首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report investigations of the optically stimulated luminescence (OSL) signals of sedimentary quartz from different regions of Asia, Africa, Europe and North America using a single-aliquot regenerative-dose (SAR) procedure. We show that variations in the shape of dose response curves (DRCs), or growth curves, of the test dose sensitivity-corrected OSL signals among single aliquots composed of multiple grains can be greatly reduced by normalising the DRCs using one of the regenerative dose OSL signals. We refer to this regenerative-dose normalisation procedure as ‘re-normalisation’. We find a common re-normalised DRC extends to doses of ∼250 Gy for samples that differ significantly in terms of geological provenance, sedimentary context and depositional age. This feature permits the development of a ‘global standardised growth curve’ (gSGC) for OSL signals from single aliquots of quartz. The equivalent dose (De) of an aliquot can be estimated from the natural signal, one regenerative dose signal and their corresponding test dose signals. For the variety of samples investigated, we find that De estimates obtained from the gSGC are consistent with those obtained using full SAR procedures for doses of up to ∼250 Gy. Use of the gSGC for single aliquots would greatly reduce the time required to estimate the De values of older samples and for a large number of aliquots.  相似文献   

2.
We investigated the infrared stimulated luminescence (IRSL) and post-infrared IRSL (pIRIR) signals emitted by K-feldspars from sedimentary samples from Asia, Europe and Africa using a single-aliquot multiple elevated temperature (MET) stimulation procedure. For separate aliquots of the same sample, we show that variation among the dose response curves (DRCs), or growth curves, constructed from the regenerative dose signal (Lx), the test dose signal (Tx, an indicator of luminescence sensitivity) and the sensitivity-corrected signal (Lx/Tx) can be largely eliminated by normalising the DRCs using one of the regenerative dose signals; we call this procedure ‘regenerative-dose normalisation’ or re-normalisation. Furthermore, for the MET-pIRIR signals measured at 250 °C, we find that different samples have re-normalised DRCs that follow the same growth function, despite the samples differing significantly in terms of their geological provenance, sedimentary context, equivalent dose (De) and luminescence sensitivity. This common feature offers the potential to establish a ‘global standardised growth curve’ (gSGC) for different samples of K-feldspar, and thereby enable De values to be estimated for a large number of single aliquots by projecting the re-normalised natural signals on to the gSGC. For the 18 samples investigated in this study, we find that De estimates obtained from the gSGC are consistent with those obtained using full single-aliquot regenerative dose (SAR) procedures for doses of up to ∼1600 Gy. The establishment of a gSGC would greatly reduce the time required to date older samples using K-feldspar, as regenerative doses of several hundreds to a few thousands of Gy are typically delivered to each aliquot in each SAR cycle.  相似文献   

3.
The standardised growth curve (SGC) for quartz OSL has recently been developed as a practical means to reduce measurement times when determining palaeodoses using quartz of aeolian sediments, especially loess and desert sand from the same section or the same geographical area. In the present study, we test the performance of SGCs for lacustrine sediments of three cores in the Qaidam Basin of the Qinghai-Tibetan Plateau (QTP) in China. A total of nine samples were collected (three samples from each of the three cores), and silt-sized (38–63 μm) quartz was extracted for the experiment. The results demonstrated that: (a) Nine samples display similar dose–response curves up to a regeneration dose of 600 Gy using single aliquot regenerative-dose (SAR) protocol, suggesting the existence of a standardised growth curve for lacustrine sediments in the Qaidam Basin; (b) For samples with Des of up to ~400 Gy, the Des determined by the SGC are in agreement with the Des by the SAR protocol, suggesting that the SGC approach could be used for De determination up to a dose of ~400 Gy for lacustrine samples from the Qaidam Basin of the Qinghai-Tibetan Plateau in China; (c) The saturation dose for these samples is more than 600 Gy, and in the growth curve a linear growth part was observed in the high dose range of >200 Gy.  相似文献   

