首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
Optically stimulated luminescence (OSL) dating is now commonly used to estimate the depositional age of Quaternary landforms along the southern Cape coast of South Africa. Due to the early onset of dose saturation in the quartz-rich sediments from this region, determining the age of deposits much older than the last three glacio-eustatic sea-level high stands has been a challenge. In this study, we explored the feasibility of using the thermally-transferred OSL (TT-OSL) dating method to obtain ages for aeolian and shallow marine deposits at three different localities that hold promise to further illuminate the long and complex Late Quaternary sea-level history of this region. The bleachability and behaviour of both the recuperated OSL (ReOSL) and the basic-transferred OSL (BT-OSL) signals were investigated, and used as independent chronometers to infer (a) the degree of bleaching of the sediments and (b) the stability of the ReOSL signal for dating of older samples. We examined the sensitivity of both signals to varying preheat temperatures and further developed the single-aliquot regenerative-dose procedure for TT-OSL dating of our samples. To verify our procedures, and to understand some of the underlying mechanisms responsible for the problems we observed, modern analogues and known-age Marine Isotope Sub-stage (MIS) 5e samples from the same localities were also measured. The Middle Pleistocene deposits investigated in this study produced statistically consistent ReOSL and BT-OSL ages compatible with sea-level high stands during Marine Isotope Stage 11. This result is of considerable significance, as it may yield new insights into maximum sea-level heights during this period, which is widely considered an appropriate analogue for future environmental conditions.  相似文献   

2.
Reliable chronology is critical for reconstructing estuarine delta process. In this study, detailed chronological framework has been performed on a core HPQK01 (52 m in depth) from the central Pearl River delta (PRD) of China. Both quartz OSL and feldspar post-IR IRSL (pIRIR) methods for late Pleistocene sediments, as well as radiocarbon dating for Holocene sediments, were applied to date the core. Results show that quartz OSL ages range from 125 ± 18 ka to 58 ± 6 ka, and that all of them were minimum ages due to the OSL signal saturation. Feldspar pIR200IR290 protocol shows some overestimation in dose recovery test, with the recovered to the given ratio of 1.2, while a ratio of around 1 was obtained for feldspar pIR50IR250 signals. Robust ages have been obtained from feldspar fading corrected pIR50IR250 dating with ages ranging from 150 ± 17 ka to 98 ± 12 ka. AMS 14C results suggest that subtidal-intertidal zone was deposited during the middle Holocene from 8.21 ± 0.19 cal ka BP to 4.99 ± 0.25 cal ka BP. The sedimentology of core HPQK01 record two marine transgressive-regressive cycles. Based on the dating results, the lower fluvial sediment unit (T2) could be correlated to marine isotope stage (MIS) 6, and the lower marine unit (M2) was deposited during MIS 5. A sedimentary hiatus occurred with age range of from MIS 4 to MIS 2. Since middle Holocene, another marine stratum (M1) has been accumulated. Overall, our findings suggest that feldspar pIRIR dating method has the potential to establish the Quaternary chronostratigraphic framework of the PRD for samples with ages within 150 ka.  相似文献   

3.
We present a detailed luminescence chronology of the loess-palaeosol sequences in the Lower Volga region of Russia at the Leninsk site – an important palaeogeographic archive describing the climate and environmental conditions of regressive stages of the Caspian Sea. The chronology of these sediments has received very little attention compared to the under- and overlying marine deposits. The degree of bleaching was addressed by making use of the differential resetting rates of quartz and feldspar. Our results show that the quartz OSL and feldspar pIRIR50,290 signals were sufficiently bleached before deposition and uncertainties in bleaching have a negligible impact on the reliability of the luminescence ages. The combined quartz OSL and K-feldspar pIRIR50,290 chronology constrains the main stages of the Northern Caspian Lowland evolution during the Late Quaternary. During early MIS 5 (130–120 ka), the northern part of the Lower Volga was covered by a shallow brackish water estuary of the warm Late Khazarian Caspian Sea transgression. After ∼122 ka, the Volga incised the Northern Caspian Lowland surface following sea-level decrease and the start of subaerial conditions at Leninsk. Loess accumulation rate increased towards the end of MIS 5 and two palaeosols of presumably MIS 5с and MIS 5a age formed, exhibiting features evidencing a dry, cold climate, influenced by long seasonal flooding by the Volga River. Cryogenesis affecting the MIS 5a soil is a regional phenomenon and is dated to between ∼70 and 90 ka. The overlying thick Atelian loess unit formed during the cold periods of MIS 4 and MIS 3. Clear erosional features at the top of the Atelian loess are constrained by luminescence to ∼35 to ∼24 ka, allowing reconstruction of erosion of 150–200 cm of loess.  相似文献   

