekman transport. Positive wind stress curl off the equator with weakening of the tropical easterly winds in the Pacific and Indian Oceans was consistent with the subsurface negative temperature anomaly there.  相似文献   

6.
北太平洋海表温度及各贡献因子的变化   总被引:2,自引:0,他引:2  
刘珊  王辉  姜华  金啟华 《海洋学报》2013,35(1):63-75
采用1958年1月至2007年12月SODA海洋上层温度的月平均资料,基于海温变化方程和统计分析方法,分析了北太平洋海表面温度(SST)异常特征及各局地因子贡献比例的变化。结果表明,伴随着1976/1977风场最强中心位置的南北移动,形成了两个北太平洋SST年际-年代际变化的异常中心:一个是位于30°N附近的副热带海盆内区,SST异常主要受风应力强度的主导;一个是位于40°N附近的副热带和副极地环流交汇区,SST异常主要受风应力旋度的位置即风场位置的影响。在副热带海盆内区,最强降温发生在1978-1982年,SST异常的主要局地贡献因子为海表热通量和经向平流,二者所占比例和约为50%~60%,均为同相增温或降温作用,余项所占比例约为20%~50%。在副热带和副极地环流交汇区,海盆内区和西部边界区的SST异常的跃变时间同为1975年,但是内区的垂直混合项的跃变时间早于西部5年左右。SST异常的主要贡献因子为海表热通量和经向平流,但在1983-1988年海温强降温期间,经向平流项贡献大于海表热通量项的贡献。两个区域的垂直混合项均为降温贡献,虽然量值小却显示出很强的年代际变化信号。平流项中经向平流最大,垂直平流最小。  相似文献   

7.
Interannual variability(IAV) in the barrier layer thickness(BLT) and forcing mechanisms in the eastern equatorial Indian Ocean(EEIO) and Bay of Bengal(BoB) are examined using monthly Argo data sets during 2002–2017. The BLT during November–January(NDJ) in the EEIO shows strong IAV, which is associated with the Indian Ocean dipole mode(IOD), with the IOD leading the BLT by two months. During the negative IOD phase, the westerly wind anomalies driving the downwelling Kelvin waves increase the isothermal layer depth(ILD). Moreover, the variability in the mixed layer depth(MLD) is complex. Affected by the Wyrtki jet, the MLD presents negative anomalies west of 85°E and strong positive anomalies between 85°E and 93°E. Therefore, the BLT shows positive anomalies except between 86°E and 92°E in the EEIO. Additionally, the IAV in the BLT during December–February(DJF) in the BoB is also investigated. In the eastern and northeastern BoB, the IAV in the BLT is remotely forced by equatorial zonal wind stress anomalies associated with the El Ni?o-Southern Oscillation(ENSO). In the western BoB, the regional surface wind forcing-related ENSO modulates the BLT variations.  相似文献   

8.
对海洋中起伏运动(heaving)信号的时空分布研究能够帮助我们更好地了解气候系统中的年际和年代际变率。文章通过再分析资料和模式对太平洋区域的heaving主要模态进行了研究。研究结果表明: 太平洋区域主要存在两种heaving模态: 第一模态主要表现为赤道东西两侧的温跃层异常信号反位相; 第二模态表现为赤道区域和副热带区域的温跃层异常信号呈现反位相变化的规律。本文对这两个主要heaving模态所涉及的物理过程进行详细讨论, 结果表明: 东西反位相模态主要是受赤道波动调节的结果; 而经向结构模态则主要是由赤道地区的波动和副热带区域的风应力旋度异常作用共同导致。此外, 我们还讨论了heaving模态可以通过海洋波动以及Ekman输送等过程对海盆尺度的热输送(振幅约为5×1014W)以及海洋热含量(振幅约为1.5×1020J)的再分配起到了关键的调制作用, 进一步表明heaving模态对全球气候变化有着重要的作用。  相似文献   

