首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
唐灼  董汉文  王亚莹  李广旭  费镕泽 《岩石学报》2023,39(12):3572-3584

藏南拆离系(South Tibet Detachment System,STDS)是沿喜马拉雅造山带走向发育的一套伸展拆离系统,其形成过程与喜马拉雅造山带的隆升历史和演化过程密切相关,是研究印度-欧亚大陆碰撞造山过程中构造变形作用的重要对象。错那拆离断层(Cuona Detachment,CD)为STDS在错那地区的出露部分,其为一数千米宽的韧性剪切带,带内发育大量不同类型的淡色花岗岩,本文在野外大比例尺填图的基础上,在CD内识别出两期淡色花岗岩:早期同构造淡色花岗岩和晚期构造后淡色花岗岩,并分别对两期淡色花岗岩进行锆石LA MC-ICP-MS U-Pb分析测试。锆石U-Pb定年结果表明,CD在20Ma仍在持续活动,直到14.8~16.5Ma左右停止活动。同时结合前人研究结果,进一步探讨错那地区STDS演化过程以及其沿造山带走向上的差异性规律。沿着喜马拉雅造山带走向,不同地区的STDS的活动时间呈现出明显的差异性,本文认为STDS停止时间主要表现出由西构造结向东(如错那地区)逐渐变年轻的趋势。

  相似文献   

2.
Opening of the Fram Strait gateway: A review of plate tectonic constraints   总被引:1,自引:0,他引:1  
We have revised the regional crustal structure, oceanic age distribution, and conjugate margin segmentation in and around the Lena Trough, the oceanic part of the Fram Strait between the Norwegian–Greenland Sea and the Eurasia Basin (Arctic Ocean). The Lena Trough started to open after Eurasia–Greenland relative plate motions changed from right-lateral shear to oblique divergence at Chron 13 times (33.3 Ma; earliest Oligocene). A new Bouguer gravity map, supported by existing seismic data and aeromagnetic profiles, has been applied to interpret the continent–ocean transition and the influence of Eocene shear structures on the timing of breakup and initial seafloor spreading. Assuming that the onset of deep-water exchange depended on the formation of a narrow, oceanic corridor, the gateway formed during early Miocene times (20–15 Ma). However, if the initial Lena Trough was blocked by terrigenous sediments or was insufficiently subsided to allow for deep-water circulation, the gateway probably formed with the first well developed magnetic seafloor spreading anomaly around Chron 5 times (9.8 Ma; Late Miocene). Paleoceanographic changes at ODP Site 909 (northern Hovgård Ridge) are consistent with both hypotheses of gateway formation. We cannot rule out that a minor gateway formed across stretched continental crust prior to the onset of seafloor spreading in the Lena Trough. The gravity, seismic and magnetic observations question the prevailing hypotheses on the Yermak Plateau and the Morris Jesup Rise as Eocene oceanic plateaus and the Hovgård Ridge as a microcontinent.  相似文献   

3.
蔡火灿  王伟涛  段磊  张博譞  刘康  黄荣  张培震 《地质学报》2022,96(10):3345-3359
青藏高原东北缘是高原由西南向东北方向扩展的前缘位置,其新生代构造变形对揭示青藏高原隆升、扩展的过程与动力学机制具有重要的意义。柴达木盆地是青藏高原东北缘最大的新生代沉积盆地,发育巨厚的新生代地层,这些地层所记录的古地磁极旋转信息是定量约束柴达木盆地新生代以来构造变形发生的时间、方式与幅度的载体。本文以柴达木盆地北缘新生代地层出露良好、具有精确地层年代控制的路乐河剖面为研究对象,开展了古地磁极旋转研究,统计分析路乐河剖面24. 6~5. 2 Ma之间1477个可靠古地磁样品的特征剩磁方向(ChRM),发现柴达木盆地北缘路乐河地区在24. 6~16. 4 Ma发生小幅度(不显著)的逆时针旋转,旋转角度约为8. 4°±6. 1°;16. 4~13. 9 Ma路乐河地区发生显著的顺时针旋转,旋转角度可达36. 1°±6. 0°;13. 9~5. 2 Ma 该地区未发生明显的构造旋转;5. 2 Ma以后路乐河地区逆时针旋转了~6°。结合柴达木盆地北缘区域构造变形的分析,我们提出柴达木盆地北缘路乐河地区在16. 4~13. 9 Ma 之间发生强烈的顺时针旋转构造变形(~36°)可能代表了盆地北缘中中新世遭受强烈的地壳差异缩短变形,从而成为高原最新形成的部分。  相似文献   