4.
The Late Quaternary history of the Caspian Sea remains controversial. One of the major disagreements in this debate concerns the stratigraphic correlation of various deposits in the Caspian Basin. In this paper we identify and date, for the first time, the Enotaevka regression, lying between the two major phases of the largest Late Quaternary Caspian Sea transgression, the Khvalynian transgressive epoch, and provide a minimum estimate of sea level decrease during this regression. The River Volga is the major source of water to the Caspian; the Lower Volga region is unique in its record of palaeogeographic events, and this provides the opportunity to build a single stratigraphic and palaeogeographic history for the Pleistocene of Central Eurasia. Here we use luminescence to establish a new chronology for the largest Late Quaternary transgressive epoch of the Caspian Sea. The existing radiocarbon chronology does not allow the resolution of the two transgressive phases of this epoch (Early and Late Khvalynian). Based on clear palaeontological and geomorphological evidence, these must be very different in age, but shells associated with both transgressions gave very scattered ages of between 8 and 50 ka. This ambiguity has led to considerable discussion concerning the existence or otherwise of a deep Enotaevka regression phase between the two Khvalynian transgressions. Recently we have again identified these deposits at Kosika, on the right valley side of the Volga River. The new luminescence chronology described here, based on quartz OSL and K-feldspar pIRIR290 ages, allows us to reconstruct the complicated history of Late Quaternary sedimentation in the southern part of the Lower Volga valley. The Kosika section reflects the following major stages: (1) the earlier Khazarian transgressive epoch; (2) a decrease in the sea level with the development of a freshwater lake/lagoon in the Volga valley; and (3) the Khvalynian transgressive-regressive epoch, including both the Early and Late Khvalynian transgressive periods, and the intercalated Enotaevka regression. Sea level during the early stage of the Khvalynian transgression reached Kosika at about 23–22 ka (approx. −1 to −2 m asl). This event is of the same age as the “grey clay” strata at the base of the Leninsk section marine unit (Kurbanov et al., 2021), also formed at the beginning of the Early Khvalynian transgression. Around 15–14 ka the Khvalynian basin moved to a regressive stage, and in the northern part of the Lower Volga the top part of the well-known ‘Chocolate Clay’ accumulated. In the southern part of the valley marine accumulation stopped at about 12–13 ka. This allows us to reconstruct a decrease in Early Khvalynian basin sea level between 15–14 ka and 13–12 ka ago, of about ∼15 m. At the Kosika section sediments derived from the Enotayevka regression are visible as a weakly developed palaeosol with evidence of surficial erosion, and these sediments are now dated to 13–12 ka. At 8.6 ± 0.5 ka, during the period of the Mangyshlak regression, aeolian deflation processes reworked sediments deposited by immediately preceding Late Khvalynian transgression.  相似文献   

5.
The Late Pleistocene sea-level history of Antarctica is key to understanding and predicting the responses of icesheets, which significantly contribute to the global sea level, to changing climates. Coastal sediments at Lützow-Holm Bay, East Antarctica, have yielded radiocarbon ages of Holocene and Marine Oxygen Isotope Stage (MIS) 3 from deposits above the present sea level, suggesting that there have been two episodes of sea-level highstand. However, radiocarbon dating is likely to be less accurate for dating sediments close to or older than 40–50 ka, the upper limit of its application. We thus explored the applicability of luminescence dating to coastal sediments newly sampled from Langhovde on the eastern coast of Lützow-Holm Bay. Samples were collected from a trench <1 m deep and at several meters above the present sea level. Quartz coarse and fine grains, K-feldspar coarse grains, and polymineral fine grains were extracted from the samples. Quartz coarse and fine grains both showed very low optically stimulated luminescence sensitivity and no fast component and thus were not considered further. Dose-recovery tests on post-infrared infrared-stimulated luminescence (post-IR IRSL) signals of K-feldspar and polymineral grains yielded variable results and suggested acceptable measurement conditions for each grain size fraction and expected equivalent dose. Preliminary measurements revealed that the trench section can be divided into the upper and lower layers, corresponding to the Holocene and MIS 7, respectively. Further application of post-IR IRSL dating to coastal sediments, including to previously radiocarbon-dated sections, could refine our understanding of the late Quaternary relative sea-level history in East Antarctica.  相似文献   