4.
Dating of quartz by optically stimulated luminescence (OSL) has been revolutionized with introduction of the test dose (TD) in development of a measurement sequence known as the single-aliquot regenerative-dose (SAR), whereby a valid sensitivity correction for the luminescence signal is provided in the measurement cycle. However, the size of the TD used in the SAR protocol remains controversial. Previous studies show that the TD has little effect on the equivalent dose (De) for young samples in luminescence dating in which the applicability of different deposits varies greatly in different regions. However, detailed studies are lacking on how TD size affects SAR–OSL results of samples with a relatively high De range. In this study, typical loess samples with high De values (∼60 Gy–∼250 Gy) from the eastern Tibetan Plateau were selected to investigate the effects of variation in TD size on the quartz SAR–OSL protocol. Dose recovery tests show that a known dose could be recovered successfully by applying different TDs. Test dose size has an effect on shapes of regenerated dose–response curves (DRCs) and has different influences on Des and characteristic saturation doses for quartz samples with a high dose range. A TD size of 20%–30% De is a good compromise for Tibetan loess with De of ∼60–120 Gy in the quartz SAR protocol, and a TD size larger than 30% should be considered for samples with a larger De. The results of this study highlight the importance of TD size in the SAR–OSL protocol for quartz samples with a high dose range.  相似文献   

5.
Palynostratigraphical records have been used to understand the response of vegetation to climate change, and benefit from independent dating to ensure a robust correlation with global climate and sea-level change. In order to constrain the pollen chronology of a long sedimentary core taken at Azzano Decimo in the Friulian foreland of northeastern Italy, optically stimulated luminescence (OSL) has been applied to fine grain quartz. The samples meet all the standard performance criteria set to test the reliability of the single-aliquot regenerative-dose (SAR) protocol, and still show increasing dose response at 500 Gy. OSL ages are in good agreement with radiocarbon dating and the pollen interpretation down to 70 ka, and with De values of ~140 Gy, but below this point, they display an increasing age underestimation towards the Eemian and beyond. The comparison of De values measured using both a SAR and single-aliquot regeneration and added-dose (SARA) protocol, confirmed that both were successfully correcting for sensitivity changes in the quartz during measurement of the burial dose, and this was not the reason for the age underestimation. The quartz OSL dose response curve for all samples is best described by a saturating exponential plus linear (SEPL) function. Although all underestimated ages are derived from De values that fall on the high dose linear region of this curve, it is unclear if this is the cause of the underestimation.  相似文献   

6.
The introduction of the Single Aliquot Regenerative Dose (SAR) protocol established luminescence dating as an indispensable tool in Quaternary research. A major impediment of this technique is the time required for measurements, since the protocol is repeated for various aliquots of each sample to establish a sound statistical basis. To reduce the demand on machine time, Standardised Growth Curve (SGC) approaches have been developed and successfully applied for samples from some regions. However, differences in luminescence properties require careful testing of this techniques when applied to samples with other geological background.In this study, the application of the SGC approach of Li et al. (2016) is successfully verified for multi-grain aliquots of coarse-grained quartz and feldspar samples from three sites in northern Switzerland. In-depth quality control measures ensure the reproducibility of equivalent dose (De) values obtained by the common SAR protocol and sample-specific SGCs. For both minerals little sensitivity was found to the re-normalisation dose and the sample-specific SGCs performed well. In contrast to other studies, no different types of dose response curve shape were observed for quartz. A minimum number of full SAR measurements of eight and six aliquots per sample has been found appropriate for quartz and feldspar, respectively. For the fading corrected feldspar signals, site-specific SGC worked well and De values of up to 800 Gy were consistently replicated.In summary, sample-specific SGCs for samples from northern Switzerland perform well and their application reduces measurement times by up to 70%. The construction of a regional SGC may well be beneficial, however, caution regarding the choice of given doses and curve fitting is recommended and a thorough verification of SGC results is needed before the technique is widely applied.  相似文献   

