首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Dendrogeomorphic chronologies of landslide movements are frequently used to investigate past landslide activity. Slide areas are often affected by other slope movements (e.g. creep) simultaneously. Trees growing on landslides record all types of ground movements, which potentially creates significant noise in tree ring based chronologies of landslide movements. The effect of creep movements on dendrogeomorphic landslide chronologies was evaluated in a block‐type landslide in the south‐western foreland of the Orlické hory Mountains. In total, 272 trees (Picea abies and Fagus sylvatica) were sampled (1088 increment cores) on the sub‐horizontal surfaces of rotated slide blocks, which were presumably created only by slide movements, and on the steep internal scarps separating landslide blocks, which were presumably created and affected by a combination of slide and creep movements. Ground movements were dated based on growth disturbances identified in an analysis of eccentric tree growth. The trees growing on the internal landslide scarps separating the rotated blocks exhibited a significantly higher number and frequency of growth disturbances than those growing on the sub‐horizontal block surfaces. All eight dated block surface movements were also identified on the internal scarps. Creep‐based events represented as many as 70% of the dated movement events on the internal scarps. Varying the It thresholds did not filter out more than 40% of the noise without significantly reducing the number of true dated slide events. A significant difference was observed between the ability of P. abies and F. sylvatica to record ground movements by eccentric growth. Probably due to its shallower roots (and weaker anchoring of the tree to landslide blocks), P. abies appears to be more sensitive to surficial ground movement, which potentially increases the proportion of dated creep events (noise). Thus, the careful selection of sampled tree species with different physiologies should be considered during dendrogeomorphic field sampling. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

2.
This paper presents a landslide incidence zonation map showing the percentage of underlying material involved in mass‐movement processes in the Rio Mendoza valley, Argentina. The landslide incidence zonation map was derived from an inventory map of landslides and reveals that many areas of the Rio Mendoza valley are implicated in this kind of process. A correlation has been found between the occurrence of landslides, earthquakes, and rainfall. The relation between lithology and landslides is clear: areas covered by friable sedimentary and volcanic rocks of the Choiyoi Group are prone to debris ?ows and complex landslides. The slope map has been ranked and a general relation between slope and type of event is shown. Falls commonly develop in high‐angle slopes. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

3.
New detailed data about the morphology of the submerged slopes of Lake Albano (Rome, Italy) have been collected by a sonar multibeam survey financed by the Italian Department of Civil Protection. These data allow for investigation of the subaqueous slope dynamics of the lake, which partially fills a volcanic depression, and the elucidation of the relationships between subaqueous and subaerial slope processes. Subaerial, submerged and combined subaerial/submerged landslide‐related morphologies were detected around the inner slopes of the lake. In the submerged slopes, several gravity‐induced landforms were recognized: landslide scar areas, landslide accumulations, erosional chutes and channels, block fields, isolated blocks, scarps and slope breaks. An attempt to evaluate the state of activity of the submerged slopes was carried out by taking into consideration the relative freshness of some selected landforms. Interpretation of bathymetric data, as well as direct surveys of the subaerial slopes, was used to assess the morphometric features and interpret the type of movement of the landslides. We propose a comprehensive classification based on the landslide's size and type of movement. We recognized rock fall/topples, debris flows, rock slides and slump, complex rock slides/channelled flows and debris slide and slump. The volume of the main landslides ranged between 101 and 103 m3, while a few rock and debris slides have volumes ranging between 103 and 105 m3. Two large palaeo‐landslides with volumes on the order of 106 m3 were identified in the southern and northern part of the lake, respectively. Velocities of the recognized landslides range from rapid to extremely rapid. Two main landslide hazard scenarios have been depicted from the results of the integrated analysis of both subaerial and submerged gravity‐induced landforms. The most hazardous scenario involves extremely rapid large volume events (>106 m3) that could, if they interacted with water, induce catastrophic tsunamis. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
The 1927 Gulang M8.0 earthquake has triggered a huge number of landslides, resulting in massive loss of people''s life and property. However, integrated investigations and results regarding the landslides triggered by this earthquake are rare; such situation hinders the deep understanding of these landslides such as scale, extent, and distribution. With the support of Google Earth software, this study intends to finish the seismic landslides interpretation work in the areas of Gulang earthquake (VIII-XI degree) using the artificial visual interpretation method, and further analyze the spatial distribution and impact factors of these landslides. The results show that the earthquake has triggered at least 936 landslides in the VIII-XI degree zone, with a total landslide area of 58.6 km2. The dense area of seismic landslides is located in the middle and southern parts of the X intensity circle. Statistical analysis shows that seismic landslides is mainly controlled by factors such as elevation, slope gradient, slope direction, strata, seismic intensity, faults and rivers. The elevation of 2 000-2 800 m is the high-incidence interval of the landslide. The landslide density is larger with a higher slope gradient. East and west directions are the dominant sliding directions. The areas with Cretaceous and Quaternary strata are the main areas of the Gulang seismic landslides. The X intensity zone triggered the most landslides. In addition, landslides often occur in regions near rivers and faults. This paper provides a scientific reference for exploring the development regularities of landslides triggered by the 1927 Gulang earthquake and effectively mitigating the landslide disasters of the earthquake.  相似文献   

5.