6.
The normally-closed Caspian Sea is known for large changes in relative sea-level (of ∼170 m) during the late Quaternary. These transgressive/regressive events influenced the topography, sedimentation and ecosystems of a large area, of up to 1 million km2. The Volga River has played an important role in the water balance of the Caspian Quaternary basins but our understanding of the temporal evolution is poorly constrained. Recent studies on the evolution of the Lower Volga have focused mainly on the subaerial sequence of loess-palaeosol series corresponding to a long-duration Caspian low stand (the so-called “Atelian regression” from ∼90 to ∼25 ka). In this study we address, for the first time, the temporal evolution of the Volga River during the late Quaternary, as recorded in the many layers of alluvial sands at the Raygorod reference section. This 50 m high outcrop contains a complicated sequence of different types of interlayered alluvium (channel and floodplain facies), a loess-palaeosol sequence with a weakly developed palaeosol, and marine sediments of the Khvalynian transgression (Chocolate Clay facies). The new chronology, based on 35 samples, is derived using optically stimulated luminescence (OSL) analysis of sand-sized quartz, with support from post-infra-red infra-red stimulated luminescence (post-IR IRSL) from K-rich feldspar grains to date the older parts of the section. The new ages identify five stages of the topography development in the northern parts of the Lower Volga: (1) an MIS 5a flood-plain in deltaic/estuary environments (>90 ka) during a high-stand of the Caspian Sea (Hyrcanian transgression); (2) a transition from deltaic/estuary conditions to a river valley with normal alluvial sedimentation and sporadic stabilization reflected in palaeosol development (80–70 ka); (3) a palaeo-Volga channel migration at elevations of 4–8 m msl during 69–62 ka, evidence of a brief increase in Caspian Sea-level and blocking of the Volga flow; (4) a subaerial stage with high-speed accumulation of loess during MIS 4 to MIS 2, containing one weakly developed palaeosol (MIS 3c) and pedocomplex of three combined palaeosols of the beginning of MIS2 (30–24 ka); (5) a rapid Khvalynian transgression, starting at the Raygorod location at ∼18.3 ka, with relatively weak marine erosion of the top 40–60 cm of loess cover, presumably because of the rapid migration of the coastline in the flat Northern Caspian Lowland.  相似文献   

7.
Waxing and waning ice sheets and changing sea levels have been interpreted from the Quaternary stratigraphic record at Leinstranda, Brøggerhalvøya in NW Svalbard. We have identified seven high relative sea-level events, related to glacio-isostatic loading, and separated by at least four glacial events. To establish a chronology for the high sea-level events (interstadials and interglacials) and the intervening glaciations, we have used three different absolute dating methods: optically stimulated luminescence (OSL) of shallow marine deposits, and electron spin resonance (ESR) and radiocarbon (AMS-14C) dating of fossils contained in these sediments. Of the absolute dating methods, OSL has provided the stratigraphically most consistent dataset and which also matches a biostratigraphically inferred interglacial. The ESR ages of mollusc shells suffer from low precision due to unusually large uranium content in most dated shell samples, which in turn is most likely a result of significant recent uranium enrichment of the sediments. Most radiocarbon ages are non-finite. The results show that the high relative sea-level events range in age from the Saalian sensu lato (≥Marine Isotope Stage, MIS, 6) to the early Holocene (MIS 1), and include events OSL-dated to 185 ± 8 ka, 129 ± 10 ka, 99 ± 8 ka and 36 ± 3 ka. The methods used by us and by previous investigators of the same site are compared and assessed, and sources of error, accuracy and precision of ages are discussed.  相似文献   

