首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fluid inclusions trapped in quartz veins hosted by a leucogneiss from the southern part of the Naxos Metamorphic Core Complex (Attic‐Cycladic‐Massif, Greece) were studied to determine the evolution of the fluid record of metamorphic rocks during their exhumation across the ductile/brittle transition. Three sets of quartz veins (V‐M2, V‐BD & V‐B) are distinguished. The V‐M2 and V‐BD are totally or, respectively, partially transposed into the foliation of the leucogneiss. They formed by hydrofracturing alternating with ductile deformation accommodated by crystal‐plastic deformation. The V‐B is discordant to the foliation and formed by fracturing during exhumation without subsequent ductile transposition. Fluids trapped during crystal–plastic deformation comprise two very distinct fluid types, namely a CO2‐rich fluid and a high‐salinity brine, that are interpreted to represent immiscible fluids generated from metamorphic reactions and the crystallization of magmas respectively. They were initially trapped at ~625 °C and 400 MPa and then remobilized during subsequent ductile deformation resulting in various degrees of mixing of the two end‐members with later trapping conditions of ~350 °C and 140 MPa. In contrast, brittle microcracks contain aqueous fluids trapped at 250 °C and 80 MPa. All veins display a similar δ13C pointing to carbon that was trapped at depth and then preserved in the fluid inclusions throughout the exhumation history. In contrast, the δD signature is marked by a drastic difference between (i) V‐M2 and V‐BD veins that are dominated by carbonic, aqueous‐carbonic and high‐salinity fluids of metamorphic and magmatic origin characterized by δD between ?56‰ and ?66‰, and (ii) V‐B veins that are dominated by aqueous fluids of meteoric origin characterized by δD between ?40‰ and ?46‰. The retrograde PT pathway implies that the brittle/ductile transition separates two structurally, chemically and thermally distinct fluid reservoirs, namely (i) the ductile crust into which fluids originating from crystallizing magmas and fluids in equilibrium with metamorphic rocks circulate through a geothermal gradient of 30 °C km?1 at lithostatic pressure, and (ii) the brittle upper crust through which meteoric fluids percolate through a high geothermal gradient of 55 °C km?1 at hydrostatic pressure.  相似文献   

2.
马星华  陈斌  赖勇  窦金龙  邹滔 《岩石学报》2010,26(5):1397-1410
本文报道了大兴安岭南段敖仑花斑岩铜钼矿床中斑状石英的一些新发现。通过对其结构、成因和内部流体包裹体的研究,反演初始成矿流体性质;结合热液期脉系特征,探讨流体从出溶到成矿的演化过程。斑状石英包括"单颗粒石英"和"多晶石英集合体",以普遍发育含子矿物流体包裹体为特征,为岩浆-热液过渡期的特有产物。流体包裹体研究显示敖仑花矿床初始成矿流体具有高温高盐度特征,为H2O、CO2和Na-K-Ca-Fe-Cu-Ti等元素组成的络合物体系,在压力≥115MPa、深度≥4.3km条件下可出溶出温度≥492℃、盐度达到47.6%~58.7%NaCleqv的流体。热液期成矿系统压力突然降低导致流体发生沸腾,同时伴随温度骤减是引发大规模成矿的主要机制。根据矿物在脉系中的发育情况和显微测温数据,将辉钼矿的析出温度限定在335℃以上,即代表以辉钼矿沉淀为峰期成矿标志的主成矿温度下限。斑状石英中流体包裹体研究揭示敖仑花矿床形成到至今抬升高度约≥4.3km,暗示区域最小平均隆升剥蚀速率为32.6m/Ma。斑岩体中斑状石英不仅可以作为流体出溶的标志判断岩体是否具有成矿潜力,指导斑岩型矿床找矿工作,还能够为区域地质演化提供重要约束。  相似文献   

3.
Zircons from an eclogite and a diamond-bearing metapelite near the Kimi village (north-eastern Rhodope Metamorphic Complex, Greece) have been investigated by Micro Raman Spectroscopy, SEM, SHRIMP and LA-ICPMS to define their inclusion mineralogy, ages and trace element contents. In addition, the host rocks metamorphic evolution was reconstructed and linked to the zircon growth domains.

The eclogite contains relicts of a high pressure stage (ca. 700 °C and > 17.5 kbar) characterised by matrix omphacite with Jd40–35. This assemblage was overprinted by a lower pressure, higher temperature metamorphic event (ca. 820 °C and 15.5–17.5 kbar), as indicated by the presence of clinopyroxene (Jd35–20) and plagioclase. Biotite and pargasitic amphibole represent a later stage, probably related to an influx of fluids. Zircons separated from the eclogite contain magmatic relicts indicating Permian crystallization of a quartz-bearing gabbroic protolith. Inclusions diagnostic of the high temperature, post-eclogitic overprint are found in metamorphic zircon domain Z2 which ages spread over a long period (160 – 95 Ma). Based on zircon textures, zoning and chemistry, we suggest that the high-temperature peak occurred at or before ca. 160 Ma and the zircons were disturbed by a later event possibly at around 115 Ma. Small metamorphic zircon overgrowths with a different composition yield an age of 79 ± 3 Ma, which is related to a distinct amphibolite-facies metamorphic event.