The extrapolation of results from field trials to larger areas of land for purposes of regional impact assessment is an important issue in geomorphology, particularly for landform properties that show high stochastic variability in space and time, such as shallow landslide erosion. It is shown in this study, that by identifying the main driver for spatial variability in shallow landslide erosion at field scales, namely slope angle, it is possible to develop a set of generic functions for assessing the impact of landslides on selected soil properties at larger spatial scales and over longer time periods. Research was conducted within an area of pastoral soft‐rock Tertiary hill country in the North Island of New Zealand that is subject to infrequent high intensity rainfall events, producing numerous landslides, most of which are smaller than several hundred square metres in size and remove soil to shallow depths. All landslides were mapped within a 0·6 km2 area and registered to a high resolution (2 m) slope map to show that few landslides occur on slopes < 20° and 95% were on slopes > 24°. The areal density of landslides from all historical events showed an approximately linear increase with slope above 24°. Integrating landslide densities with soil recovery data demonstrates that the average value of a soil property fluctuates in a ‘saw‐tooth’ fashion through time with the overall shape of the curve controlled by the frequency of landslide inducing storm events and recovery rate of the soil property between events. Despite such fluctuations, there are gradual declines of 7·5% in average total carbon content of topsoil and 9·5% in average soil depth to bedrock, since the time of forest clearance. Results have application to large‐scale sediment budget and water quality models and to the New Zealand Soil Carbon Monitoring System (CMS). Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
The MS7.0 Jiuzhaigou earthquake in Sichuan Province of 8 August 2017 triggered a large number of landslides. A comprehensive and objective panorama of these landslides is of great significance for understanding the mechanism, intensity, spatial pattern and law of these coseismic landslides, recovery and reconstruction of earthquake affected area, as well as prevention and mitigation of landslide hazard. The main aim of this paper is to present the use of remote sensing images, GIS technology and Logistic Regression(LR)model for earthquake triggered landslide hazard mapping related to the 2017 Jiuzhaigou earthquake. On the basis of a scene post-earthquake Geoeye-1 satellite image(0.5m resolution), we delineated 4834 co-seismic landslides with an area of 9.63km2. The ten factors were selected as the influencing factors for earthquake triggered landslide hazard mapping of Jiuzhaigou earthquake, including elevation, slope angle, aspect, horizontal distance to fault, vertical distance to fault, distance to epicenter, distance to roads, distance to rivers, TPI index, and lithology. Both landsliding and non-landsliding samples were needed for LR model. Centroids of the 4834 initial landslide polygons were extracted for landslide samples and the 4832 non-landslide points were randomly selected from the landslide-free area. All samples(4834 landslide sites and 4832 non-landslide sites)were randomly divided into the training set(6767 samples)and validation set(2899 samples). The logistic regression model was used to carry out the landslide hazard assessment of the Jiuzhaigou earthquake and the results show that the landslide hazard assessment map based on LR model is very consistent with the actual landslide distribution. The areas of Wuhuahai-Xiamo, Huohuahai and Inter Continental Hotel of Jiuzhai-Ruyiba are high hazard areas. In order to quantitatively evaluate the prediction results, the trained model calculated with the training set was evaluated by training set and validation set as the input of the model to get the output results of the two sets. The ROC curve was used to evaluate the accuracy of the model. The ROC curve for LR model was drawn and the AUC values were calculated. The evaluation result shows good prediction accuracy. The AUC values for the training and validation data set are 0.91 and 0.89, respectively. On the whole, more than 78.5% of the landslides in the study area are concentrated in the high and extremely high hazard zones. Landslide point density and landslide area density increase very rapidly as the level of hazard increases. This paper provides a scientific reference for earthquake landslides, disaster prevention and mitigation in the earthquake area.  相似文献   

7.