7.
The standardised growth curve (SGC) technique has the potential to save instrument time for equivalent dose (De) determination when applying single-aliquot regenerative-dose (SAR) protocol during optically stimulated luminescence (OSL) measurements. In this study, we test the applicability of two commonly used SGC procedures for OSL signals of quartz grains from aqueous deposits of the Yangtze Delta in China, which have been reported for weak luminescence signals and suffering from partial bleaching. Multiple silt-sized and sand-sized fractions of quartz samples from eight cores are used to construct SGCs by test dose standardisation (TD-SGC) and least-squares normalisation (LS-SGC), respectively. Three strategies, i.e. region-specific (SGCR), region with core-specific (SGCR + C) and core-specific (SGCC), are adopted to categorise these normalised data into different SGC datasets. The large variability of dose response signals is substantially reduced by the SGC procedures for most of these datasets. Hence, common SGCs for a variety of samples from the Yangtze Delta can be established, irrespective of their distinctive particle sizes and luminescence characteristics. The De values are then estimated using both TD-SGC and LS-SGC procedures for samples from a specific core. Comparing to the full SAR protocol, the TD-SGC procedure roughly gives reproducible De estimates lower than ∼100 Gy while the LS-SGC procedure derives generally consistent De estimates of up to ∼230 Gy. Although LS-SGCC and LS-SGCR + C procedures replicate the most consistent De values, the LS-SGCR procedure performs better in efficiency with a slightly less accuracy. In addition to careful comparison of LS-SGC and full SAR procedures, we suggest that a synchronous ratio derived by the chosen regenerative dose and its response signal for re-normalisation can be used to predict the LS-SGC De reliability on samples from similar sedimentary environments.  相似文献   

8.
The application of a regeneration procedure for optically stimulated luminescence (OSL) dating requires that the dose-response curve (DRC) of a natural sample is the same as that of a laboratory-generated one. However, the build-up of the laboratory-generated DRCs of quartz has been widely reported in the literature, i.e., the laboratory-generated DRCs are significantly higher than the natural counterparts in the high dose region (above 150 or 200 Gy). This results in severe underestimation of equivalent dose (De) for quartz OSL in the high dose region during the application of a single-aliquot regenerative-dose (SAR) protocol. However, the potential mechanism governing the build-up of the laboratory-generated DRC is still unclear. In this study, we performed a comprehensive investigation of the natural and laboratory-generated OSL signals and DRCs using a kinetic model for quartz. We compared the differences in charge concentrations between natural and laboratory-irradiated aliquots following irradiation and monitored the competition for holes and electrons during preheat and stimulation, for the natural, regenerative, and test dose cycles. In the course of the modelling, we could see the build-up of laboratory-generated DRCs, the underestimation of De, and a double exponential saturation characteristic of the DRCs. We demonstrated a discrepancy in competition for electrons in the deep electron trap and recombination centres during stimulation between the natural, regenerative, and test dose cycles. The simulation results are directly relevant to quartz OSL De determination using the SAR protocol and reveal the mechanisms responsible for the experimentally observed different behaviours between natural and laboratory-generated DRCs.  相似文献   

9.
We investigated the sensitivity change of multiple-elevated-temperature (MET) stimulated post-infrared infrared-stimulated luminescence (MET-pIRIR) signals as a response to irradiation, sunlight bleaching and heating using samples from the Mu Us Desert, central China. A strong dose dependence of MET-pIRIR signal sensitivity was observed. The intensity of the test-dose signals (Tx) increase with the pre-dose received. Furthermore, the signal sensitivity can be reset by sunlight bleaching or heating. This suggests that both the electron traps and hole centres in K-feldspar can be bleached by sunlight, and can, therefore, be used for dating. Using the test-dose signal as a monitor for sensitivity change, it was found that the sensitivity (or hole centres) saturate at a higher dose (D0 = ∼750 Gy) than the sensitivity-corrected signals (or electron traps) (D0 = ∼400 Gy). We propose a multi-aliquot regenerative-dose (MAR) MET-pIRIR dating protocol, which utilises the high saturation dose of hole centres. This protocol was tested using aeolian sediments from north China with ages ranging from 0 to 470 ka. It was found that, compared to the dose limit of ∼800–1000 Gy using the normal MET-pIRIR or pIRIR procedure, the new method can measure a natural dose of up to ∼1500 Gy and produce ages consistent with the expected ages for the samples investigated.  相似文献   