4.
曹勇  孙知明  裴军令  李海兵  许伟  张蕾 《地质学报》2021,95(5):1448-1458
柴达木地块早古生代古地理位置和构造归属长期存在争议。前人根据沉积地层和古生物资料认为柴达木地块早奥陶世位于赤道附近的低纬度地区,但是这种定性认识还缺少古地磁学的定量证据。本次研究对柴达木地块欧龙布鲁克地区下奥陶统多泉山组灰岩开展了古地磁学研究,通过系统热退磁获得了8个采点的高温特征剩磁分量,其构造校正后的古地磁平均方向为Ds=345.3°,Is=-14.5°,κs=54.8,α95=7.5°。这一高温特征剩磁分量远离现代地磁场方向,且所有样品的特征剩磁分量均为反极性,其单一反极性特点与全球奥陶纪磁性地层研究确定的早奥陶世反向极性期相吻合,本文认为这一高温特征剩磁分量很可能代表了研究剖面早奥陶世时期的原生剩磁。根据奥陶纪地磁极性特征,确定柴达木地块早奥陶世的古地磁极位置为-43.4°N/116.9°E(dp/dm=3.9°/7.7°),相应的古纬度为7.4°N±5.5°(参考点:37.2°N/96.6°E),表明柴达木地块在早奥陶世位于赤道附近的低纬度位置。综合古生物和沉积学资料,提出柴达木地块早奥陶世可能处于华南地块北部,冈瓦纳古大陆澳大利亚陆块西北的古地理位置。  相似文献   

5.
Paleomagnetic data available from the Carpatho-Pannonian region are unevenly distributed. At some places, observations are sporadic, at others the concentration is high. In the latter case it is possible to decide whether the movements indicated are related to plate (microplate) displacements, or are of local significance. The paleomagnetically best-known parts of the Carpatho-Pannonian region belong to the Transdanubian Central Range, to the Cserhát-Mátra-Bükk area and to the Mecsek-Villány zone. Comparison among paleomagnetic data sets, characterizing each of them, reveals fundamental differences, i.e. points to their independent displacements during the Mesozoic and Cenozoic. Most of the isolated observations can be tied to one of the above mentioned paleomagnetic units via coeval, mostly late Cretaceous-Cenozoic data. Thus, further subdivision of the Carpatho-Pannonian area, at least in the Cenozoic, does not seem required by available paleomagnetic observations. Received: 3 June 1996 / Accepted: 10 January 1997  相似文献   

6.
黄陵地区新元古代侵入杂岩可为研究扬子板块北缘新元古代构造演化过程及其深部动力学机制提供关键信息。依据岩石组合及分布特征,可将黄陵杂岩划分为黄陵庙岩套、三斗坪岩套、大老岭岩套和晓峰岩套四个单元。本文以黄陵杂岩的围岩崆岭杂岩中花岗片麻岩、黄陵庙黑云母花岗岩和三斗坪闪长岩为研究对象,在系统的野外地质和岩石学研究基础上,开展了LA-ICP-MS锆石U-Pb年代学分析。结果表明,崆岭杂岩花岗片麻岩原岩年龄为1978±13 Ma,且记录了2.5 Ga的构造-热事件。黄陵庙黑云母花岗岩和三斗坪闪长岩分别形成于815±9 Ma和813±6 Ma,与黄陵庙岩套和三斗坪岩套的侵位时限基本一致。综合分析本次研究结果与前人资料,认为黄陵杂岩主要形成于863~794 Ma,为新元古代早期岩浆活动的产物。通过综述区域地质和地球化学研究资料,认为黄陵杂岩形成于新元古代早期活动大陆边缘的构造环境,提出扬子板块北缘在新元古代早期经历了长期的俯冲-增生造山过程。  相似文献   