Landslide inventories and their statistical properties   总被引:1,自引:0,他引:1  
Landslides are generally associated with a trigger, such as an earthquake, a rapid snowmelt or a large storm. The landslide event can include a single landslide or many thousands. The frequency–area (or volume) distribution of a landslide event quanti?es the number of landslides that occur at different sizes. We examine three well‐documented landslide events, from Italy, Guatemala and the USA, each with a different triggering mechanism, and ?nd that the landslide areas for all three are well approximated by the same three‐parameter inverse‐gamma distribution. For small landslide areas this distribution has an exponential ‘roll‐over’ and for medium and large landslide areas decays as a power‐law with exponent ‐2·40. One implication of this landslide distribution is that the mean area of landslides in the distribution is independent of the size of the event. We also introduce a landslide‐event magnitude scale mL = log(NLT), with NLT the total number of landslides associated with a trigger. If a landslide‐event inventory is incomplete (i.e. smaller landslides are not included), the partial inventory can be compared with our landslide probability distribution, and the corresponding landslide‐event magnitude inferred. This technique can be applied to inventories of historical landslides, inferring the total number of landslides that occurred over geologic time, and how many of these have been erased by erosion, vegetation, and human activity. We have also considered three rockfall‐dominated inventories, and ?nd that the frequency–size distributions differ substantially from those associated with other landslide types. We suggest that our proposed frequency–size distribution for landslides (excluding rockfalls) will be useful in quantifying the severity of landslide events and the contribution of landslides to erosion. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
The topography, occurrence mechanism and lithology are the important factors of landslide movement. The lithology, seismic intensity, geological structure and topography in the travel path of 215 incomplete obstruction landslides with volumes more than 104m3 induced by Wenchuan earthquake were studied. Based on the classification of the factors established, we studied the factors influencing the movement distance of incomplete obstruction landslides. The following results are drawn. In the influence factors of topography in the travel path, the distance is largest in the straight valley topography, followed by the concave, ladder, turning valley, slope toe-type and slope-type landslides, in turn. The topography not only has remarkable influence on the distance of large-scale landslides, but also on the medium and small-scale landslides as well, which is the most important factor influencing the distance. The formation mechanism controlled by lithology, seismic intensity and geological structure has little influence on the mobility of medium-and small-scale landslides. For the large-scale landslides with volume more than 106m3, the distance of landslide with medium hard rock is larger than landslides with hard and soft rock. In the seismic intensity Ⅸ to Ⅺ areas, the landslide distance decreases with intensity increasing, contrary to the distribution of landslide-point density and landslide-area density. The geological structure has influence on the slide aspect of landslides and occurrence mechanism, but the influence is not remarkable to the landslide movement distance.  相似文献   

9.