10.
Controversy exists regarding the chronology of loess in the Nanjing area in Jiangsu Province and the Jiujiang area in Jiangxi Province, East China. The chronology is of special interest, because the age of the initial accumulation for loess in these areas indicates that dust accumulation has been extended from the Loess Plateau in North China to East China at that time. This implies a threshold in the evolution of the East Asian monsoon, with the strengthened winter monsoon transporting aeolian dust further to the south. In this study nine luminescence samples were collected from the Jiujiang area and four samples from the Nanjing area. Quartz grains of 38–63 μm were isolated and the single-aliquot regenerative-dose (SAR) protocol was employed for De determination. For all samples from the Nanjing area, during the SAR measurement cycles the test-dose sensitivity was dose dependent and dropped significantly when the regeneration dose reached >300 Gy, while it increased linearly when the regeneration dose value ranged from 25 to 300 Gy. The reason for this is not yet known. The OSL chronology and its implications for paleoenvironmental change are discussed. It is concluded that: (1) loess deposition in the Jiujiang area started in the early Last Glaciation; and (2) the first loess layer in the Nanjing area was deposited during the last Glaciation.  相似文献   

11.
This study reports on the first investigation into the potential of quartz luminescence dating to establish formation ages of ferruginous duricrust deposits (ironstones) of the Xingu River in Eastern Amazonia, Brazil. The studied ironstones comprise sand and gravel cemented by goethite (FeO(OH)), occurring as sandstones and conglomerates in the riverbed of the Xingu River, a major tributary of the Amazon River. The Xingu ironstones have a cavernous morphology and give origin to particular habitat for benthic biota in an area that hosts the largest rapids in Amazonia. So far, the Xingu ironstones have uncertain formation ages and their sedimentary origin is still poorly understood. In this way, seven samples of ironstones distributed along the lower Xingu River were collected for optically stimulated luminescence (OSL) dating of their detrital quartz sand grains. Additionally, the organic content of some samples was dated by radiocarbon (14C) for comparison with quartz OSL ages. The luminescence ages of the sand-sized quartz grains extracted from the ironstones were obtained from medium (100–300 grains) and small (10–20 grains) aliquots using the single aliquot regenerative-dose (SAR) protocol. Equivalent doses (De) distributions have varied overdispersion (OD) both for medium size aliquots (OD = 19–58 %) and small size aliquots (OD = 29–76 %). No significant trend was observed between De and aliquot size. The studied ironstones grow over the riverbed, but stay below or above water throughout the year due to the seasonal water level variation of the Xingu River. However, the effect of water saturation in dose rates is reduced due to relatively low porosity of ironstones. Water saturated dose rates (dry sample dose rates) range from 2.70 ± 0.21 (2.79 ± 0.22) Gy/ka to 12.34 ± 0.97 (13.26 ± 1.12) Gy/ka, which are relatively high when compared to values reported for Brazilian sandy sediments elsewhere (∼1 Gy/ka). Samples with high overdispersion (>40 %) are mainly attributed to mixing of grains trapped in different time periods by goethite cementation. The obtained OSL ages for water saturated (dry) samples range from 3.4 ± 0.3 (3.3 ± 0.4) ka to 59.6 ± 6.0 (58.1 ± 6.4) ka, using De determined from medium size aliquots and dose response curves fitted by an exponential plus linear function. Radiocarbon ages of the bulk organic matter extracted from selected ironstone varied from ca. 4 cal ka BP to ca. 23 cal ka BP. Significant differences were observed between OSL and radiocarbon ages, suggesting asynchronous trapping of organic matter and detrital quartz within the ironstone matrix. These late Pleistocene to Holocene ages indicate that ironstones of the Xingu River result from an active surface geochemical system able to precipitate goethite and cement detrital sediments under transport. The obtained ages and differences between OSL and radiocarbon ages point out that the ironstones have multiphase and spatially heterogeneous growth across the Xingu riverbed. Our results also expand the application of luminescence dating to different sedimentary deposits.  相似文献   