7.
Numerical modelling, incorporating coupling between surface processes and induced flow in the lower continental crust, is used to address the Quaternary evolution of the Gulf of Corinth region in central Greece. The post-Early Pleistocene marine depocentre beneath this Gulf overlies the northern margin of an older (Early Pleistocene and earlier) lacustrine basin, the Proto Gulf of Corinth Basin or PGCB. In the late Early Pleistocene, relief in this region was minimal but, subsequently, dramatic relief has developed, involving the creation of  900 m of bathymetry within the Gulf and the uplift by many hundreds of metres of the part of the PGCB, south of the modern Gulf, which forms the Gulf's main sediment supply. It is assumed that, as a result of climate change around 0.9 Ma, erosion of this sediment source region and re-deposition of this material within the Gulf began, both processes occurring at spatial average rates of  0.2 mm a− 1. Modelling of the resulting isostatic response indicates that the local effective viscosity of the lower crust is  4 × 1019 Pa s, indicating a Moho temperature of  560 °C. It predicts that the  10 mm a− 1 of extension across this  70 km wide model region, at an extensional strain rate of  0.15 Ma− 1, is partitioned with  3 mm a− 1 across the sediment source,  2 mm a− 1 across the depocentre, and  5 mm a− 1 across the ‘hinge zone’ in between, the latter value being an estimate of the extension rate on normal faults forming the major topographic escarpment at the southern margin of the Gulf. This modelling confirms the view, suggested previously, that coupling between this depocentre and sediment source by lower-crustal flow can explain the dramatic development in local relief since the late Early Pleistocene. The effective viscosity of the lower crust in this region is not particularly low; the strong coupling interpreted between the sediment source and depocentre results instead from their close proximity. In detail, the effective viscosity of the lower crust is expected to decrease northward across this model region, due to the northward increase in exposure of the base of the continental lithosphere to the asthenosphere; in the south the two are separated by the subducting Hellenic slab. The isostatic consequences of such a lateral variation in viscosity provide a natural explanation for why, since  0.9 Ma, the modern Gulf has developed asymmetrically over the northern part of the PGCB, leaving the rest of the PGCB to act as its sediment source.  相似文献   

8.
帕米尔-西昆仑地区新生代古地磁结果及其构造意义   总被引:1,自引:0,他引:1  
通过对帕米尔-西昆仑地区新生代地层51个采点古地磁样品系统的古地磁测试,获得了研究区新生代较可靠的古地磁数据。尽管上述研究剖面因为单斜地层无法对所获得的古地磁结果进行褶皱检验,但从实验结果可以看出,其地理坐标下平均的高温特征剩磁方向远离现代地磁场方向,且和田朗如乡古近纪、策勒恰恰古近纪、叶城柯克亚乡新近纪剖面所获得的古地磁结果具有正、反2种极性,由此,我们认为以上剖面的高温特征剩磁很可能代表了岩石形成时的原生剩磁方向。结合研究区已有的古地磁数据,认为在新生代印度板块向北挤压作用下,塔里木地块西缘地区(帕米尔高原东北缘)早白垩世-晚白垩世始相对欧亚大陆在古地磁误差范围内并没有发生明显的构造旋转作用(1°~1.6°),而始新世以来相对欧亚大陆则发生了明显的逆时针旋转(22°~38°),该地区的逆时针旋转作用可能与塔拉斯-费尔干纳断裂新生代以来的右旋走滑作用有关,而在帕米尔高原以东则主要以沿大型走滑断裂的走滑作用为主,并没有发生明显的旋转作用。  相似文献   