A chronology of landsliding is presented, including suggestions as to a date for initiation. Periods of activity known from historical sources are correlated with known periods of climatic deterioration. The current morphology of the landslide slopes is closely related to the geological succession and structure. These permit the landslides and their development to be differentiated on the basis of whole slope and toe morphology, and much of the whole-slope activity can be related to conditions at the toe. Examples of geomorphological maps, slope categories maps, and cross sections are presented along with an example of the ‘evolutionary’ maps which may be derived from Ordnance Survey plans and aerial photographs. These generally indicate that weakening of materials by weathering, seepage erosion at the toe, and marine erosion result in frequent mass movement events of a low magnitude. These events ultimately influence the stability of larger slipped blocks behind, which fail less frequently. It is suggested that whole-slope failures in this region have a maximum frequency of once in 120 to 150 years, and that problems of interpretation of historical accounts may mean that it is very much less frequent than this.  相似文献   

10.
Landslides threaten lives and property throughout the United States, causing in excess of $2 billion in damages and 25–50 deaths annually. In regions subjected to urban expansion caused by population growth and/or increased storm intensities caused by changing climate patterns, the economic and society costs of landslides will continue to rise. Using a geographic information system (GIS), this paper develops and implements a multivariate statistical approach for mapping landslide susceptibility. The presented susceptibility maps are intended to help in the design of hazard mitigation and land development policies at regional scales. The paper presents (a) a GIS‐based multivariate statistical approach for mapping landslide susceptibility, (b) several dimensionless landslide susceptibility indexes developed to quantify and weight the influence of individual categories for given potential risk factors on landslides and (c) a case study in southern California, which uses 11 111 seismic landslide scars collected from previous efforts and 5389 landslide scars newly digitized from local geologic maps. In the case study, seven potential risk factors were selected to map landslide susceptibility. Ground slope and event precipitation were the most important factors, followed by land cover, surface curvature, proximity to fault, elevation and proximity to coastline. The developed landslide susceptibility maps show that areas classified as having high or very high susceptibilities contained 71% of the digitized landslide scars and 90% of the seismic landslide scars while only occupying 26% of the total study area. These areas mostly have ground slopes higher than 46% and 2‐year, 6‐hour precipitation greater than 51 mm. Only 12% of digitized landslides and less than 1% of recorded seismic landslides were located in areas classified as low or very low susceptibility, while occupying 42% of the total study region. These areas mostly have slopes less than 27% and 2‐year, 6‐hour precipitation less than 41 mm. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
The growing availability of digital topographic data and the increased reliability of precipitation forecasts invite modelling efforts to predict the timing and location of shallow landslides in hilly and mountainous areas in order to reduce risk to an ever‐expanding human population. Here, we exploit a rare data set to develop and test such a model. In a 1·7 km2 catchment a near‐annual aerial photographic coverage records just three single storm events over a 45 year period that produced multiple landslides. Such data enable us to test model performance by running the entire rainfall time series and determine whether just those three storms are correctly detected. To do this, we link a dynamic and spatially distributed shallow subsurface runoff model (similar to TOPMODEL) to an in?nite slope model to predict the spatial distribution of shallow landsliding. The spatial distribution of soil depth, a strong control on local landsliding, is predicted from a process‐based model. Because of its common availability, daily rainfall data were used to drive the model. Topographic data were derived from digitized 1 : 24 000 US Geological Survey contour maps. Analysis of the landslides shows that 97 occurred in 1955, 37 in 1982 and ?ve in 1998, although the heaviest rainfall was in 1982. Furthermore, intensity–duration analysis of available daily and hourly rainfall from the closest raingauges does not discriminate those three storms from others that did not generate failures. We explore the question of whether a mechanistic modelling approach is better able to identify landslide‐producing storms. Landslide and soil production parameters were ?xed from studies elsewhere. Four hydrologic parameters characterizing the saturated hydraulic conductivity of the soil and underlying bedrock and its decline with depth were ?rst calibrated on the 1955 landslide record. Success was characterized as the most number of actual landslides predicted with the least amount of total area predicted to be unstable. Because landslide area was consistently overpredicted, a threshold catchment area of predicted slope instability was used to de?ne whether a rainstorm was a signi?cant landslide producer. Many combinations of the four hydrological parameters performed equally well for the 1955 event, but only one combination successfully identi?ed the 1982 storm as the only landslide‐producing storm during the period 1980–86. Application of this parameter combination to the entire 45 year record successfully identi?ed the three events, but also predicted that two other landslide‐producing events should have occurred. This performance is signi?cantly better than the empirical intensity–duration threshold approach, but requires considerable calibration effort. Overprediction of instability, both for storms that produced landslides and for non‐producing storms, appears to arise from at least four causes: (1) coarse rainfall data time scale and inability to document short rainfall bursts and predict pressure wave response; (2) absence of local rainfall data; (3) legacy effect of previous landslides; and (4) inaccurate topographic and soil property data. Greater resolution of spatial and rainfall data, as well as topographic data, coupled with systematic documentation of landslides to create time series to test models, should lead to signi?cant improvements in shallow landslides forecasting. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

12.
