首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
2.
Microphysics elements and vertical velocity retrieved were incorporated using the nudging method into the initial data assimilation of GRAPES (Global/Regional Assimilation and Prediction System) model. Simulation experiments indicated that nudging technique was effective in forcing the model forecast gradually consistent to the observations, yielding the thermodynamically and dynamically balanced analysis field. As viewed from the simulation results, water vapor is vital to precipitation, and it is a governing factor for the amount and duration of precipitation. The initial cloud water, rain water, and vertical velocity determine the strength distribution of convection and precipitation at the beginning time of forecast; the horizontal wind field steers the motion of the mesoscale weather system embedded in and impacts the position of precipitation zone to a large extent. The simulation experiments show that the influence of the initial retrieval data on prediction weakens with the increase of forecast time, and within the first hour of forecast, the retrieval data have an important impact on the evolution of the weather system, but its influence becomes trivial after the first three hours. Changing the nudging coefficient and the integral time-spacing of numerical model will bring some influences to the results. Herein only one radar reflectivity was used, the radar observations did not cover the whole model domain, and some empirical parameters were used in the retrieval method, therefore some differences still lie between simulation and observation to a certain extent, and further studies on several aspects are expected.  相似文献   

3.
4.
Assuming that cloud reaches static state in the warm microphysical processes, water vapor mixing ratio(qv), cloud water mixing ratio (qc), and vertical velocity (w) can be calculated from rain water mixing ratio (qr)- Through relation of Z-qr, qr can be retrieved by radar reflectivity factor (Z). Retrieval results indicate that the distributions of mixing ratios of vapor, cloud, rain, and vertical velocity are consistent with radar images, and the three-dimensional spatial structure of the convective cloud is presented. Treating q,v saturated at the echo area, the retrieved qr is about 0.1 g kg-1, qc is always less than 0.3 g kg-1, w is usually below 0.5 m s-1, and rain droplet terminal velocity (vr) is around 5.0 m s-1 in the place where radar reflectivity factor is about 25 dBz; in the place where echo is 45 dBz, the retrieved qr and qc are always about 3.0 g kg-1, w is greater than 5.0 m s-1, and vr is around 7.0 m s-1. In the vertical, the maximum updraft velocity is greater than 3.0 m s-1 at the height of around 5.0 kin, the maximum cloud water content is about 3.0 g kg-1 above 5 km and the maximum rain water content is about 3.0 g kg-1 below 6 kin. Due to the assumption that the cloud is in static state, there will be some errors in the retrieved variables within the clouds which axe rapidly growing or dying-out, and in such cases, more sophisticated radar data control technique will help to improve the retrieval results.  相似文献   

5.
Assuming that cloud reaches static state in the warm microphysical processes, water vapor mixing ratio (qv), cloud water mixing ratio (qc), and vertical velocity (w) can be calculated from rain water mixing ratio (qr). Through relation of Z-qr, qr can be retrieved by radar reflectivity factor (Z). Retrieval results indicate that the distributions of mixing ratios of vapor, cloud, rain, and vertical velocity are consistent with radar images, and the three-dimensional spatial structure of the convective cloud is presented. Treating qv saturated at the echo area, the retrieved qr is about 0.1 g kg^-1, qc is always less than 0.3 g kg^-1, w is usually below 0.5 m s^-1, and rain droplet terminal velocity (vr) is around 5.0 m s^-1 in the place where radar reflectivity factor is about 25 dBz; in the place where echo is 45 dBz, the retrieved qr and qc are always about 3.0 g kg^-1, w is greater than 5.0 m s^-1, and vr is around 7.0 m s^-1. In the vertical, the maximum updraft velocity is greater than 3.0 m s^-1 at the height of around 5.0 km, the maximum cloud water content is about 3.0 g kg^-1 above 5 km and the maximum rain water content is about 3.0 g kg^-1 below 6 km. Due to the assumption that the cloud is in static state, there will be some errors in the retrieved variables within the clouds which are rapidly growing or dying-out, and in such cases, more sophisticated radar data control technique will help to improve the retrieval results.  相似文献   

6.
7.
8.
9.
Based on the Coupled Ocean-Atmospheric Response Experiment(COARE)bulk algorithm and the Naval Postgraduate School(NPS)model,a universal evaporation duct(UED)model that can flexibly accommodate the latest improvements in component(such as stability function,velocity roughness,and scalar roughness)schemes for different stratification and wind conditions,is proposed in this paper.With the UED model,the sensitivity of the model-derived evaporation duct height(EDH)to stability function(Ψ),ocean wave effect under moderate to high wind speeds,and scalar roughness length parameterization,is investigated,and relative contributions of these factors are compared.The results show that the stability function is a key factor influencing the simulated EDH values.Under unstable conditions,the EDH values from stability functions of Fairall et al.(1996)and Hu and Zhang(1992)are generally higher than those from others;while under stable conditions,unreasonably high EDHs can be avoided by use of the stability functions of Hu and Zhang(1992)and Grachev et al.(2007).Under moderate to high wind speeds,the increase in velocity roughness length z0 due to consideration of the true ocean wave effect acts to reduce modeled EDH values;this trend is more pronounced under stable conditions.Although the scalar roughness length parameterization has a minor effect on the model-derived EDH,a positive correlation is found between the scalar roughness length z0qand the model-derived EDH.  相似文献   