9.
Opening-closing tectonics is a new idea for exploring the global tectonics, which holds that every tectonic movement of all materials and geological bodies on earth is characterized by opening and closing. The opening -closing tectonic view can be used to explain some geological phenomena developing in continents which cannot be reasonably explained by the theory of plate tectonics. Based on the available basic geological data and combining with the opening-closing view, we analyzed the divisions and characteristics of tectonic units in South Tibet, and propose that Tibet can be divided into gravitational detachment and detachment fault zones, which are superimposed thrust fault zones and reconstructed normal fault zones, respectively. Although the mainstream opinion believed that the Tibetan Plateau is formed by collision-compression orogenesis, field investigation revealed the existence of the Rongbu Temple normal fault in the1970s. We consider that the Rongbu Temple normal fault and the Main Central Thrust (MCT) were formed earlier than the South Tibet detachment fault, and the former two faults constitute the two boundaries of the southern Tibet extrusion structure. The South Tibet detachment fault partially superimposes on the MCT and manifests a relatively high angle in following the Rongbu Temple normal fault north of the Chomolangma. We suggest that the three fault systems are the products of different periods and tectonic backgrounds. The tectonic units, such as klippes and windows identified by previo us researchers in southern Tibet, belong to thrust fault system but usually have no obvious extrusion or thrust characteristics; however, they are characterized by missing strata columns as younger strata overlapping the older ones. These klippes and windows should be the results of later gravitational decollement and must be characterized as extensions and slips, respectively. Based on opening-closing theory, we suggest that since the Cenozoic the study area had undergone multistage development, which can be divided into the oceanic crust expansion (opening) and subduction (closing) and the continental collision (closing) and intracontinental extension (opening) stages. Geothermal energy from the deep earth, gravitational potential energy from the earth’s interior, and additional stress energy from tectonic movements, all played a key role in the multistage tectonic evolutionary process.  相似文献   

10.
A combined paleomagnetic and geochronological study is reported of Paleogene basalt lavas and an intercalated red bed succession, comprising a minimum of 14 basalt flows and 10 red bed horizons in the Tuoyun Basin of the southwest Tian Shan Range, China. Two basalt matrix samples yield 40Ar / 39Ar isochron ages of 58.5 ± 1.3 Ma (2σ, MSWD = 0.9) and 60.4 ± 1.3 Ma (2σ, MSWD = 1.7). These compare well with a previously published K–Ar dilution age of 61.7 ± 2.3 Ma for comparable Paleogene basalts and confirm that the younger pulse of magmatism in this basin is represented by both intrusive and extrusive activity. Demagnetization and component analysis identify a stable characteristic remanence (ChRM) with predominantly reversed polarity following removal of secondary remanence by peak demagnetization steps below 250–350 °C or 5 mT. Rock magnetic analysis identifies pseudo-single domain magnetite or titanomagnetite as carriers. The stable ChRM passes a fold test; it was probably acquired at the time of lava emplacement. Results from the bulk of the collection imply that paleomagnetic data from the upper and lower ( 115 Ma) basalt series in the Tuoyun Basin are not distinguishable at the 95% significance level and indicate that this tectonic domain remained essentially stationary with respect to the Earth's spin axis for 50 Ma prior to onset of the India/Asia collision in early Eocene times. It is therefore probable that no paleomagnetically detectable crustal shortening occurred in the southwest Tian Shan prior to collision. Paleomagnetic data sets from the Tuoyun Basin also show that little or no paleolatitude difference is present between the Tian Shan and the reference latitude of Eurasia at 60 Ma. This supports previous evidence suggesting that central Asian blocks in the vicinity of the Tian Shan are unlikely to have experienced appreciable northward convergence relative to Eurasia since onset of the India/Asia collision and initiation of the Himalaya.  相似文献   