The analysis of the positive feedback between landslides and erosion requires determination of the precise temporal and spatial relations between events of colluvium delivery and fluvial erosion. In our study we use decennial datasets on the occurrence of landsliding and erosion achieved through dendrochronological methods. Four sites covering areas of landslide slopes and adjacent valley floors with stream channels were studied. Landsliding on slopes was dated from the tree‐ring eccentricity developed in stems tilted due to bedrock instability. Erosion in channels was dated using the wood anatomy of roots exposed by erosion of the soil cover. Analysis of the temporal relations between dated landsliding, erosion and precipitation record has revealed that two types of repeating sequences can be observed: (1) rainfall → landsliding → erosion; (2) rainfall → erosion → landsliding. These sequences are an indication of the occurrence of slope‐channel positive feedback in the sites studied. In the first type, landsliding triggered by rainfall delivers colluvia into the valley floor and causes its narrowing, which in turn causes increased erosion. In the second type erosion triggered by rainfall disturbs the slope equilibrium and causes landsliding. Landsliding and erosion, once triggered by precipitation, can occur alternately in years with average precipitation and reinforce one another. Bidirectional coupling between landsliding and channel erosion was shown notably through the effects of channel shifting and forced sinuosity and by increased erosion of the slopes opposite the active landslides. Observations also suggest that the repetition of sequences described over longer periods of time can lead to a general widening of the valley floor at the expense of slopes and to a gradual change of the valley cross‐profile from narrow, V‐shaped into a wide flat‐bottomed. Thus landsliding–erosion coupling/positive feedback was recognized as an important factor shaping hillslope–valley topography of the mid‐mountain areas studied. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
We examined the characteristics of landslides triggered by the 2016 Kumamoto earthquake (Mw = 7.0: focal depth=10.0 km) in forests and grasslands within two affected watersheds (Tokosegawa: 6.9 km2 and Nigorigawa: 6.1 km2) in southwestern Japan. We identified 190 landslides using aerial photographs and analyzed their sizes by geographic information system (GIS). Field investigations were conducted to obtain landslide depth, volume and residual sediment for 38 selected landslides (21 in forests and 17 in grasslands). The minimum area of detected landslides in grasslands (400 m2) was smaller than in forests (1000 m2), probably because of reduced detectability of landslides under tree cover. The ratio of total area occupied by landslides for a given range of slope gradient in the watersheds increased from 3.2% on gentle grassland slopes (10–15°) to 15.5% on steep (>45°) slopes, whereas the maximum landslide-area ratio in forest sites (7.4%) occurred on relatively gentle slopes (25–30°). Estimated landslide volume ranged from 27 to 9622 m3, based on mean depth of each landslide measured around individual landslide scars. Moreover, the volumetric ratio of landslide deposit volume to total landslide volume exceeded 100% for 48% of the landslides within forests and 35% of the landslides within grasslands. Our findings show that land cover had extensive and recognizable effects on the characteristics of landslides and resulting in-channel sediment accumulations. Resetting sediment dynamics after earthquakes associated with different land cover distributions needs to be considered within watersheds. © 2019 John Wiley & Sons, Ltd.  相似文献   

14.