The metapelitic host rock consists of a mesosome with garnet, mica and kyanite, and a quartz- and plagioclase-bearing leucosome, which formed at granulite-facies conditions. Based on previously reported micro-diamond inclusions in garnet, the mesosome is assumed to have experienced UHP conditions. Nevertheless, (U)HP mineral inclusions were not found in the zircons separated from the diamond-bearing metapelite. Inclusions of melt, kyanite and high-Ti biotite in a first metamorphic zircon domain suggest that zircon formation occurred during pervasive granulite-facies metamorphism. An age of 171 ± 1 Ma measured on this zircon domain constrains the high-temperature metamorphic event. A second, inclusion-free metamorphic domain yielded an age of 160 ± 1 Ma that is related to decompression and melt crystallization.

The similar age data obtained from the samples indicate that both rock types recorded a high-T metamorphic overprint at granulite-facies conditions at ca. 170 – 160 Ma. This age implies that any high pressure or even ultra-high pressure metamorphism in the Kimi Complex occurred before that time. Our findings define new constraints for the geodynamic evolution for the Alpine orogenic cycle within the northernmost Greek part of the Rhodope Metamorphic Complex. It is proposed that the rocks of the Kimi Complex belong to a suture zone squeezed between two continental blocks and result from a Paleo-ocean basin, which should be located further north of the Jurassic Vardar Ocean.  相似文献   


4.
Abstract The Berzosa fault is a major ductile shear zone, the Berzosa Shear Zone (BSZ), which separates the ‘Ollo de Sapo’anticline from the inner higher-grade crystalline axis of the Iberian Hercynian Belt. This shear zone is the site of abundant early kinematic quartz (± Al-silicates) segregations, rich in fluid inclusions. Host rocks are medium-grade staurolite schists and sillimanite gneisses. Fluid inclusions in selected quartz segregations across the Berzosa shear zone have been studied by microthermometric methods as well as, in some instances, by Raman analysis. The recorded fluid inclusion history begins at the end of an intense secondary recrystallization period during late-peak metamorphic conditions and lasts until late in the uplift history of the zone. Three types of inclusions have been found, which in a time sequence are: CO2± H2O; H2O+salt (B-type); and, N2+CH4. Three types of B inclusion may be distinguished in turn, depending on whether they were trapped during an earlier dynamic-recovery phase (B1-type), formed later as intergranular trails (B2-type), or were trapped apparently along with N2+CH4 in clusions from a heterogeneous fluid (B3-type). Considerations from isochores confirm that CO2± H2O inclusions were trapped during late-peak and high-T retrograde metamorphic conditions (in the range 650–500°C and 5–2 kbar), whilst N2+CH4 inclusions, along with the B3-type of inclusions, formed at low-pressures (<1 kbar) and temperatures (± 300°C). B2-type inclusions were trapped chronologically between these two in a period in which strong inverse lateral thermal gradients developed in the zone. Inferred P-T paths for the area are convex to the T-axis.  相似文献   

5.
Following ultrahigh temperature granulite metamorphism at ∼1 Ga, the Eastern Ghats Province of India was intruded by the Koraput Alkaline Complex, and was subsequently re-metamorphosed in the granulite facies in the mid-Neoproterozoic time. Fluid inclusion studies were conducted on silica undersaturated alkali gabbro and syenites in the complex, and a pre-metamorphic pegmatitic granite dyke that intrudes it. High density (1.02–1.05 g/cc), pseudo-secondary pure CO2 inclusions are restricted to metamorphic garnets within the gabbro and quartz within the granite, whereas moderate (∼0.92–0.95 g/cc) and low density (∼0.75 g/cc) secondary inclusions occur in garnet, magmatic clinopyroxene, plagioclase, hornblende and quartz. The isochores calculated for high density pseudo-secondary inclusions pass very close to the peak metamorphic window (∼8 kbar, 750 °C), and are interpreted to represent the fluid present during peak metamorphism that was entrapped by the growing garnet. Microscopic round inclusions of undigested, relict calcite in garnet suggest that the CO2 present during metamorphism of the complex was internally derived through carbonate breakdown. Pure to low salinity (0.00–10.1 wt% NaCl equivalent) aqueous intra-/intergranular inclusions showing unimodal normal distribution of final ice-melting temperature (Tm) and temperature of homogenization (Th) are present only in quartz within the granite. These represent re-equilibrated inclusions within the quartz host that were entrapped at the metamorphic peak. Rare, chemically precipitated graphite along the walls of carbonic inclusions is interpreted as a post-entrapment reaction product formed during decompression. The fluid inclusion evidence is consistent with rapid exhumation of a thickened lower crust following the mid-Neoproterozoic granulite facies metamorphic event. The study suggests that mantle CO2, transported by alkaline magma into the crust, was locked up within carbonates and released during granulite metamorphism.  相似文献   

6.