11.
郯庐断裂带构造演化的同位素年代学制约   总被引:10,自引:0,他引:10       下载免费PDF全文
朱光  张力  谢成龙  牛漫兰  王勇生 《地质科学》2009,44(4):1327-1342
近年来在郯庐断裂带内获得了大量的同位素年龄,为了解该断裂带的演化规律与相关动力学过程提供了有效的制约。该断裂带早期走滑构造带内给出了238~236 Ma的白云母 40Ar/39Ar 变形年龄,指示其起源于华北与华南克拉通碰撞过程的深俯冲阶段,支持其造山期陆内转换断层成因观点。其晚中生代走滑韧性剪切带内已获得的较大白云母 40Ar/39Ar冷却年龄为162~150 Ma,表明其再次左行平移发生在晚侏罗世初或中 晚侏罗世之交,出现在区域压扭性动力学背景下。这一事件应代表了中国东部滨太平洋构造域的开始时间。已获得的一系列断裂带内岩体与火山岩锆石LA ICPMS年龄显示,该断裂带内伸展性背景下最早的岩浆活动时间为136 Ma。而断裂带所控制的断陷盆地内地层时代表明其伸展活动发生在早白垩世初(约145 Ma)。这应指示了中国东部转变为伸展性动力学背景的时间。该断裂带一系列长石40Ar/39Ar年龄与磷灰石裂变径迹年龄,显示其在晚白垩世与古近纪仍处于伸展活动之中。  相似文献   

12.
东昆仑阿尼玛卿地区古特提斯火山作用和板块构造体系   总被引:37,自引:0,他引:37  
东昆仑阿尼玛卿蛇绿岩带标志古特提斯洋关闭后的板块缝合带。在该缝合带及周围识别出4套与洋盆扩张和俯冲作用有关的火山岩,由南至北,分别为洋底玄武岩、岛弧火山岩、弧后盆地玄武岩和后碰撞火山岩。板块构造体系说明洋壳俯冲极性从南向北。已有年代学证据表明:阿尼玛卿洋盆的开启时代至少可以早到晚石炭世(308Ma),洋盆关闭可能在早三叠世;岛弧火山岩的时代为晚二叠世(260Ma);弧后盆地火山岩的时代为早中三叠世;后碰撞火山岩的时代为晚三叠世。三叠纪沿缝合带及其北部形成了一系列巨大的左旋走滑断裂系,包括东昆仑南缘左旋走滑断裂(200~220Ma)、阿尔金断裂的早期走滑剪切断裂系(220~230Ma)以及南祁连南缘巨型左旋走滑断裂(240~250Ma)。认为它们形成于阿尼玛卿古特提斯洋的关闭和斜向碰撞作用,但主要在俯冲板块折返阶段或逆冲岩片的抬升阶段,其时也是后碰撞岩浆活动和火山喷发阶段。  相似文献   

13.
Tectonic progradation and plate tectonic evolution of the Alps   总被引:2,自引:0,他引:2  
W. Frisch 《Tectonophysics》1979,60(3-4):121-139
Rifting and spreading, trench formation, flysch deposition, subduction and nappe formation prograde from internal to external parts of the Alpine orogen. The progradation is a characteristic feature of the evolution of the Alps. A plate tectonics model based on this cognition is presented and an attempt is made to integrate the plate movements of the Alpine region during the Mesozoic and Cenozoic into the plate pattern of the Western Mediterranean.

Important events in the evolution of the Alps are the successive opening and closing of the Piedmont (South Penninic) and Valais (North Penninic) oceans, and the two continental collisions related to this. The southward drift of the Briançonian plate in the Cretaceous closes the Piedmont and opens the Valais ocean. The evolution of these oceans is related to the plate movements in the North Atlantic. The second continental collision is followed by the formation of an exogeosyncline, the molasse foredeep.