8.
The paleogeography of Amazonia lowlands during the Pleistocene remains hampered by the lack of reliable absolute ages to constrain sediment deposition in the hundred thousand to few million years timescales. Optically stimulated luminescence (OSL) dating applied to quartz has provided important chronological control for late Quaternary sediments, but the method is limited to the last ∼150 ka. In order to extend the age range of luminescence dating, new signals from quartz have been investigated. This study tested the application of isothermal thermoluminescence (ITL) and thermally transferred optically stimulated luminescence (TT-OSL) signals of quartz for dating of fluvial terraces from eastern Amazonia. ITL and TT-OSL signals measured in a modern fluvial sediment sample have shown small residual doses (4 and 16 Gy), suggesting adequate bleached sediments for the target dose range (>150 Gy). This sample responded well to dose recovery test, which showed that the ITL and TT-OSL signals grow to higher doses compared to the doses estimated by the conventional OSL signal. The ITL signal saturated for doses significantly lower than doses reported in the literature. Most dating samples were beyond the ITL saturation doses and only TT-OSL signals were suitable to estimate equivalent doses. Burial ages ranging from 107 to 340 ka were estimated for the fluvial terraces in the lower Xingu River. The main ages uncertainties are related to dose rate changes through time. Despite the uncertainties, these ages should indicate a higher channel base level during the Middle Pleistocene followed by channel incision, possibly due to episodes of increased precipitation in the Xingu watershed.  相似文献   

9.
Sedimentary records from the inner-shelf of the East China Sea (ECS) are unique for the reconstruction of post-glacial palaeoclimate and sea-level changes. So far, the chronology of sediment succession from this region has mainly been based on radiocarbon dating, which might be problematic due to reworked deposition or old carbon contamination. In this study we tested the applicability of optically stimulated luminescence (OSL) dating to a drilling core (ECS-DZ1) taken from the northern ESC. A total of 20 OSL samples and two radiocarbon samples were collected from the upper 58 m of this core. The results indicate the likely sufficient reset of OSL signal of fine-grained (4–11 μm) quartz before burial, and thus reliable chronology for the studied core sediments. For one sample, however, the extracted coarse-grained (100–200 μm) quartz overestimated the deposition age significantly, presumably resulting from partial bleaching prior to deposition. The fine-grained quartz ages are generally consistent with the stratigraphical order, and the reliability of these OSL ages are further validated by two selective robust 14C dates. The chronological framework of core ECS-DZ1 reveals striking sedimentation-rate changes. By comparison with other chronostratigraphical records, we infer that post-glacial deposition history (since ∼15 ka) of the study site is likely related to regional sea-level rise and delta-estuary environment evolution, as well as strengthened human activities and/or coastal currents.  相似文献   

10.
A chronology based on optically stimulated luminescence (OSL) dating is presented for the late- and post-glacial evolution of the southern Baltic Sea (15 ka to present). During this period, large water level and salinity changes occurred in the Baltic Basin due to opening and closing of connections to the North Atlantic. Previous attempts to establish a chronology for these palaeoenvironmental changes have mainly been conducted in coastal settings where organic material for 14C dating is abundant. Many of these records are, however, discontinuous due to the large water level fluctuations. In contrast, in the relatively deep water of the Arkona Basin, the sediment record is expected to be more or less continuous. The single aliquot regenerative dose (SAR) procedure was used to date 32 samples of fine quartz sand from a 10.86 m long sediment core from the centre of this basin (45 m water depth). Tests of luminescence characteristics confirmed the suitability of the material for OSL dating and the ages agree well with the available AMS 14C ages on shells. The Baltic Ice Lake drainage to the North Atlantic appears to occur 11.6 ka, agreeing with other published evidence. However, we suggest that the main marine Littorina transgression appears in the Arkona Basin at about 6.5 ka, rather than at 8.5 ka, as previously thought.  相似文献   