在板片俯冲过程中, 基性洋壳、下伏蛇纹石化岩石圈地幔和覆盖在俯冲洋壳上的大洋沉积物在不同深度会依次发生板片脱水作用和沉积物熔融, 形成的俯冲带熔/流体可携带某些元素交代地幔楔, 进而通过弧岩浆作用返回地壳。同时, 俯冲板片内不同组分之间也会发生化学成分的迁移和交换, 并最终进入深部地幔, 造成地幔不均一性和不同程度壳幔相互作用。本文报道了我国西南天山典型高压-超高压变质带中蛇纹岩、辉石岩、绿片岩、蓝片岩和榴辉岩内各矿物相的主量元素及Cu、Co、Ni含量数据。结果表明, 除辉石岩中透辉石的Cu含量较高(1.26×10-6~76.9×10-6)外, 其它硅酸盐矿物的Cu含量均在1.0×10-6~10.0×10-6左右; 而Co和Ni在不同岩性及不同矿物之间显示较大的含量差异: 蛇纹岩中蛇纹石的Co和Ni含量分别为22.6×10-6~49.6×10-6和482×10-6~1097×10-6, 榴辉岩中绿辉石的Co和Ni含量分别为6.0×10-6~66.2×10-6和21.6×10-6~506×10-6, 辉石岩中透辉石的Co和Ni含量分别为20.8×10-6~289×10-6和69.5×10-6~351×10-6, 蓝片岩中蓝闪石的Co和Ni含量分别为9.0×10-6~94.3×10-6和75.5×10-6~495×10-6。绿片岩、蓝片岩和榴辉岩中均含石榴子石, Co、Ni含量变化范围分别为1.2×10-6~134×10-6和7.7×10-6~26.9×10-6。相较于绿片岩, 蓝片岩和榴辉岩中石榴子石的Co、Ni含量较高。矿物成分剖面分析表明, 蓝片岩和榴辉岩的石榴子石中由核至边Co含量明显增加, 而Ni含量无太大变化。这些矿物中Cu、Co和Ni的分布特征揭示, 随着板片持续俯冲深度的增加, 变质作用程度从绿片岩至榴辉岩, 硅酸盐矿物中Cu含量几乎不发生变化, 而Co和Ni的含量显示升高的趋势, 这可能与蛇纹岩和辉石岩的参与程度有关, 也显示Co具有较强的熔流体活动性和可迁移性。三种元素的迁移特征和变化规律表明俯冲板片对产于俯冲带的富Cu矿床中金属Cu的贡献可能主要来自于其中的硫化物而非硅酸盐矿物, 残余板片中硅酸盐矿物的熔融可能对俯冲结束后形成的岩浆Cu-Ni硫化物矿床提供Ni和Co元素的贡献。结合西南天山高压-超高压变质带所揭示的俯冲熔/流体的还原性特征, 上述推论可为解释中亚造山带南缘古生代斑岩铜矿, 尤其是还原性斑岩铜矿的发现, 并对岩浆铜镍硫化物矿床的时空分布和成矿特征提供重要制约。

  相似文献   

7.
In the Lower Palaeozoic rocks of the Brabant Massif (Belgium), a recently discovered polysulphide mineralisation is related to a low-angle reverse shear zone. This shear zone has been attributed to the main early Devonian deformation event. Data from boreholes and outcrops allow a detailed investigation of the alteration pattern and palaeofluid flow along this shear zone. Macroscopic observations of the mineralogy and quantitative changes in the phyllosilicate mineralogy indicate that this shear zone is characterised by an envelope of intense sericitisation and silicification. In addition, chloritisation is associated with this alteration. The alteration zone may reach a thickness of 250 m. Ore mineralisation occurred synkinematically and is spatially related to the shear zone. The mineralisation consists of pyrite, marcasite, arsenopyrite, pyrrhotite, chalcopyrite, sphalerite, galena, stibnite and smaller amounts of tetrahedrite and other sulphosalts. It is concentrated in quartz–sulphide veins or occurs diffusely in the host rock. The mineralising fluids have a low-salinity H2O–CO2–CH4–NaCl–(KCl) composition and a minimum temperature of 250–320 °C. The δ18O values of quartz vary between +12.3‰ and +14.5‰ SMOW, and δD compositions of the fluid inclusions in the quartz crystals range from −65‰ to −35‰ V-SMOW. The δD and the calculated δ18O values of the mineralising fluids fall in the range typical for metamorphic fluids and partly overlap with that for primary magmatic fluids. The δ34S values, between +4.7‰ and +10.6‰ CDT, fall outside the interval typical for I-type magmas. Important migration of likely metamorphic fluids, causing a widespread alteration and a polysulphide mineralisation along a low-angle shear zone, has, thus, been identified for the first time in the Caledonian Anglo-Brabant fold belt.  相似文献   