A database of seismically-induced landslides in the Betic Cordillera is presented. Data included were classified according to landslide typology. Most of them (≈80%) correspond to small size, disrupted landslides (including rock/earth falls and earth slides that disorganize as mass-movement progresses) and the remaining consist mainly of coherent landslides (slumps in soils and rock-slides). Deep seated induced landslides are uncommon in the study zone and have occurred only after the few events of large magnitude reported in the Cordillera. Data available show that events of small magnitude (Mw<5.0) can induce instabilities in the study zone for comparatively large distances (>10 km) when compared with available upper bound curves for maximum epicentral distances for seismic induced landslides, that concentrate along areas prone to landsliding, like river banks or slopes on soft materials, which points out the importance of the role of slope susceptibility on the occurrence of instabilities during earthquakes. Landslides in the database are then analyzed and a power-law relationship that relates earthquake size, measured as epicentral intensity (Io), to maximum distance of induced landslide valid for the study zone is proposed. Although included data represent a clear partial and incomplete dataset, they show the landslide state of knowledge for this region.  相似文献   

15.
There is a strong possibility that environmental change (whether climate or land use) will be manifest as changes in the size–frequency distribution of landslides. Here, evidence is presented for this from western Kyrgyzstan, Central Asia. Remote sensing and spatial analysis have been applied to map mass movements in the central part of the Maily‐Say Valley and to detect recent landslide activations. The evolution of landslide activity over the past 50 years has been analysed on the basis of pre‐existing landslide maps and new analyses of aerial photographs as well as Quickbird images. Five inventories were produced for the years 1962 (based on the existing map of 1962 and aerial photographs of 1962), 1984 (based on the existing map of 1977 and aerial photographs of 1984), 1996 (based on aerial photographs of 1996), 2002 (based on the existing map of 2003 and Quickbird imagery of 2002) and 2007 (based on Quickbird imagery of 2007). The geomorphologic features contained in the catalogues represent the landslide bodies observed from remote imagery of the corresponding year. Mapped landslides are generally considered as the result of a series of slope failure events. Size–frequency analyses applied to the five landslide inventories show that both the number and size of unstable slopes increased from 1962 (162 objects) to 2007 (208 objects) and the power‐law exponent decreased over time. This changing power‐law exponent may indicate that landslide‐related hazards are increasing. This tendency is documented in more detail for two active landslide zones, one in the main valley and one located to the west of it. Landslide detection methods were used to assist the evolution of slope instabilities. Choosing appropriate thresholds, the image subtraction method based on normalized difference vegetation index (NDVI) allowed accurate detection of new sliding activation in these two zones. This confirmed the results of the more extensive survey that there is a systematic shift in power law exponents and size–frequency distributions for Central Asian landslides. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
Climate change, manifested by an increase in mean, minimum, and maximum temperatures and by more intense rainstorms, is becoming more evident in many regions. An important consequence of these changes may be an increase in landslides in high mountains. More research, however, is necessary to detect changes in landslide magnitude and frequency related to contemporary climate, particularly in alpine regions hosting glaciers, permafrost, and snow. These regions not only are sensitive to changes in both temperature and precipitation, but are also areas in which landslides are ubiquitous even under a stable climate. We analyze a series of catastrophic slope failures that occurred in the mountains of Europe, the Americas, and the Caucasus since the end of the 1990s. We distinguish between rock and ice avalanches, debris flows from de‐glaciated areas, and landslides that involve dynamic interactions with glacial and river processes. Analysis of these events indicates several important controls on slope stability in high mountains, including: the non‐linear response of firn and ice to warming; three‐dimensional warming of subsurface bedrock and its relation to site geology; de‐glaciation accompanied by exposure of new sediment; and combined short‐term effects of precipitation and temperature. Based on several case studies, we propose that the following mechanisms can significantly alter landslide magnitude and frequency, and thus hazard, under warming conditions: (1) positive feedbacks acting on mass movement processes that after an initial climatic stimulus may evolve independently of climate change; (2) threshold behavior and tipping points in geomorphic systems; (3) storage of sediment and ice involving important lag‐time effects. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
汶川地震滑坡危险性评价——以武都区和文县为例   总被引:1,自引:0,他引:1       下载免费PDF全文
利用GIS技术详细研究汶川地震在甘肃省陇南市武都区和文县触发的滑坡地质灾害的分布规律及其与地震烈度、地形坡度、断层、高程、地层岩性的相关关系,采用基于GIS的加权信息量模型的崩塌滑坡危险性评价方法,对研究区的地震滑坡危险性进行学科分析。结果表明:极高危险区在高程上主要分布在集水高程区,高度危险区主要沿白水江、白龙江等主干河流两侧极高易发区的边界向两侧扩展,轻度和极轻度危险区面积占比较小,主要分布在低烈度、活动断裂不发育、人类活动微弱的高海拔地区,另外国道G215沿极高危险性区域分布明显;利用危险性等级分区结果统计人口公里格网数据,得到武都区和文县潜在影响人口,发现研究区约78万人将受到地震滑坡灾害的潜在影响。  相似文献   

18.