9.
本文利用2011年8月至2014年3月Aquarius卫星盐度产品结合Argo等实测盐度资料,探讨了孟加拉湾海表盐度的季节及年际变化特征。结果显示,Aquarius与Argo盐度呈显著线性正相关,总体较Argo盐度值低,偏差为-0.13,其中在孟加拉湾北部海域负偏差值比南部海域更大,分别为-0.28和-0.10。Aquarius卫星与Argo浮标在表层盐度观测深度上的差别是造成此系统偏差的主因。Aquarius盐度资料清晰显示了孟加拉湾海表盐度具有明显的季节变化特征,包括阿拉伯海高盐水的入侵引起湾南部海域盐度的变化以及湾北部淡水羽分布范围的季节性迁移等主要特征。此外,分析还揭示了2011(2012)年春季整个湾内出现异常高盐(低盐)现象。研究表明,2010(2011)年湾北部夏季降雨减少(增加)导致该海域海水盐度偏高(偏低),并通过表层环流向南输运引起次年春季湾内表层盐度出现异常高盐(低盐)现象,春季风应力旋度正(负)距平通过影响盐度垂直混合过程对同期表层盐度异常高盐(低盐)变化也有影响。  相似文献   

10.
Time-longitude diagrams of monthly anomalies of TOPEX/Poseidon sea surface height (SSH), Levitus steric height, COADS wind stress curl, as well as meridional surface wind averaged over the northern South China Sea (SCS) from 18° to 22°N, exhibit a coherent westward phase propagation, with a westward propagation speed of about 5 cm s−1. The consistency between oceanic and atmospheric variables indicates that there is a forced Rossby wave in the northern SCS. The horizontal patterns of monthly SSH anomalies from observations and model sensitivity experiments show that the forced Rossby wave, originating to the northwest off Luzon Island, actually propagates west-northwestward towards the Guangdong coast because of zonal migration of the meridional surface wind. The winter Luzon Cold Eddy (LCE), which has been found from field observations, can be identified as a forced Rossby wave with a negative SSH anomaly in winter. It corresponds to strong upwelling and a negative temperature anomaly. Sensitivity experiments show that the wind forcing controls the generation of the LCE, while the Kuroshio is of minor importance.  相似文献   

11.
The surface circulation of northern South China Sea (hereafter SCS) for the period 1987–2005 was studied using the data of more than 500 satellite-tracked drifters and wind data from QuikSCAT. The mean flow directions in the northern SCS except the Luzon Strait (hereafter LS) during the periods October~March was southwestward, and April~September northeastward. A strong northwestward intrusion of the Kuroshio through the LS appears during the October~March period of northeasterly wind, but the intrusion became weak between April and September. When the strong intrusion occurred, the eddy kinetic energy (EKE) in the LS was 388 cm2/s2 which was almost 2 times higher than that during the weak-intrusion season. The volume transport of the Kuroshio in the east of the Philippines shows an inverse relationship to that of the LS. There is a six-month phase shift between the two seasonal phenomena. The volume transport in the east of the Philippines shows its peak sis-month earlier faster than that of the LS. The strong Kuroshio intrusion is found to be also related to the seasonal variation of the wind stress curl generated by the northeasterly wind. The negative wind stress curl in the northern part of LS induces an anticyclonic flow, while the positive wind stress curl in the southern part of LS induces a cyclonic flow. The northwestward Kuroshio intrusion in the northern part of LS happened with larger negative wind stress curl, while the westward intrusion along 20.5°N in the center of the LS occurred with weaker negative wind stress curl.  相似文献   

12.
The variability of sea surface temperature (SST) in the Japan Sea is investigated using the complex EOF analysis of daily data produced at Tohoku University, Japan (New Generation SST; 2002–2006). The relationship with the wind field is investigated from the daily NCEP/NCAR reanalysis data with a 1° spatial resolution. Anomalies in the SST (SSTAs) are calculated by subtracting the basin-average annual variation estimated as a leading mode of temperature. The leading mode of an SSTA represents a adjustment to the annual mean variation, most significant in December in the zone of subtropical waters entering the sea through the Korean Strait and in the northwestern sea, over which a cyclonic wind curl develops in the cold period. The semiannual variability mode is identified, which is characterized by the largest temperature increase (decrease) in the western branch of the subarctic front (in the Tatar Strait), which lags by two months behind the semiannual changes in wind curl over the sea. An episodic SSTA movement is detected in the northern part of the sea, which moves from east to west along the western branch of the Tsushima Warm Current with a speed corresponding in magnitude to an advective scale.  相似文献   