8.
Synkinematic quartz veins are ubiquitous in the shear zone separating the Veleta unit from the Calar Alto unit in the internal part of the Betic Cordilleras. They have been studied with respect to quartz c-axis fabrics, microstructures and fluid inclusions. Veins were probably generated during syn-metamorphic stacking of the units at P = 500 – 600 MPa and T = 400 – 500°C. Quartz displays two groups of microstructures in the shear zone: (1) older coarse-grained mosaics (CGM) resulting from exaggerated grain growth; and (2) younger fine-grained mosaics (FGM) developed at the expense of the former. The fine-grained mosaics show polygonal granoblastic and elongate mosaic microstructures in general, with ribbon microstructures often found near the boundary of the units. Fluids contained in secondary inclusions vary from high salinity brines to different types of CO2—brine mixtures and low density CO2 fluids. Differences in composition and P-T trapping conditions are indicated for the different types of inclusions. Some fluid inclusions are older than the FGM, whereas others are younger, thus constraining the P- T conditions at which the two microstructural events took place. Fluid inclusion evidence suggests conditions of Pfluid > 170 MPa and T 370–430°C for the CGM and Pfluid 20–80 MPa and T > 340°C for the FGM.The quartz c-axis fabrics dealt with here correspond to the second recrystallization event, as little evidence of older fabrics is preserved in the shear zone. C-axis patterns vary across the shear zone from slightly asymmetrical type I crossed girdles in the hanging wall and footwall to more asymmetrical crossed girdles at the boundary of the units. This indicates a correlative increase in the magnitude of the heterogeneous shear strain in the same direction. Most of the deformation is concentrated at the top of the Veleta unit. The sense of movement is top to the west, in agreement with other kinematic markers.The quartz c-axis fabrics resulted from dynamic recrystallization during simple shear. The retrograde P-T path inferred from fluid inclusion analysis, along with other geological and geochronological evidence, indicates that this deformation is coeval with a reduction in the crustal overburden.Geochronological and stratigraphic data show that the proposed Dos Picos extensional detachment, separating the Calar Alto and Veleta units, took place during the early Miocene, synchronous with the intense thinning of the Nevado-Filábride Complex and of the whole continental crust underlying the Alborán Basin.  相似文献   

9.
Fluid flow at greenschist facies conditions during exhumation of the western Alps occurred in several penecontemporaneous systems, including shear zones at lithological contacts, deformed contacts between serpentinite bodies and metabasalts, albite veins within metabasalts, and calcite + quartz veins within calcareous schists. Fluid flow in shear zones that juxtapose metasediments and ophiolitic rocks within the Piemonte Unit reset O and H isotope ratios. δ18O values are buffered by the wall rocks; however, calculated fluid δ2H values are similar within all the shear zones suggesting that they formed an interconnected network. The similarity of δ2H values of the sheared rocks and those of unsheared calcareous schists suggests that the fluids were derived from, or had equilibrated with, the schists that envelop the ophiolite rocks. Time‐integrated fluid fluxes at the sheared contacts estimated from changes in Si in metabasalts were up to 105 m3 m?2, with the fluid flowing up temperature driven either by topography or seismic pumping. Individual shear zones were active for c. 2–3 Myr, implying average fluid fluxes of up to 10?9 m3 m?2 s?1. Rocks in shear zones within the ophiolite away from contacts with the metasediments show much less marked isotopic and geochemical changes, implying that fluid volumes decreased into the ophiolite unit, consistent with the source of fluids being the metasediments. Fluids were generated by dehydration reactions that were intersected during exhumation and, while many rocks show the affects of fluid–rock interaction, large‐scale fluid flow between major units was not common.  相似文献   