The 8.0 Mw Wenchuan earthquake triggered widespread and large scale landslides in mountainous regions.An approach was used to map and assess landslide susceptibility in a given area. A numerical rating system was applied to five factors that contribute to slope instability. Factors such as lithology, topography, streams and faults have an important influence as event-controlling factors for landslide susceptibility assessment. A final map is provided to show areas of low,medium, and high landslide susceptibility. Areas identified as having high landslide susceptibility were located in the central,northeastern, and far south regions of the study area. The assessment results will help decision makers to select safe sites for emergency placement of refuges and plan for future reconstruction. The maps may also be used as a basis for landslide risk management in the study area.  相似文献   

19.
A complete landslide inventory and attribute database is the importantly fundamental for the study of the earthquake-induced landslide. Substantial landslides were triggered by the MW7.9 Wenchuan earthquake on May 12th, 2008. Google Earth images of pre- and post-earthquakes show that 52 194 co-seismic landslides were recognized and mapped, with a total landslides area of 1 021 km2.Based on the statistics,we assigned all landslide parameters and established the co-seismic landslides database, which includes area, length, and width of landslides, elevation of the scarp top and foot edge, and the top and bottom elevations of each located slope. Finally, the spatial distribution and the above attribute parameters of landslides were analyzed. The results show that the spatial distribution of the co-seismic landslides is extremely uneven. The landslides that mainly occur in a rectangular area (a width of 30 km of the hanging wall of the Yingxiu-Beichuan fault and a length of 120 km between Yingxiu and Beichuan) are obviously controlled by surface rupture, terrain, and peak ground acceleration. Meanwhile, a large number of small landslides (individual landslide area less than 10 000 m2)contribute less to the total landslides area. The number of landslides larger than 10 000 m2 accounts for 38.7% of the total number of co-seismic landslides, while the area of those landslides account for 88% of the total landslides area. The 52 194 co-seismic landslides are caused by bedrock collapse that usually consists of three parts:source area, transport area, and accumulation area. However, based on the area-volume power-law relationship, the resulting regional landslide volume may be much larger than the true landslide volume if the landslide volume is calculated using the influenced area from each landslide.  相似文献   

20.
Summary statistics derived from the frequency–area distribution (FAD) of inventories of triggered landslides allows for direct comparison of landslides triggered by one event (e.g. earthquake, rainstorm) with another. Such comparisons are vital to understand links between the landslide‐event and the environmental characteristics of the area affected. This could lead to methods for rapid estimation of landslide‐event magnitude, which in turn could lead to estimates of the total triggered landslide area. Previous studies proposed that the FAD of landslides follows an inverse power‐law, which provides the basis to model the size distribution of landslides and to estimate landslide‐event magnitude (mLS), which quantifies the severity of the event. In this study, we use a much larger collection of earthquake‐induced landslide (EQIL) inventories (n=45) than previous studies to show that size distributions are much more variable than previously assumed. We present an updated model and propose a method for estimating mLS and its uncertainty that better fits the observations and is more reproducible, robust, and consistent than existing methods. We validate our model by computing mLS for all of the inventories in our dataset and comparing that with the total landslide areas of the inventories. We show that our method is able to estimate the total landslide area of the events in this larger inventory dataset more successfully than the existing methods. © 2018 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号