10.
11.
By using Comprehensive Land Surface Model (CLSM), three snow cases, i.e., France Col de Porte 1993/1994, 1994/1995 and BOREAS SSA-OJP 1994/1995, were simulated. The simulated results were compared with the observations to examine the capability of the model to describe the evolutions of snow cover under two different land cover conditions. Several sensitivity experiments were performed to investigate the effects of the parameterization schemes of some snow cover internal processes and vegetation on the model results. Results suggest that the CLSM simulates the basic processes of snow cover accurately and describes the features of snow cover evolutions reasonably, indicating that the model has the potential to model the processes related to the snow cover evolution. It is also found that the different parameterization schemes of the snowfall density and snow water holding capacity have significant effects on the simulation of snow cover. The estimation of snowfall density mainly impacts the simulated snow depth, and the underestimation (overestimation) of the snowfall density increases (decreases) the snow depth simulated significantly but with little effect on the simulated snow water equivalent (SWE). The parameterization of the snow water holding capacity plays a crucial role in the evolution of snow cover, especially in the ablation of snow cover. Larger snow water holding capacity usually leads to larger snow density and heat capacity by storing more liquid water in the snow layer, and makes the temperature of snow cover and the snow ablation vary more slowly. To a smaller snow water holding capacity, contrary is the case. The results also show that the physical processes related to the snow cover variation are different, which are dependent on the vegetation existed. Vegetation plays an important role in the evolution of soil-snow system by changing the energy balance at the snow-soil surface. The existence of vegetation is favorable to the maintenance of snow cover and delays the increase of underlying soil temperature.  相似文献   

12.
Ozone is well documented as the air pollutant most damaging to agricultural crops and other plants. It is reported that tropospheric O3 concentration increases rapidly in recent 20 years. Evaluating and predicting impacts of ozone concentration changes on crops are drawing great attention in the scientific community. In China, main study method about this filed is controlled experiments, for example, Open Top Chambers. But numerical simulation study about impacts of ozone on crops with crop model was developed slowly, what is more, the study about combined impacts of ozone and carbon dioxide has not been reported. The improved agroecosystem model is presented to evaluate simultaneously impacts of tropospheric O3 and CO2 concentration changes on crops in the paper by integrating algorithms about impacts of ozone on photosynthesis with an existing agroecosystem biogeochemical model (named as DNDC). The main physiological processes of crop growth (phenology, leaf area index, photosynthesis, respiration, assimilated allocation and so on) in the former DNDC are kept. The algorithms about impacts of ozone on photosynthesis and winter wheat leaf are added in the modified DNDC model in order to reveal impacts of ozone and carbon dioxide on growth, development, and yield formation of winter wheat by coupling the simulation about impacts of carbon dioxide on photosynthesis of winter wheat which exists in the former DNDC. In the paper, firstly assimilate allocation algorithms and some genetic parameters (such as daily thermal time of every development stage) were modified in order that DNDC can be applicable in North China. Secondly impacts of ozone on crops were simulated with two different methods- one was impacts of ozone on light use efficiency, and the other was direct effects of ozone on leaves photosynthesis. The latter simulated results are closer to experiment measurements through comparing their simulating results. At last the method of direct impacts of ozone on leaf growth is adopted and the coefficients about impacts of ozone on leaf growth and death are ascertained. Effects of climate changes, increasing ozone, and carbon dioxide concentration on agroecosystem are tried to be simulated numerically in the study which is considered to be advanced and credible.  相似文献   

13.
1.IntroductionBaroclinicinstabilityistheprocessbywhichtheavailablepotentialenergyofarotatingstratifiedfluidmaybeconvertedintothekineticenergyofagrowingdisturbance.Throughthegenerationofeddiesandthesubsequentinteractionbetweentheseeddiesandthemeanflow,baroclinicinstabilityisanimportantfeatureofthedynamicsoflarge-scalegeophysicalsystems.Thefirstcompletetheoreticalexplanationsofthephenomenonweregivenindepen-dentlybyCharney(l947)andEady(l949),whousedsimplemodelstoexplainthelarge-scalewavesobserve…  相似文献   