10.
西华山钨矿床是一个产于燕山期花岗岩中的大脉型钨矿床。已有百余年的开采史。但在矿床成矿条件和成矿流体性质等方面一直存在不同认识。作者利用红外显微镜及其它相关设备,对西华山矿床不同中段样品中的黑钨矿、锡石、绿柱石、黄铁矿、闪锌矿、石英和萤石中的流体包裹体进行了详细对比研究。结果显示,蚀变花岗岩中造岩石英只见次生气液包裹体,晶洞水晶中只有原生包裹体,而云英岩石英中原生、次生包裹体均较发育。黑钨矿中以原生气液包裹体为主,在早期结晶的黑钨矿中还有较多的硅酸盐熔融包裹体,而晶洞中的黑钨矿和水晶一样——只有原生气液包裹体。绿柱石中除了硅酸盐包裹体外,主要是气液包裹体(多为次生)。其它锡石、黄铁矿、闪锌矿和萤石等都只有气液包裹体(原生或次生)。研究结果表明,西华山钨矿床的初始成矿流体是一种岩浆——热液过渡性流体,尔后才演变成单一的热水溶液,在这一过程中黑钨矿、黄铁矿、闪锌矿、萤石和石英等矿物不断晶出。矿床总的成矿温度大致为700~200℃,压力约为160~200MPa。各种气液包裹体的盐度主要为5.0%~10%Na Cleqv。文中还对这些数据的地质意义以及对脉钨矿床流体包裹体研究和数据解释中的某些问题进行了较深入的讨论。  相似文献   

11.
The relative chronology and detailed chemistry of paleofluids circulating at the base of the Kombolgie Sub-basin were investigated in the East Alligator River district (Northern Territory, Australia), where world-class unconformity-type uranium deposits are located. The chemistry of fluid inclusions was determined using in-situ analysis (Raman microprobe and laser-induced breakdown spectroscopy [LIBS]) and by observing the melting sequences by microthermometry. This study revealed the occurrence of three distinct fluids: (i) a sodium-rich brine that corresponds to a diagenetic fluid percolating at the bottom of the Kombolgie sandstones at a temperature close to 150±15 °C; (ii) a calcium-rich brine, probably corresponding to a residual brine in evaporitic environment that has evolved by fluid–rock interactions with the basement lithologies; and (iii) a low salinity fluid, heated in the basement, injected into the base of the sandstone cover. H2 and O2 and/or traces of CH4 were detected in the vapor phase of some fluid inclusions, especially in the low salinity ones in quartz breccia samples taken above mineralized areas. Hydraulic brecciation of the sandstone was associated with a pressure decrease favoring fluid mixing and the subsequent cementation of breccias. According to the fluid inclusion study and other geologic constrains, the minimum thickness of the Sub-Kombolgie Basin is estimated at 4 km. Drusy quartz breccias with evidence of fluid mixing are quite common at the base of the Kombolgie Basin, but not necessarily linked to U-mineralization. However, it is proposed that the presence of gases such as H2 and O2 in fluid inclusions, which results from water radiolysis, constitutes an indicator of gas linked to significant U concentrations deeper in the basement rocks.  相似文献   

12.
The quartz veins and pegmatites of the Sierra de Comechingones (Sierras de Córdoba, NE Argentina) belong to the Comechingones Pegmatite field (CPF). For the quartz veins and the zoned pegmatites related parental granites are missing. The country rock of the quartz veins are mylonitic augengneisses in granulite to upper amphibolite facies. Field relations, microscopy, cathodoluminescence, radiometric age data, fluid inclusion, chemical and isotopic composition and literature define the quartz veins as synorogenic formed during the high-temperature phase of the Famatinian (480–460 Ma) event. During the Famatinian up to the Achalian (382–366 Ma) event the synorogenic quartz veins were subjected to high temperature ductile deformation documented by folding, boudinage and finally brittle shearing. K-Ar ages of illite from the shear zones of about 166 Ma document the final cooling of the Sierras Pampeanas below 100 °C. The long lasting thermal and deformational history of the study area is reflected by very different populations of fluid inclusions in vein quartz with remarkably high contents of thermogenic hydrocarbons in the early-formed fluid inclusions. LA–ICP–MS analysis reveals very low lattice-bound trace element contents, i.e. high purity quartz.  相似文献   