13.
Variability of the North Pacific Current and its bifurcation   总被引:2,自引:0,他引:2  
The North Pacific Current (NPC) bifurcates approaching the west coast of North America into a subpolar branch that forms the Alaska Current, and a subtropical branch that includes the California Current. The variability of this current system is discussed using numerical results from a wind-driven, reduced-gravity model. Indices of the strength of the subpolar and subtropical components of the NPC are examined based on output from multi-decadal simulations with the numerical model. This shows periods of both correlated and anti-correlated variability of the subpolar and subtropical gyres. A decomposition of the gyre transport time series indicates that the dominant mode of variability is a “breathing” mode in which the subpolar and subtropical gyres co-vary in response to fluctuations in the strength of the NPC. This finding is consistent with an analysis of dynamic height data of limited duration from the array of Argo drifting floats.The variability of the NPC is also examined using sea surface height (SSH) data from satellite altimetry over the period 1993-2005. The leading mode of SSH over the northeast Pacific dominates the variability of the NPC and is shown to be associated with in-phase variations in the transport of the subtropical and subpolar gyres. A strong correlation is found between time-dependent fluctuations in SSH across the NPC and variations in the strength of the transport of the NPC in the model. This agreement provides evidence for variability of the NPC occuring in direct response to large-scale atmospheric forcing.  相似文献   

14.
A three-dimensional numerical model is used to simulate sea level and velocity variations in the South China Sea for 1992–1995. The model is driven by daily wind and daily sea surface temperature fields derived from the NCEP/NCAR 40-year reanalysis project. The four-year model outputs are analyzed using time-domain Empirical Orthogonal Functions (EOF). Spatial and temporal variations of the first two modes from the simulation compare favorably with those derived from satellite altimetry. Mode 1, which is associated with a southern gyre, shows symmetric seasonal reversal. Mode 2, which contributes to a northern gyre, is responsible for the asymmetric seasonal and interannual variations. In winter, the southern and northern cyclonic gyres combine into a strong basin-wide cyclonic gyre. In summer, a cyclonic northern gyre and an anticyclonic southern gyre form a dipole with a jet leaving the coast of Vietnam. Interannual variations are particularly noticeable during El Niño. The winter gyre is generally weakened and confined to the southern basin, and the summer dipole structure does not form. Vertical motions weaken accordingly with the basin-wide circulation. Variations of the wind stress curl in the first two EOF modes coincide with those of the model-derived sea level and horizontal velocities. The mode 1 wind stress curl, significant in the southern basin, coincides with the reversal of the southern gyre. The mode 2 curl, large in the central basin, is responsible for the asymmetry in the winter and summer gyres. Lack of the mode 2 contribution during El Niño events weakens the circulation. The agreement indicates that changes in the wind stress curl contribute to the seasonal and interannual variations in the South China Sea.  相似文献   

15.
Vertical profiles of temperature and salinity have been measured for 50 years along Line P between the North American west coast and mid Gulf of Alaska. These measurements extend 1425 km into the gulf at 13 or more sampling stations. The 10-50-m deep layer of Line P increased in temperature by 0.9 °C from 1958 to 2005, but is significant only at the 90% level due to large interannual variability. Most of this increase in temperature accompanies the 1977 shift in wind patterns. Temperature changes at 100-150 m and salinity changes in both layers are not statistically significant. Much of the variance in temperature is in the upper 50 m of Line P, and temperature changes tend to be uniform along Line P except for waters on the continental margin. Salinity changes are dominated by variability in the halocline between 100 and 150 m depth and are less uniform along Line P. Largest oscillations in temperature and salinity are between 1993 and 2003. These events can be understood by considering changes in eastward wind speed and wind patterns that are revealed in the first two modes of the Pacific Decadal Oscillation. Changes in these patterns are indicators for both Ekman surface forcing (Surface ocean currents flow to the right of the wind direction) and Ekman pumping (Surface waters diverge away from regions of positive wind stress curl, leading to upwelling of colder saltier water). Changes in temperature along the nearshore part of Line P suggest Ekman surface forcing is the stronger of the two processes in the upper layer. The change in salinity anomalies in the halocline along the seaward end of Line P, following the wind shift in 1977, is in agreement with enhanced upwelling caused by stronger Ekman pumping in this region.  相似文献   