12.
The Gurbantunggut Desert is the second-largest desert in China, located in the westerly-dominated region of north-western China. Previous understanding of palaeoclimate of this desert was mostly based on lake and loess records from the Junggar Basin and Tian Shan Mountains, whilst direct dating of sedimentary records from the desert was very limited. This study applies high-resolution post-infrared infrared stimulated luminescence (pIRIR) dating to three sedimentary profiles at the southern edge of the Gurbantunggut Desert, which contain aeolian sand and water-lain sediments, recording palaeoenvironmental changes at the desert margin since the Last Glacial Maximum (LGM). Different pIRIR dating procedures were applied for samples with different ages. For Holocene-aged samples, a single-aliquot regenerative-dose (SAR) pIRIR procedure based on a three-stepped pIRIR measurement at 110 °C, 140 °C and 170 °C was used, and a standard growth curve (SGC) procedure yields an equivalent dose (De) similar to that of the full-SAR procedure; thus, is applicable for accelerating De measurement. For samples much older than the Holocene, a multi-aliquot regenerative-dose (MAR) pIRIR procedure based on a three-stepped pIRIR measurement at 150 °C, 200 °C and 250 °C was found to be the optimal dating procedure, because a SAR procedure would yield underestimated ages due to uncorrected initial sensitivity change. pIRIR dating results of the investigated profiles reveal a substantial sand accumulation during the LGM, an intensification of aeolian deposition at ∼12 ka and a wetter depositional environment at ∼10–8 ka. A rapid fluvial deposition is dated at ∼20–19 ka, corresponding to the deglaciation period. The sedimentary records from the desert margin show some correlation with lake and loess records in the same region and suggest a complex response of the desert environment to different climatic factors.  相似文献   

13.
Equivalent dose (De) values were measured by using medium aliquots of different grain size quartz fractions of five lakeshore sediments from the arid region of north China. There are two different relationships between De values and grain sizes of these five samples. The first relationship is that the De values obtained from various grain sizes are in agreement within 1 delta errors. The second relationship is that De values are similar to each other for fractions between 125 and 300 μm, while the De value of the 63–90 μm fraction is 40~55% smaller than others. For example, the De values obtained for sample #3 are 20.15 ± 1.19 Gy, 19.80 ± 0.83 Gy and 20.93 ± 1.06 Gy for fractions of 90–125, 125–150 and 250–300 μm respectively, but are 10.79 ± 0.84 Gy for the 63–90 μm fraction. The second relationship can't be interpreted by previous studies of both dosimetry and heterogeneous bleaching. It is deduced for sample #2, #3 and #6 that fine particles (<90 μm) intruded after the dominant sedimentation. Comparison of OSL ages from different grain size fractions of sample #2 with a radiocarbon age from the same lithologic layer supports that fractions coarser than 125 μm yield more reliable burial ages, while the fraction finer than 90 μm yields underestimated ages for some lakeshore sediments from this arid region.  相似文献   

14.
Thermoluminescence (TL) signals of calcite can be used to potentially date geological and archaeological events back to several million years. However, several issues, such as spurious TL signals appearing at temperatures above 300 °C, have hindered its application to a wide range of samples. A single-aliquot regenerative-dose (SAR) protocol for calcite with low-temperature measurements is proposed to measure the equivalent dose (De). It uses the isothermal TL (ITL) signals measured at around 225-240 °C, where a De vs. ITL temperature (De-T) plateau can be observed. The width of the temperature range of such a plateau can be sample dependent, as it relates to the proportional contributions of the signals from corresponding TL peaks. The signal at the ITL temperature plateau range largely corresponds to the TL signals of the 280 °C TL peak. De values obtained by the SAR-ITL protocol are in agreement with those of the multiple-aliquot additive-dose (MAA)-TL and MAA-ITL protocols. The absence of detectable anomalous fading of ITL signals at 235 °C in this and previous studies indicates that the signal is free of fading. Dose recovery tests confirm the suitability of the SAR-ITL protocol for De estimation. The SAR-ITL protocol measured with temperatures below 300 °C avoids the effects of spurious luminescence signals induced by high-temperature heating. The dose-response curves for ITL signals at 230-235 °C have large characteristic saturation doses (D0) of ∼2000-2400 Gy. The SAR-ITL protocol for calcite thus has the potential to date geological and archaeological samples spanning the entire Quaternary period.  相似文献   