13.
Detailed melt and fluid inclusion studies in quartz hosts from the Variscan Ehrenfriedersdorf complex revealed that ongoing fractional crystallization of the highly evolved H2O-, B-, and F-rich granite magma produced a pegmatite melt, which started to separate into two immiscible phases at about 720°C, 100 MPa. With cooling and further chemical evolution, the immiscibilty field expanded. Two conjugate melts, a peraluminous one and a peralkaline one, coexisted down to temperatures of about 490°C. Additionally, high-salinity brine exsolved throughout the pegmatitic stage, along with low-density vapor. Towards lower temperatures, a hydrothermal system gradually developed. Boiling processes occurred between 450 and 400°C, increasing the salinities of hydrothermal fluids at this stage. Below, the late hydrothermal stage is dominated by low-salinity fluids. Using a combination of synchrotron radiation-induced X-ray fluorescence analysis and Raman spectroscopy, the concentration of trace elements (Mn, Fe, Zn, As, Sb, Rb, Cs, Sr, Zr, Nb, Ta, Ag, Sn, Ta, W, rare earth elements (REE), and Cu) was determined in 52 melt and 8 fluid inclusions that are representative of distinct stages from 720°C down to 380°C. Homogenization temperatures and water contents of both melt and fluid inclusions are used to estimate trapping temperatures, thus revealing the evolutionary stage during the process. Trace elements are partitioned in different proportions between the two pegmatite melts, high-salinity brines and exsolving vapors. Concentrations are strongly shifted by co ncomitant crystallization and precipitation of ore-forming minerals. For example, pegmatite melts at the initial stage (700°C) have about 1,600 ppm of Sn. Concentrations in both melts decrease towards lower temperatures due to the crystallization of cassiterite between 650 and 550°C. Tin is preferentially fractionated into the peralkaline melt by a factor of 2–3. While the last pegmatite melts are low in Sn (64 ppm at 500°C), early hydrothermal fluids become again enriched with about 800 ppm of Sn at the boiling stage. A sudden drop in late hydrothermal fluids (23 ppm of Sn at 370°C) results from precipitation of another cassiterite generation between 400 and 370°C. Zinc concentrations in peraluminous melts are low (some tens of parts per million) and are not correlated with temperature. In coexisting peralkaline melts and high-T brines, they are higher by a factor of 2–3. Zinc continuously increases in hydrothermal fluids (3,000 ppm at 400°C), where the precipitation of sphalerite starts. The main removal of Zn from the fluid system occurs at lower temperatures. Similarly, melt and fluid inclusion concentrations of many other trace elements directly reflect the crystallization and precipitation history of minerals at distinctive temperatures or temperature windows.  相似文献   

14.
Based on new evidence the Sulu orogen is divided from south‐east to north‐west into high‐pressure (HP) crustal slice I and ultrahigh‐pressure (UHP) crustal slices II and III. A combined set of mineral inclusions, cathodoluminescence images, U‐Pb SHRIMP dating and in situ trace element and Lu‐Hf isotope analyses was obtained on zircon from orthogneisses of the different slices. Zircon grains typically have three distinct domains that formed during crystallization of the magmatic protolith, HP or UHP metamorphism and late‐amphibolite facies retrogression, respectively: (i) oscillatory zoned cores, with low‐pressure (LP) mineral inclusions and Th/U > 0.38; (ii) high‐luminescent mantles (Th/U < 0.10), with HP mineral inclusions of Qtz + Grt + Arg + Phe + Ap for slice I zircon and Coe + Grt + Phe + Kfs + Ap for both slices II and III zircon; (iii) low‐luminescent rims, with LP mineral inclusions and Th/U < 0.08. Zircon U‐Pb SHRIMP analyses of inherited cores point to protolith ages of 785–770 Ma in all seven orthogneisses. The ages recorded for UHP metamorphism and subsequent retrogression in slice II zircon (c. 228 and c. 215 Ma, respectively) are significantly older than those of slice III zircon (c. 218 and c. 202 Ma, respectively), while slice I zircon recorded even older ages for HP metamorphism and subsequent retrogression (c. 245 and c. 231 Ma, respectively). Moreover, Ar‐Ar biotite ages from six paragneisses, interpreted as dating amphibolite facies retrogression, gradually decrease from HP slice I (c. 232 Ma) to UHP slice II (c. 215 Ma) and UHP slice III (c. 203 Ma). The combined data set suggests decreasing ages for HP or UHP metamorphism and late retrogression in the Sulu orogen from south‐east to north‐west. Thus, the HP‐UHP units are interpreted to represent three crustal slices, which underwent different subduction and exhumation histories. Slice I was detached from the continental lithosphere at ~55–65 km depth and subsequently exhumed while subduction of the underlying slice II continued to ~100–120 km depth (UHP) before detachment and exhumation. Slice III experienced a similar geodynamic evolution as slice II, however, both UHP metamorphism and subsequent exhumation took place c. 10 Myr later. Magmatic zircon cores from two types of orthogneiss in UHP slices II and III show similar mid‐Neoproterozoic crystallization ages, but have contrasting Hf isotope compositions (εHf(~785) = ?2.7 to +2.2 and ?17.3 to ?11.1, respectively), suggesting their formation from distinct crustal units (Mesoproterozoic and Paleoproterozoic to Archean, respectively) during the breakup of Rodinia. The UHP and the retrograde zircon domains are characterized by lower Th/U and 176Lu/177Hf but higher 176Hf/177Hf(t) than the Neoproterozoic igneous cores. The similarity between UHP and retrograde domains indicates that late retrogression did not significantly modify chemical and isotopic composition of the UHP metamorphic system.  相似文献   