11.
The numerical dating of megaflood sediments is a worldwide challenge, a fact that has impeded a full understanding of Late Quaternary dam-outburst flood processes that occurred along the river courses of the Tibetan Plateau. Optically stimulated luminescence (OSL) dating has been widely used on such sediments. Due to their short transportation distances prior to deposition, the OSL signals of megaflood sediments are often partially bleached, resulting in age overestimations. Here, we report on a comparison of OSL ages obtained using both quartz (4–11 μm FG; 90–125, 180–250 μm CG) and K-feldspar (180–250 μm CG) extracted from sediments taken from the Binghong-Bingnong Neolithic-Bronze Age site on the second Jinshan River terrace (T2), in Yunnan Province, southwestern China. Contrary to previous experience suggesting that CG fractions are usually better bleached than FG fractions prior to deposition, our results showed that the OSL ages for the FG quartz fraction were generally younger than those for the CG fraction. This would suggest that the two fractions may have come from different sources, and may have been subject to different geomorphological processes prior to deposition. FG quartz fractions may be suitable to define the maximum age of sediments located in alpine gorge regions. CG quartz fractions can be used by applying the minimum age model (MAM) to select relatively well-bleached grains yielded ages close to the ‘true’ burial ages of the sediments. The results showed that the post-IR IRSL225 ages of single grain K-feldspar were overestimated by > 3 ka, suggesting K-feldspar may not be suitable dating material for megaflood sediments <30 ka. The OSL dates suggest that the T2 terrace was formed ∼8.4 ka, that aeolian sediments were deposited during ∼2.6–1.5 ka, and that the megaflood event occurred after ∼1.5 ka.  相似文献   

12.
Fossil oyster reefs are indicators of past sea levels, and their formation is usually dated by means of radiocarbon. However, radiocarbon dating of the shells from coastal areas may be complicated by the varying sources of carbon. Here we applied optical dating methods to date the samples from above and below a fossil oyster bed in a section on the coast of Bohai Bay, China. The optical ages of the sediments were used to constrain the oyster bed. Single-aliquot regenerative-dose procedures using the OSL signal from fine grain quartz, the IRSL and post-IR OSL signals from polymineral fine grains were employed to determine equivalent dose (De). The behaviors of the different luminescence signals from quartz and polymineral grains during De measurements were examined. The results showed that the quartz OSL signal is more reliable than the polymineral IRSL and post-IR OSL signals with respect to dating for these coastal samples. The optical ages indicated that the oyster reef formed between ca. 6.2 and 5.0 ka.  相似文献   

13.
Many archaeological sites were excavated in China, but rarely in the adjacent coastal areas. An archaeological site at Huangniliang in the coastal area of Shandong Province, northern China was excavated in 2013. Abundant stone artifacts including hammers, cores, flakes, chunks, and retouched tools are found in the silty aeolian sediments. In this study, optically stimulated luminescence (OSL) technique was employed to establish the chronological framework of the site. Medium-grained (45–63 μm) quartz was extracted from six sediment samples for dating. The equivalent doses obtained with the single-aliquot regenerative-dose (SAR) protocol are shown to increase with depth. Three samples from the stone-tool containing layer yield OSL ages ranging from 54 ka to 59 ka, providing the earliest geochronological evidence for the presence of humans in the eastern coast of Shandong peninsula during the early period of Marine Isotope Stage (MIS) 3.  相似文献   

14.
Optically stimulated luminescence (OSL) dating of a series of glaciofluvial/glaciodeltaic sediments in central Buchan and Aberdeen has recently been undertaken. The aims of this project are to test the chronological model proposed by the most recent regional review and the suggestion that parts of Buchan may have remained ice-free during the last glacial maximum (late marine isotope stage (MIS) 3 and MIS 2 29–15 ka). The preliminary results indicate that during the Devensian (ca. 116–12 ka), extensive areas of Buchan may have been glaciated earlier than previously believed (possibly during MIS 4, 72–60 ka), but parts of the region show no depositional evidence of later glaciation. Some waterlain sediments from the Ugie Valley have yielded OSL ages indicating deposition during MIS 5d to MIS 5a (116–72 ka). We discuss whether the absence of overlying glaciogenic sediments at these locations raises questions about the reliability of the OSL ages or about existing models of the Devensian glaciation of Buchan.  相似文献   