15.
Geochemically-fingerprinted tephra beds provide unique chronostratigraphic markers for comparing Quaternary sedimentary records across eastern Beringia (Alaska and Yukon Territory). Establishing reliable numerical age control on these tephra horizons enables them to be placed within firm temporal frameworks and increases their potential as correlative tools for regional palaeoenvironmental reconstructions. To this end we present new single-grain and multi-grain quartz optically stimulated luminescence (OSL) chronologies for loess deposits bracketing three well-documented and regionally significant variants of the Sheep Creek tephra (SCt) at two sites in west-central Yukon Territory (Ash Bend and Quartz Creek). Single-grain OSL ages bracketing the SCt-A and SCt-K reveal that these tephras were deposited during late Marine Isotope Stage (MIS) 5 or early MIS 4. The SCt-C variant and associated organic-rich bed at Ash Bend were likely deposited during late MIS 5, based on a single-grain OSL age of ∼81 ka for the overlying sediments. The single-grain OSL ages obtained for these deposits are in stratigraphic order and in broad agreement with a fission track age estimate of ∼77 ka for the SCt-K. In contrast, comparative chronologies obtained using multi-grain aliquots are stratigraphically inconsistent and unexpectedly young when compared with the independent SCt-K age. Detailed examination of the single-grain OSL datasets reveal a range of unfavourable luminescent properties that could have contributed to the multi-grain aliquot age discrepancies; including, very low yields of luminescent grains, weak OSL signal sensitivities and large populations of aberrant grains (particularly 0 Gy grains and ‘dim’ grains with a tendency to sensitise during the equivalent dose (De) measurement sequence) that have similarly sized OSL signals as grains used for De analysis. Synthetic aliquot De datasets constructed from single-grain OSL measurements reveal that the large proportional light sum contributions of 0 Gy and dim grains could possibly account for multi-grain age underestimations in some of the Ash Bend samples. In light of these potentially problematic averaging effects, we do not consider the multi-grain OSL ages to be reliable and suggest that single-grain approaches may be preferable for dating sediments with similar quartz luminescence behaviours across this region.  相似文献   

16.
Modern Mississippi Delta sediments were analyzed to investigate quartz OSL signal resetting in large river deltas and test the accuracy of OSL dating on a decadal time scale with the early background subtraction and a recently proposed burial dose estimation procedure. Both fine silt-sized and sand-sized quartz were measured with a modified single-aliquot regenerative dose (SAR) protocol and equivalent dose (De) was calculated using different background subtraction methods. Evidence of insufficient bleaching was observed, but the residual signal is equivalent to ∼100 a on average for both sandy quartz and fine silt-sized quartz. It is shown that dose distributions of sandy quartz are affected by the background subtraction. The proportion of aliquots that have De in agreement with expectation is significantly larger when an early background is subtracted compared to the late background subtraction. This is, in contrast, not observed for fine silt-sized quartz. Accurate OSL ages were obtained by employing the unlogged minimum age model to Des of sandy quartz obtained with the early background subtraction method.  相似文献   