15.
张少颖  张华锋 《岩石学报》2017,33(6):1872-1892
热液蚀变过程中的元素活动性与流体性质对深入理解矿物稳定性和成矿作用具有重要的意义。本文以华北克拉通中北部山西五台地区的白云叶蜡石矿为例,研究了蚀变过程中元素迁移特征和流体性质。该矿体围岩以绿片岩相酸性火山岩为主,岩性为绢云钠长石英片岩并夹有少量的绿泥钠长片岩。矿区内蚀变分带明显,可分为早期的黄铁绢英岩化(绢云母-石英-黄铁矿)和晚期叠加的叶蜡石化(叶蜡石-伊利石-高岭石-石英),而金矿化则主要发育于黄铁绢英岩化带内。Log fo2-pH相图模拟结果显示,早期黄铁绢云岩化蚀变热液具有弱酸性至偏中性(pH=5.24~5.87)和较低氧逸度(位于黄铁矿+黄铜矿稳定相区内)特征;而引起叶蜡石化蚀变的热液具有强酸性(pH=2.07~2.20)和高氧逸度(位于HM缓冲线以上)特征。质量平衡迁移分析结果显示,随着叶蜡石化蚀变作用的增强,叶蜡石矿石中的Al2O3行为较稳定,SiO2、Na2O和K2O含量相对于围岩绢云钠长石英片岩呈不同程度的迁入,而其余氧化物大量活化迁出。微量元素Nb、Ta、Th、U、Rb和Ga含量相对升高,Th/U比值略有升高;Sr、Ba、Zr、Hf明显亏损,Zr/Hf比值从34~41下降到17~22。稀土元素均发生一定程度的活化迁移,且轻稀土迁出程度更高。Y/Ho比值(28~32)高于球粒陨石的Y/Ho(26~28),表明Y-Ho在叶蜡石化蚀变过程中表现出不同的地球化学行为。Eu负异常明显增大,这可能与长石的分解关系密切。围岩绢云钠长石英片岩中金属元素含量较高且Au与As含量之间呈明显正相关性,但在叶蜡石矿石中大部分金属元素含量均低于检出限,说明金属元素在叶蜡石化蚀变作用过程中发生了强烈的活化迁移,这与岩相学上叶蜡石矿石中可见港湾状细粒赤铁矿而缺乏黄铁矿的特征吻合。本文研究结果表明叶蜡石化过程中,大量的所谓不活动元素(如P、Ti、Zr、Hf、Y和Ho等)发生了显著迁移并导致Zr/Hf和Y/Ho比值的解耦,并伴随着大量金属元素的迁出,说明叶蜡石化不利于金矿化的形成。  相似文献   

16.
东海水晶矿床位于苏鲁超高压变质带中,它的成因机制及其与超高压变质作用的关系一直是大家关注的问题。本文运用流体包裹体、硅氧同位素地球化学以及微量元素地球化学,对东海水晶矿床的成因进行了初步研究。结果显示,含晶石英脉中流体包裹体主要有单液相、气液两相以及H2O-CO2流体包裹体,其中以气液两相流体包裹体为主,大小在5~50μm,但在含金红石发晶的水晶中气液两相流体包裹体最大可达300μm。其形成温度可以分为3个区间,即100℃~120℃,160℃~220℃和240℃~260℃;而其盐度也集中于0~2wt%NaCl,4~12wt%NaCl和14~16wt%NaCl三个区间,反映了多期流体的叠加作用。激光拉曼和流体包裹体群成分分析可知,流体包裹体中除了H2O和CO2外,还有N2、CH4、H2S和C2H6等,并且在不同的爆裂温度情况下,流体包裹体所释放的成分有所差别。东海水晶矿床中不合金红石发晶的石英的δ^18O变化范围在-5.6~+4.6‰,δ^34Si变化范围在-0.2~+0.2‰之间;而含金红石发晶的石英的δ^18O变化范围在10.5~14.9‰,δ^34Si变化范围在~0.2~+0.1‰之间。相对来说,与水晶热液作用有关的鳞片状黑云母比斜绿泥石更加富集Nb、Cr、Fe、V、W、Ti和Zr等。本文认为东海水晶矿床的形成在富舍石英的榴辉岩在大陆板块俯冲折返过程中及其以后,由不同时期、不同性质、不同成分流体叠加作用下的结果,而舍金红石发晶的形成则是叠加富Nb、Fe流体的结果。  相似文献   