15.
We present the results of K-feldspar IRSL dating of the four lower terraces (T3–T6) of the Portuguese Tejo River, in the Arripiado-Chamusca area. Terrace correlation was based upon: a) analysis of aerial photographs, geomorphological mapping and field topographic survey; b) sedimentology of the deposits; and c) luminescence dating. Sediment sampled for luminescence dating gave unusually high dose rates, of between 3.4 and 6.2 Gy/ka and, as a result, quartz OSL was often found to be in saturation. We therefore used the IRSL signal from K-feldspar as the principal luminescence technique. The K-feldspar age results support sometimes complex geomorphic correlations, as fluvial terraces have been vertically displaced by faults (known from previous studies). Integration of these new ages with those obtained previously in the more upstream reaches of the Tejo River in Portugal indicates that the corrected K-feldspar IRSL ages are stratigraphically and geomorphologically consistent over a distance of 120 km along the Tejo valley. However, we are sceptical of the accuracy of the K-feldspar ages of samples from the T3 and T4 terraces (with uncorrected De values >500 Gy). In these cases the Dose Rate Correction (DRC) model puts the natural signals close to luminescence saturation, giving a minimum corrected De of about 1000 Gy, and thus minimum terrace ages; this may even be true for those doses >200 Gy. Luminescence dating results suggest that: T3 is older than 300 ka, probably ca. 420–360 ka (~Marine Isotope Stage [MIS]11); T4 is ca. 340–150 ka (~MIS9-6); T5 is 136–75 ka (~MIS5); T6 is 60–30 ka (MIS3); an aeolian sand unit that blankets T6 and some of the older terraces is 30–≥12 ka. Collectively, the luminescence ages seem to indicate that regional river downcutting events may be coincident with periods of low sea level (associated, respectively, with the MIS10, MIS6, MIS4 and MIS2).  相似文献   

16.
The palaeolake evolution across the Tibetan Plateau and adjacent areas has been extensively studied, but the timing of late Pleistocene lake highstands remains controversial. Robust dating of lacustrine deposits is of importance in resolving this issue. This paper presents 14 C or optically stimulated luminescence(OSL) age estimates from two sets of late Quaternary lacustrine sequences in the Qaidam Basin and Tengger Desert(northeastern Tibetan Plateau). The updated dating results show:(1) the radiocarbon dating technique apparently underestimated the age of the strata of >30 ka BP in Qaidam Basin;(2) although OSL and 14 C dating agreed with each other for Holocene age samples in the Tengger Desert area, there was a significant offset in dating results of sediments older than ~30 ka BP, largely resulting from radiocarbon dating underestimation;(3) both cases imply that most of the published radiocarbon ages(e.g., older than ~30 ka BP) should be treated with caution and perhaps its geological implication should be revaluated; and(4) the high lake events on the Tibetan Plateau and adjacent areas, traditionally assigned to MIS 3a based on 14 C dating, are likely older than ~80 ka based on OSL chronology.  相似文献   

17.
Quartz optically stimulated luminescence (OSL) dating has been applied to sandy beach ridge systems from the Magdalen Islands in the center of the Gulf of St. Lawrence (Quebec, Canada) to provide the first chronological framework for these features. Nineteen beach ridges (22 samples) from four different sites throughout the archipelago were investigated. At one of the sites, samples were taken at 9 m and 7.5 m depth using a vibracore. The quartz is dominated by the fast OSL component and a single-aliquot regenerative-dose (SAR) protocol was used to measure the equivalent doses; a low preheat (180°C/10 s) was chosen to avoid the influence of thermal transfer. The average dose recovery ratio of all samples is 1.02 ± 0.02 (n = 130) suggesting that the SAR protocol works satisfactorily on this material. The OSL ages are internally consistent and supported by independent age control (radiocarbon). The OSL ages indicate that the ridges were built between 2.6 ± 0.2 ka and 0.40 ± 0.10 ka, i.e. during a period of sea level rise. This rise eroded adjacent sandstone cliffs, which contributed a significant sediment supply to the littoral drift and beaches. Some low-lying coasts in the archipelago are still prograding, despite a relative sea level increase of ∼1.6 mm/a over the last 600 years. The late Holocene ages obtained in this study indicate that these processes have been active for at least the past two thousand years. This study demonstrates for the first time that OSL dating using quartz has great potential in this area, and is an appropriate method for establishing precise chronologies for coastal sediments in this region of the Gulf of St. Lawrence.  相似文献   