16.
王艺珊  夏瑞彬 《海洋学报》2022,44(10):35-48
本文利用第五次国际耦合模式比较计划(CMIP5)中的地球系统模式(ESM2M),结合Argo观测数据和由Ishii等整理的再分析数据集,分析现在气候背景和辐射强迫极端增强下副热带东北太平洋海域(10°~40°N,110°~160°W)混合层深度(MLD)和潜沉率的季节变化特征,研究其对全球变暖的响应。在现在气候背景下,二者最大值均出现在冬季。潜沉率的主要贡献项存在显著的季节变化差异,1-5月主要受侧向潜沉率的变化控制,6-12月则由风应力旋度导致的埃克曼抽吸速度变化主控。全球变暖后,季节循环信号的主控要素不变。但受风应力旋度等要素变化的影响,各季节的MLD减小,大值区范围收缩。由于冬季减小幅度远大于夏季,MLD季节波动幅度(振幅)显著变小。长期看,MLD呈现持续变浅的趋势,其空间不均匀性减弱引起的MLD锋面减弱是控制侧向潜沉率减弱,最终导致总潜沉率减弱的关键。由于埃克曼抽吸速度的季节变化信号对全球变暖的响应较小,因此总潜沉率在冬季受全球变暖的影响最为强烈。上述结果表明,构成潜沉率的两个关键要素对总潜沉率的贡献比例是随着季节变化而改变的:冬季MLD锋面强盛时期,侧向潜沉率的影响将显著增强...  相似文献   

17.
Analyses were performed on hydrographic data gathered along the 137°E meridian by the R/V Ryofu Maru of the Japan Meteorological Agency (JMA). Distributions were obtained of the mean and standard deviation of water temperature and salinity along the section. Relationships between interannual variations of these variables and wind forcing were examined. A correlation analysis revealed that temperature change, which occurred in the equatorial region of the western North Pacific accompanied by El Nino and La Nina events, reached about 20°N with the inclination of isotherms across the north equatorial current fluctuating around 20°N. Empirical orthogonal function (EOF) analysis of the winter water temperatures in the section was performed to extract variations following El Nino and La Nina events as the first mode and those corresponding to decadal changes of sea surface temperature (SST) in the North Pacific as the second mode. Interannual variations in the area of the North Pacific tropical saline water (NPTSW) and the North Pacific intermediate water (NPIW) along the section correspond well to interannual variations of the wind-stress curl minimum (negative value) in the area southeast of Japan. A remaining problem is to quantitatively evaluate the lag times of the variations to the wind-stress curl variation. In the equatorial region of the section, the northward extension of saline water is weak, and negative water temperature anomalies have often occurred in connection with El Nino events since the latter half of the 1970s. These changes may be part of the decadal variation of the North Pacific.  相似文献   