Prograding orogens like the Alps are most likely to evolve in an originally continental environment by rifting. Retrograding orogens, however, indicate an originally oceanic environment with well-developed magmatic arcs and back-arc basins.  相似文献   


14.
A paleomagnetic study is reported of Eocene to Pliocene formations from the Kashi depression, which aims to constrain the pattern of neotectonic deformation within the western sector of the Tarim Basin in northwest China. With the exception of Pliocene specimens from one locality (East Kulukeqiati) which show large within site-mean variations in declination, most sites from five sampled formations yield well-grouped characteristic remanent magnetizations and positive fold tests and are of probable post-depositional detrital origin. First-order consistency of paleomagnetic results from a range of rock ages and localities demonstrates that only small inter-locational vertical-axis rotation has occurred here and indicates that the Kashi depression is decoupled from the remainder of Tarim to the east and has behaved as a quasi-rigid block which has rotated by 20–30° counterclockwise relative to Eurasia and North China since the late Pliocene. The crustal-scale Talas-Ferghana Fault cuts the Tian Shan and meets the Kashi depression in the region immediately to the northwest of the study region and we find no paleomagnetic evidence for differential rotations to suggest that this fault zone extends southwards across the Kashi depression to link with the North Pamir Thrust Fault (NPTF). Instead, we argue that the southern extension of this zone is a transform-orogen junction with southward motion of the eastern wall accommodated by southward thrusting at the margins of the south Tian Shan and the Tarim Basin. We propose that dextral transpression around the margins of the crustal block incorporating the Kashi depression was responsible for the contrasting amounts of thrusting on the NPTF in the southwest and the South Tian Shan Thrust Fault in the north. Extensive evidence for neotectonism in the bordering zones of this block, as well as some paleomagnetic evidence from low unblocking temperature components, indicates that the deformation produced by block rotation is ongoing.  相似文献   

15.

A major phase of igneous activity of Late Oligocene to Early Miocene age affects West Kalimantan and Sarawak in northwest Borneo. The suite of igneous rocks, intruded as stocks, sills and dykes, ranges in composition from diorite to granite, the majority being granodiorite, and has geochemical characteristics similar to I‐type granitoids. The locus of magmatic activity was in the thickest part of Late Cretaceous and Early Tertiary sedimentary basins. The age of magmatism, its tectonic position and geochemistry suggest that it is related to deep crustal re‐melting and intrusion in a passive, postsubduction environment.  相似文献   

16.
Clear understanding of detailed lithospheric plate motions has been impeded by lack of a suitable means of graphical representation. A series of coloured global maps are presented that reveal more detail in the patterns of both absolute and relative global plate motions. The use of continuous colour to represent velocities overcomes the limitations of earlier maps that used isolated vectors at selected points to indicate plate velocities. Velocity magnitudes and directions for entire surfaces of plates were computed at a resolution of 0.5°, and are shown on two separate maps. Relative motions between plates were decomposed into their shear and normal components, and are plotted on separate maps. Continuous colour is again used to indicate both the directions and magnitudes of sinistral/dextral and convergent/divergent motions for all plate boundaries. A final map of normalized velocity magnitudes for all plates reveals a global, fast 'belt' of plate motion that parallels a great circle aligned with the fastest portion of the Pacific Plate and orthogonal to the East Pacific Rise.  相似文献   