14.
The paper analyzes the results ofthe numerical experiment aiming at the reconstruction of climate ofthe penultimate (Eemian) interglacial (last interglacial, LIG) obtained using the Earth system model developed in the Institute of Numerical Mathematics of RAS. Orbital parameters were set with the periodicity of one thousand years and were further interpolated with the time step of 100 years. Assuming that during the LIG the concentrations of greenhouse gases were not very much different from the preindustrial values, this potential forcing was neglected. The climatic block of the ESM was called every 100 model years to foltow changes in orbital forcmg. The sub–models of ice sheets were asynchronously coupled to the sub–models of the atmosphere and the ocean with the ratio of model years as 100 to 1. Obtained anomaly (Eemian versus preindustrial) fields of surface air temperature generally correspond to the results of the earlier studies. Changes in the structure of the global atmospheric circulation resulted in the transformation ofthe precipitation field in some world regions. In particular, precipitation growth in North Africa was the reason for the radical change of landscapes.  相似文献   

15.
1. IntroductionRecently, the improvement of accuracy in the out-puts of a numerical mesoscale model by the physi-cal dissipative technique is reached (Liu et al., 2002;Liu and Liu, 2003). The effect of improvement ofthis technique differs not only from model to model,but from scheme to scheme of parameterization em-ployed in the same model. The rapid developmentof the computer technology makes possible the com-plicated numerical experiments by a model with highresolution and multiple domains …  相似文献   

16.
With the rapid development of industrialization and urbanization, the enrichment of tropospheric ozone and carbon dioxide concentration at striking rates has caused effects on biosphere, especially on crops. It is generally accepted that the increase of CO2 concentration will have obverse effects on plant productivity while ozone is reported as the air pollutant most damaging to agricultural crops and other plants. The Model of Carbon and Nitrogen Biogeochemistry in Agroecosystems (DNDC) was adapted to evaluate simultaneously impacts of climate change on winter wheat. Growth development and yield formation of winter wheat under different O3 and CO2 concentration conditions are simulated with the improved DNDC model whose structure has been described in another paper. Through adjusting the DNDC model applicability, winter wheat growth and development in Gucheng Station were simulated well in 1993 and 1999, which is in favor of modifying the model further. The model was validated against experiment observation, including development stage data, leaf area index, each organ biomass, and total aboveground biomass. Sensitivity tests demonstrated that the simulated results in development stage and biomass were sensitive to temperature change. The main conclusions of the paper are the following: 1) The growth and yield of winter wheat under CO2 concentration of 500 ppmv, 700 ppmv and the current ozone concentration are simulated respectively by the model. The results are well fitted with the observed data of OTCs experiments. The results show that increase of CO2 concentration may improve the growth of winter wheat and elevate the yield. 2) The growth and yield of winter wheat under O3 concentration of 50 ppbv, 100 ppbv, 200 ppbv and the based concentration CO2 are simulated respectively by the model. The simulated curves of stem, leaf, and spike organs growth as well as leaf area index are well accounted with the observed data. The results reveal that ozone has negative effects on the growth and yield of winter wheat. Ozone accelerates the process of leaf senescence and causes yield loss. Under very high ozone concentration, crops are damaged dramatically and even dead. 3) At last, by the model possible effects of air temperature change and combined effects of O3 and CO2 are estimated respectively. The results show that doubled CO2 concentration may alleviate negative effect of O3 on biomass and yield of winter wheat when ozone concentration is about 70-80 ppbv. The obverse effects of CO2 are less than the adverse effects of O3 when the concentration of ozone is up to 100 ppbv. Future work should determine whether it can be applied to other species by adjusting the values of related parameters, and whether the model can be adapted to predict ozone effects on crops in farmland environment.  相似文献   

17.
Numerical simulation of meso-β-scale convective cloud systems associated with a PRE-STORM MCC case has been carried out using a 2-D version of the CSU Regional Atmospheric Modeling System (RAMS) nonhydrostatic model with parameterized microphysics. It is found that the predicted meso-γ-scale convective phenomena are basically unsteady under the situation of strong shear at low-levels, white the meso-β-scale convective system is maintained up to 3 hours or more. The meso-β-scale cloud system exhibits characteristics of a multi-celled convective storm in which the meso-γ-scale convective cells have lifetime of about 30 min. Pressure perturbation depicts a meso-low after a half hour in the low levels. As the cloud system evolves, the meso-low inten-sifies and extends to the upshear side and covers the entire domain in the mid-lower levels with the peak values of 5-8 hPa. Temperature perturbation depicts a warm region in the middle levels through the entire simulation period. The meso-γ-scale warm cores with peak values of 4-8oC are associated with strong convective cells. The cloud top evapo-ration causes a stronger cold layer around the cloud top levels.Simulation of microphysics exhibits that graupel is primarily concentrated in the strong convective cells forming the main source of convective rainfall after one hour of simulation time. Aggregates are mainly located in the stratiform region and decaying convective cells which produce the stratiform rainfall. Riming of the ice crystals is the predominant precipitation formation mechanism in the convection region, whereas aggregation of ice crystals is the predominant one in the stratiform region, which is consistent with observations. Sensitivity experiments of ice-phase microphysical processes show that the microphysical structures of the convective cloud system can be simulated better with the diagnosed aggregation collection efficiencies.  相似文献   