18.
The south of Western Siberia is an important part of the Eurasian loess belt, containing an extensive record of Quaternary landscape and climate evolution in up to 100 m thick loess deposits with as many as 10 pedocomplexes. However, this important Quaternary archive lacks a reliable absolute chronology, and this has prevented the linking of the widely accepted regional chronostratigraphic correlations with those of other parts of the Eurasian loess belt. Here we present the first results of detailed luminescence dating of the Late Pleistocene loess-palaeosol sequence at the Western Siberian stratotype section of Lozhok. According to the classical regional chronostratigraphic scheme, this sequence records the main stages of the environmental evolution of the region, including three palaeosols correlated with the warming stages of MIS 5e, MIS 5c and MIS 3. Our absolute chronology is based on 38 new luminescence ages (OSL, IR50, pIRIR290). Good agreement between the OSL and pIRIR290 ages suggests sufficient bleaching before deposition. The resulting chronology reveals that, rather than being only Upper Pleistocene in age, the loess-palaeosol sequence at Lozhok actually formed in the Middle and Upper Pleistocene. The ages of individual horizons do not correspond to the previously accepted stratigraphic units and morphological features of pedocomplexes. Our Bayesian chronological model reveals remarkable variation in dust accumulation and preservation at the site. The new results unambiguously identify the presence of an erosional boundary with a hiatus lasting ∼90 ka. The upper pedocomplex, immediately below this discontinuity, formed in sediment deposited between 131 ± 9 ka and 122 ± 11 ka and clearly corresponds to MIS 5. The lower pedocomplex is found in sediment deposited between 240 ± 12 and 199 ± 9 ka, and correlates closely with MIS 7. These new findings demonstrate the urgent need for a wider programme to date the main stratotypes of loess-palaeosol sections in Western Siberia. Only then can the global implications of the regional climate record in this important continental-scale archive be correctly interpreted.  相似文献   

19.
A flight of marine terraces along the Cuban coast records Quaternary sea‐level highstands and a general slowly uplifting trend during the Pleistocene. U/Th dating of these limestone terraces is difficult because fossil reef corals have been affected by open system conditions. Terrace ages are thus often based on geological and geomorphological observations. In contrast, the minimum age of the terraces can be constrained by dating speleothems from coastal mixing (flank margin) caves formed during past sea‐level highstands and carving the marine limestones. Speleothems in Santa Catalina Cave have ages >360 ka and show various cycles of subaerial–subaqueous corrosion and speleothem growth. This suggests that the cave was carved during the MIS 11 sea‐level highstand or earlier. Some stalagmites grew during MIS 11 through MIS 8 and were submerged twice, once at the end of MIS 11 and then during MIS 9. Phreatic overgrowths (POS) covering the speleothems suggest anchialine conditions in the cave during MIS 5e. Their altitude at 16 m above present sea level indicates a late Pleistocene uplift rate of <0.1 mm/ka, but modelling also shows uplift to have been insignificant over a long timespan during the middle Pleistocene since the cave was carved. Our study shows that some flank margin caves in the region of Matanzas are older than commonly believed (i.e. MIS 11 rather than MIS 5). These caves not only can be preserved but are good markers of interglacial sea‐level highstands, more reliable than marine abrasion surfaces. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

20.
Jeju Island, the largest Quaternary volcanic island in Korea, has formed mostly since the early Pleistocene, but its latest chronology of volcanism and sedimentation is still poorly constrained. Here we report optically stimulated luminescence (OSL) ages for two hydromagmatic volcanoes on the southwestern coast of Jeju Island, i.e., the Songaksan and Suwolbong tuff rings. The basaltic tuffs of these volcanoes contain abundant quartz sands from underlying marine sedimentary sequences. Two samples collected from the middle part of the Songaksan Tuff yielded highly reproducible quartz single-aliquot regenerative-dose (SAR) OSL ages of 7.0±0.3 ka, providing the first direct age estimate of Holocene volcanism in Jeju Island. The quartz OSL age estimate of 5.1±0.3 ka for the younger reworked basaltic tuff (the Hamori Formation) is comparable with previous radiocarbon and U-series disequilibrium dating of fossil mollusk shells. Two samples from the Suwolbong Tuff show quartz OSL age estimates of 18.3±0.7 and 18.6±0.9 ka, which are identical within error ranges and younger than the quartz OSL age estimate of 23.2±1.0 ka for the underlying Gosan Formation. This study confirms that volcanism and attendant sedimentation were active in Jeju Island until very recently.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号