17.
The Dulong-Song Chay tectonic dome lies on the border of China (SE Yunnan Province) and northern Vietnam, and consists of two tectonic and lithologic units: a core complex and a cover sequence, separated by an extensional detachment fault. These two units are overlain unconformably by Late Triassic strata. The core complex is composed of gneiss, schist and amphibolite. SHRIMP zircon U–Pb dating results for the orthogneiss yield an age of 799±10 Ma, which is considered to be the crystallization age of its igneous protolith formed in an arc-related environment. A granitic intrusion within the core complex occurred with an age of 436–402 Ma, which probably formed during partial closure of Paleotethys. Within the core complex, metamorphic grades change sharply from upper greenschist-low amphibolite facies in the core to low greenschist facies in the cover sequence. There are two arrays of foliation within the core complex, detachment fault and the cover sequence: S1 and S2. The pervasive S1 is the axial plane of intrafolial S0 folds. D1 deformation related to this foliation is characterized by extensional structures. The strata were structurally thinned or selectively removed along the detachment faults, indicating exhumation of the Dulong-Song Chay tectonic dome. The major extension occurred at 237 Ma, determined by SHRIMP zircon U–Pb and 39Ar/40Ar isotopic dating techniques. Regionally, simultaneous tectonic extension was associated with pre-Indosinian collision between the South China and Indochina Blocks. The S2 foliation appears as the axial plane of NW-striking S1 buckling folds formed during a compressional regime of D2. D2 is associated with collision between the South China and Indochina Blocks along the Jinshajiang-Ailao Shan suture zone, and represents the Indosinian deformation. The Dulong granites intruded the Dulong-Song Chay dome at 144±2, 140±2 and 116±10 Ma based on 39Ar/40Ar measurement on muscovite and biotite. The dome was later overprinted by a conjugate strike-slip fault and related thrust fault, which formed a vortex structure, contemporaneously with late Cenozoic sinistral movement on the Ailao Shan-Red River fault.  相似文献   

18.
开合构造是一种全球构造假说,该假说基础为地球上的一切物质和地质体都存在开合表现;可以用开合构造观解释一些板块构造理论登陆后不能合理解释的地质现象。文章在结合前人基础地质资料基础上,分析藏南地区基本的构造单元划分;强调动态构造单元划分,提出了被重力拆离断层改造叠加的逆断层区以及被拆离断层改造的正断层区。在主流观点提出碰撞挤压造山形成青藏高原时,野外科学考察发现了绒布寺伸展正断层的存在。文章认为绒布寺伸展正断层与主中央逆冲断层形成时间比藏南拆离系要早,两者构成了藏南挤出构造的两个边界;而藏南拆离系是晚期形成的,局部叠加在主中央逆冲断层之上,并且珠峰北追踪了早期绒布寺正断层呈相对高角度产出。3条断裂构造系统是不同时期、不同构造背景下的产物。藏南由前人所划分的飞来峰、构造窗等逆冲推覆构造系统中的构造单元,往往挤压逆冲特征表现不明显,却表现出由新的地层覆盖在老地层之上而显示地层柱缺失的特征。文章认为这些是滑覆构造的表现,是藏南地区晚期重力滑覆作用的产物。用开合构造理论将该地区新生代构造演化划分为由开转换为合;然后由合转换为开,构成一个完整开合演化历史,在这多阶段构造演化过程中,地球深部的热能、地球内部的重力势能以及构造引起的附加应力能起到关键作用。  相似文献   