17.
造山带挤出构造阐述了被边界断裂所围限的造山带深变质块体,在造山带内部垂向和(或)侧向应力的作用下折返变形的过程。研究主要集中在挤出块体的几何形态及其内部变形样式、边界断裂特征、挤出路径以及挤出动力来源等4个方面,其研究目的主要是为了解决造山带深变质岩石折返剥露的机制问题。依据挤出块体的挤出方向与造山带主体走向之间的关系,在三维球形坐标系Lx-Ly-Lz中,将造山带挤出构造大致分为7个端员类型(Ⅰ型~Ⅶ型)。其中Lx为造山带或俯冲带的主体走向;Ly呈水平方向并与Lx相垂直;Lz垂直于Lx和Ly所构成的平面。这些基本端员类型的组合及其之间的过渡类型可以详尽地诠释大别山印支期高压-超高压岩石的挤出过程。其中榴辉岩相挤出阶段介于Ⅳ型与Ⅶ型挤出构造之间,角闪岩相挤出阶段介于Ⅱ型与Ⅵ型挤出构造之间并可能具有渠道流挤出模式,而绿片岩相挤出阶段类似于Ⅴ型挤出构造。  相似文献   

18.
Aquatic socio-ecological systems show pervasive cross-scale interactions and problems of fit between ecosystems and institutions. Nested bio-hydrological processes within river basins are prone to third-party impacts, and equitable/sustainable management of water resources requires adequate governance patterns that both cover relevant scalar levels and handle cross-scale interactions. This paper provides the example of the Zayandeh Rud basin, in central Iran, and describes the historical evolution of water use at three different nested scales. It shows how the gradual overallocation of water resources (basin closure) and the manipulation of the hydrological cycle by the state and other actors have resulted in a constant spatial and social redistribution of water use and associated benefits and costs. State-centered modes of governance characterized by the priority to large-scale infrastructure, vested political and financial interests, lack of attention to local processes and hydrological interconnectedness, and the neglect of environmental degradation, must give way to forms of comanagement that better articulate the different levels of control and governance.  相似文献   

19.
位于喜马拉雅东构造结的南迦巴瓦岩群经历了高压麻粒岩相、中压麻粒岩相和角闪岩相三期变质作用.在高压麻粒岩中含有复杂的流体包裹体类型,按照捕获先后顺序有:H2O-CO2±CH4包裹体(Ⅰ型);CO2±CH4±N2包裹体(Ⅱ型);高盐度多相包裹体(Ш型);中.低盐度H2O包裹体(Ⅳ型)和极低密度气体包裹体或"空"包裹体(Ⅴ型).在基性麻粒岩中,被石榴石包裹石英中孤立分布的H2O-CO2 4-CH4包裹体,以及部分沿石榴石晶内裂隙分布的H2-CO2±CH4和H2O包裹体轨迹未穿过围绕石榴石的辉石 斜长石后成合晶冠状体,表明它们有可能是在麻粒岩相变质阶段捕获的.然而,所有流体包裹体的等容线均从麻粒岩相变质峰期P-T区间下方通过,说明麻粒岩相变质峰期捕获的包裹体均受到了不同程度的改造,包括部分爆裂、渗漏和流体-矿物相互作用等.现存的富CO2流体包裹体均具有较低密度,并且往往含有明显数量CH4和N2组分,不可能是麻粒岩相变质峰期捕获的包裹体.根据富CO2包裹体与具有不同相比的H2-CO2包裹体共存推测,大部分CO2包裹体是通过H2O-CO2包裹体中H2O的选择性泄漏而形成的.Ⅲ型高盐度盐水包裹体很可能是角闪岩相退变质过程中捕获的,因其等容线与退变质轨迹近于平行,这些包裹体很可能保存了其在角闪岩相阶段捕获时的原生物理化学特征.沿矿物颗粒裂隙分布的大量Ⅳ型和Ⅴ型包裹体,应该是角闪岩相或更晚期形成的次生包裹体,代表了浅成(近地表)环境的循环流体.与世界许多地区麻粒岩相岩石普遍舍高密度纯CO2流体包裹体不同,南迦巴瓦岩群高压麻粒岩以富含H2O-CO4±CH4和H2O包裹体为特征,这可能与高压麻粒岩与高温麻粒岩产出于不同的构造环境和经历的退变质轨迹有关.  相似文献   

20.
Re-equilibration of fluid inclusions in crystals takes place by loss or gain of solvents and solutes from fluid inclusions and by changes in their volumes. Volume change of fluid inclusions are primarily dictated by elastic properties and available slip planes of host crystals. In the present study, the phase-behavior of fluids entrapped in co-precipitated calcite and barite is studied. While calcite contains only biphase fluid inclusions, barite has predominantly monophase fluid inclusions. Fluid inclusion petrography, microthermometry and leachate analysis are used to establish the nature of entrapped fluids and entrapment temperature is substantiated through independent sulfur isotope geothermometry using coexisting barite and pyrite. Phase transitions in the monophase fluid inclusions in barite are explained in terms of over-pressuring of fluids in these fluid inclusions relative to fluids entrapped in calcite owing to the low bulk modulus of barite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号