18.
黑潮是北太平洋副热带环流系统的一支重要的西边界流。前人对不同流段黑潮的季节和年际变化进行了诸多研究,然而基于不同数据所得结论仍存在差异,尤其是不同模式计算所得流量差别很大,而且以往研究往往着眼于某一流段,对不同流段黑潮变化之间的异同及其原因涉及较少。本文基于卫星高度计数据,评估了OFES(Ocean generalcir culation model For the Earth Simulator)和HYCOM(Hybrid Coordinate Ocean Model)两个模式对吕宋岛和台湾岛以东黑潮季节与年际变化的模拟能力,进而对两个海域黑潮变化的异同及其物理机制进行了分析。结果表明:HYCOM模式对黑潮季节变化的模拟较好,而OFES模式对黑潮年际变化的模拟较好。吕宋岛以东黑潮和台湾岛以东黑潮在季节与年际尺度上的变化规律均不相同,且受不同动力过程控制。吕宋岛以东黑潮呈现冬春季强而秋季弱的变化规律,主要受北赤道流分叉南北移动的影响;而台湾岛以东黑潮呈现夏季强冬季弱的变化特点,主要受该海区反气旋涡与气旋涡相对数目的季节变化影响。在年际尺度上,吕宋岛以东黑潮与北赤道流分叉及风应力旋度呈负相关,当风应力旋度超前于流量4个月时相关系数达到了-0.56;而台湾岛以东黑潮的流量变化则受制于副热带逆流区涡动能的变化,且滞后于涡动能9个月时达到最大正相关,相关系数为0.44。本研究对于深入理解不同流段黑潮的多尺度变异规律及其对邻近海区环流与气候的影响具有重要意义,同时对于黑潮研究的数值模式选取具有重要参考价值。  相似文献   

19.
This study describes the three-dimensional distributions of the Turner angle (Tu) and the potential vorticity (PV) of the main pycnocline water in the subtropical North Pacific (10–50°N, 120°E–120°W) using a large in situ CTD data set taken by the Argo profiling floats during June to October of 2001–2009 to clarify the detailed distribution of the central water and the mode waters as well as the relationship between these water masses. The ventilated part of the main pycnocline water (σ θ < 26.7 kg m−3) in the subtropical gyre generally displays a sharp peak in Tu value of 59° in the histogram. The Tu histograms for 10° × 10° geographical boxes mostly show that the mode for the Tu value is 59° too, but they also show some regional differences, suggesting some types of relations with the North Pacific mode waters. To further investigate this relationship, the appearance probability density function of the central water (defined as the main pycnocline water with Tu = 56°–63°) and those of the mode waters with PVs lower than the critical value on each isopycnal surface were analyzed. The distribution area of the central mode water (CMW) corresponds so well with that of the central water that a direct contribution of the CMW to the formation and maintenance of the central water is suggested. On the other hand, the distribution areas of subtropical mode water (STMW), Eastern STMW, and transition region mode water do not correspond to that of the central water. Nevertheless, indirect contributions of these mode waters to the formation and maintenance of the central water through salt finger type convection or diapycnal mixing are suggested.  相似文献   

20.
热带大西洋年际和年代际变率的时空结构模拟   总被引:10,自引:3,他引:10       下载免费PDF全文
使用美国夏威夷大学发展的中等复杂程度海洋模式(IOM)在给定表面强迫条件下模拟了热带大西洋上层海洋年际和年代际变率的时空结构.利用NCEP的41a(1958~1998年)逐月平均表面资料作为强迫场,积分海洋模式41a作为控制试验,并利用模式分别做动量(风应力)通量和热量通量无异常变化的平行试验,与控制试验作比较.对3组试验模拟上层海洋变率状况的比较,并按年际和年代际时间尺度分别分析,揭示表面风应力和热通量异常对海表面温度和温跃层深度变化的影响,并比较了其影响的相对重要性.结果表明模式成功地模拟出了热带大西洋上层海洋的变率.模式模拟的海表面温度年际变化主要表现为弱ENSO型,年代际变化表现为南、北大西洋变化相反的偶极子型.在年际时间尺度上,热力强迫和动力强迫对海表温度变化都有贡献,其中赤道外海表面温度异常(SSTA)变化主要由热通量异常引起,而近赤道SSTA的变化主要由动量异常强迫引起.在年代际时间尺度上,热通量强迫的作用远比动量强迫重要.模式不仅能够模拟SST在年际和年代际时间尺度上的变率,还能够模拟温跃层深度在年际和年代际时间尺度上的变率.年际和年代际时间尺度上,温跃层深度的变率主要由动量异常决定,热通量异常强迫的贡献很小.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号