19.
《Gondwana Research》2014,25(1):170-189
The Lhasa terrane in southern Tibet is composed of Precambrian crystalline basement, Paleozoic to Mesozoic sedimentary strata and Paleozoic to Cenozoic magmatic rocks. This terrane has long been accepted as the last crustal block to be accreted with Eurasia prior to its collision with the northward drifting Indian continent in the Cenozoic. Thus, the Lhasa terrane is the key for revealing the origin and evolutionary history of the Himalayan–Tibetan orogen. Although previous models on the tectonic development of the orogen have much evidence from the Lhasa terrane, the metamorphic history of this terrane was rarely considered. This paper provides an overview of the temporal and spatial characteristics of metamorphism in the Lhasa terrane based mostly on the recent results from our group, and evaluates the geodynamic settings and tectonic significance. The Lhasa terrane experienced multistage metamorphism, including the Neoproterozoic and Late Paleozoic HP metamorphism in the oceanic subduction realm, the Early Paleozoic and Early Mesozoic MP metamorphism in the continent–continent collisional zone, the Late Cretaceous HT/MP metamorphism in the mid-oceanic ridge subduction zone, and two stages of Cenozoic MP metamorphism in the thickened crust above the continental subduction zone. These metamorphic and associated magmatic events reveal that the Lhasa terrane experienced a complex tectonic evolution from the Neoproterozoic to Cenozoic. The main conclusions arising from our synthesis are as follows: (1) The Lhasa block consists of the North and South Lhasa terranes, separated by the Paleo-Tethys Ocean and the subsequent Late Paleozoic suture zone. (2) The crystalline basement of the North Lhasa terrane includes Neoproterozoic oceanic crustal rocks, representing probably the remnants of the Mozambique Ocean derived from the break-up of the Rodinia supercontinent. (3) The oceanic crustal basement of North Lhasa witnessed a Late Cryogenian (~ 650 Ma) HP metamorphism and an Early Paleozoic (~ 485 Ma) MP metamorphism in the subduction realm associated with the closure of the Mozambique Ocean and the final amalgamation of Eastern and Western Gondwana, suggesting that the North Lhasa terrane might have been partly derived from the northern segment of the East African Orogen. (4) The northern margin of Indian continent, including the North and South Lhasa, and Qiangtang terranes, experienced Early Paleozoic magmatism, indicating an Andean-type orogeny that resulted from the subduction of the Proto-Tethys Ocean after the final amalgamation of Gondwana. (5) The Lhasa and Qiangtang terranes witnessed Middle Paleozoic (~ 360 Ma) magmatism, suggesting an Andean-type orogeny derived from the subduction of the Paleo-Tethys Ocean. (6) The closure of Paleo-Tethys Ocean between the North and South Lhasa terranes and subsequent terrane collision resulted in the formation of Late Permian (~ 260 Ma) HP metamorphic belt and Triassic (220 Ma) MP metamorphic belt. (7) The South Lhasa terrane experienced Late Cretaceous (~ 90 Ma) Andean-type orogeny, characterized by the regional HT/MP metamorphism and coeval intrusion of the voluminous Gangdese batholith during the northward subduction of the Neo-Tethyan Ocean. (8) During the Early Cenozoic (55–45 Ma), the continent–continent collisional orogeny has led to the thickened crust of the South Lhasa terrane experiencing MP amphibolite-facies metamorphism and syn-collisional magmatism. (9) Following the continuous continent convergence, the South Lhasa terrane also experienced MP metamorphism during Late Eocene (40–30 Ma). (10) During Mesozoic and Cenozoic, two different stages of paired metamorphic belts were formed in the oceanic or continental subduction zones and the middle and lower crust of the hanging wall of the subduction zone. The tectonic imprints from the Lhasa terrane provide excellent examples for understanding metamorphic processes and geodynamics at convergent plate boundaries.  相似文献   

20.
杨曙光 《新疆地质》2003,21(2):250-250
准北煤田西部(和什托洛盖盆地西部),西起色尔登,东至莫湖台,东西长约45 km,南北宽约22 km,面积约1 000 km2.含煤地层为中侏罗统西山窑组和下侏罗统八道湾组,西山窑组含煤20多层,八道湾组含煤2~3层,煤质较差,该区东北部也有八道湾组地层出露,但不含可采煤层u 1 构造活动对地层的影响 该区中生界底部缺失中下三叠统,发育有西山窑组、三工河组沉积.中生界顶部在全区缺失白垩系、上侏罗统和中侏罗统头屯河组v.构造运动造成中生界上部和下部地层在该区南北缘分布的差异性.古生代晚期—中生代早期,构造运动造成该区抬升,使之处于剥蚀状况,到晚三…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号