18.
The surface air convergence on the eastern flank of the Tibetan Plateau (TP) can increase the in situ surface potential vorticity density (PVD). Since the elevated TP intersects with the isentropic surfaces in the lower troposphere, the increased PVD on the eastern flank of TP thus forms a PVD forcing to the intersected isentropic surface in the boundary layer. The influence of surface PVD forcing over the TP on the extreme freezing rain/snow over South China in January 2008 is investigated by using numerical experiments based on the Finite-volume Atmospheric Model of the IAP/LASG (FAMIL). Compared with observations, the simulation results show that, by using a nudging method for assimilating observation data in the initial flow, this model can reasonably reproduce the distribution of precipitation, atmospheric circulation, and PVD propagation over and downstream of the TP during the extreme winter precipitation period. In order to investigate the impact of the increased surface PVD over the TP on the extreme precipitation in South China, a sensitivity experiment with surface PVD reduced over the TP region was performed. Compared with the control experiment, it is found that the precipitation in the TP downstream area, especially in Southeast China, is reduced. The rainband from Guangxi Region to Shandong Province has almost disappeared. In the lower troposphere, the increase of surface PVD over the TP region has generated an anomalous cyclonic circulation over southern China, which plays an important role in increasing southerly wind and the water vapor transport in this area;it also increases the northward negative absolute vorticity advection. In the upper troposphere, the surface PVD generated in eastern TP propagates on isentropic surface along westerly wind and results in positive absolute vorticity advection in the downstream areas. Consequently, due to the development of both ascending motion and water vapor transport in the downstream place of the TP, extremely heavy precipitation occurs over southern China. Thereby, a new mechanism concerning the influence of the increased surface PVD over the eastern TP slopes on the extreme weather event occurring over southern China is revealed.  相似文献   

19.
In Part Ⅰ, the authors succeeded in coupling the spectral atmospheric model (SAMIL_R42L9) developed at the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences (LASG/IAP/CAS) with the land surface model, Atmosphere-Vegetation-Interaction-Model (AVIM) and analyzed the climate basic state and land surface physical fluxes simulated by R42_AVIM. In this Part Ⅱ, we further evaluate the simulated results of the biological processes, including leaf area index (LAI), biomass and net primary productivity (NPP) etc. Results indicate that R42_AVIM can simulate the global distribution of LAI and has good consistency with the monthly mean LAI provided by Max Planck Institute for Meteorology. The simulated biomass corresponds reasonably to the vegetation classifications. In addition, the simulated annual mean NPP has a consistent distribution with the data provided by IGBP and MODIS, and compares well with the work in literature. This land-atmosphere coupled model will offer a new experiment tool for the research on the two-way interaction between climate and biosphere, and the global terrestrial ecosystem carbon cycle.  相似文献   

20.
Based on Chen et al. (2006), the scheme of the combination of the pentad-mean zonal height departure nonlinear prediction with the T42L9 model prediction was designed, in which the pentad zonal heights at all the 12-initial-value-input isobar levels from 50 hPa to 1000 hPa except 200, 300, 500, and 700 hPa were derived from nonlinear forecasts of the four levels by means of a good correlation between neighboring levels. Then the above pentad zonal heights at 12 isobar-levels were transformed to the spectrum coefficients of the temperature at each integration step of T42L9 model. At last, the nudging was made. On account of a variety of error accumulation, the pentad zonal components of the monthly height at isobar levels output by T42L9 model were replaced by the corresponding nonlinear results once more when integration was over. Multiple case experiments showed that such combination of two kinds of prediction made an improvement in the wave component as a result of wave-flow nonlinear interaction while reducing the systematical forecast errors. Namely the monthly-mean height anomaly correlation coefficients over the high- and mid-latitudes of the Northern Hemisphere, over the Southern Hemisphere and over the globe increased respectively from 0.249 to 0.347, from 0.286 to 0.387, and from 0.343 to 0.414 (relative changes of 31.5%, 41.0%, and 18.3%). The monthly-mean root-mean-square error (RMSE) of T42L9 model over the three areas was considerably decreased, the relative change over the globe reached 44.2%. The monthly-mean anomaly correlation coefficients of wave 4-9 over the areas were up to 0.392, 0.200, and 0.295, with the relative change of 53.8%, 94.1%, and 61.2%, and correspondingly their RMSEs were decreased respectively with the rate of 8.5%, 6.3%, and 8.1%. At the same time the monthly-mean pattern of parts of cases were presented better.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号