17.
《Quaternary Geochronology》2008,3(1-2):99-113
The Chinese Loess Plateau (CLP) is of major interest to Quaternary geologists because it represents an important terrestrial archive of palaeoclimatic fluctuations. Previous multiple-aliquot luminescence dating studies of Chinese loess mainly used thermoluminescence (TL) and infrared stimulated luminescence (IRSL) signals of polymineral fine-grains; these are known to be subject to anomalous fading and thus will tend to yield age underestimations. In this paper we investigate whether the blue-light stimulated luminescence (BLSL) signals from 63 to 90 μm quartz grains extracted from three western Chinese loess sites (Zhongjiacai, Le Du and Tuxiangdao) can be used to establish a reliable chronology. The single-aliquot regenerative-dose (SAR) procedure is used for the equivalent dose (De) determinations and the suitability of our measurement protocol is confirmed by dose recovery tests. The influence of an IRSL signal on the quartz De measurements derived from BLSL has been investigated. From these results we conclude that an IRSL contamination, expressed as an IRSL/BLSL ratio, of up to 10% can be accepted before the values of De are significantly affected. All three sites yield stratigraphically consistent and spatially highly reproducible optical ages up to about 50–70 ka. At the Tuxiangdao site a marked hiatus in the record is identified between ∼20 and ∼30 ka; this remained undetected in previous studies and clearly highlights the importance of high-resolution optical dating in Chinese loess research. The optical ages presented in this work provide more evidence for episodic loess deposition and varying loess accumulation rates in the western part of the CLP. Our study seems to confirm the potential of optically stimulated luminescence (OSL) dating using the SAR procedure applied to the very fine sandy quartz fraction in Chinese loess back to ∼40–50 ka (∼120–150 Gy).  相似文献   

18.
Numerical dating of loess is important for Quaternary studies. Recent progress in post-infrared infrared-stimulated luminescence (pIRIR) signals from potassium-rich feldspar has allowed successful dating of Chinese loess beyond the conventional dating limit based on quartz optically stimulated luminescence (OSL) signals. In this study we tested the multiple-aliquot regenerative-dose (MAR) pre-dose multiple-elevated-temperature post-IR IRSL (pMET-pIRIR) procedure on samples from the palaeosol S5 (∼480 ka) and S8 (∼780 ka) layers from the Luochuan and Jingbian sections, respectively. The results show that (1) compared to sensitivity-corrected signal (Lx/Tx), a higher saturation dose is observed for the sensitivity-uncorrected MET-pIRIR signals (Lx), suggesting that MAR is advantageous for dating old samples; (2) negligible fading component can be achieved using the pMET-pIRIR procedure; (3) for the sample from the top of palaeosol S5, De values (1360 + 226/-167 Gy) broadly consistent with expected De (1550 ± 72 Gy) can be obtained using the sensitivity-uncorrected 300 °C MET-pIRIR signal. Our study suggests that a De value of about 1800 Gy may be the maximum dating limit of Chinese loess using the MAR pMET-pIRIR procedure.  相似文献   

19.
A protocol for optical dating of potassium-rich feldspar (K-feldspar) is proposed. It utilizes the infrared stimulated luminescence (IRSL) signal measured by progressively increasing the stimulation temperature from 50 to 250 °C in step of 50 °C, so-called multi-elevated-temperature post-IR IRSL (MET-pIRIR) measurements. Negligible anomalous fading was observed for the MET-pIRIR signals obtained at 200 and 250 °C. This was supported by equivalent dose (De) measurements using the IRSL and MET-pIRIR signals. The De values increase progressively from 50 °C to 200 °C, but similar De values were obtained for the MET-pIRIR signal at 200 and 250 °C. Measurement of modern samples and bleached samples indicates that the MET-pIRIR signals have small residual doses less than 5 Gy equivalent to about 1–2 ka. We have tested the protocol using various sedimentary samples with different ages from different regions of China. The MET-pIR IRSL ages obtained at 200 and 250 °C are consistent with independent and/or quartz OSL ages.  相似文献   

20.
Optically stimulated luminescence (OSL) dating methods have been widely applied in Quaternary glaciology. However, glacigenic deposits are considered in general as problematic for OSL dating, mainly because they are transported shorter distances prior to burial and are usually partially bleached. Thus, most researchers choose glaciofluvial and glaciolacustrine sediments (with relatively longer transportation times) for OSL dating when constraining the age of glaciation. In this study, four samples were collected from a lateral moraine series at Zhuqing Village, northern margin of Queer Shan Mountain, eastern Tibetan Plateau, in order to investigate the applicability of OSL dating for morainic deposits. Quartz grains (38–63 μm) were extracted and measured using single aliquot regenerative-dose (SAR) protocol. Internal checks and dose recovery test show that the SAR protocol is appropriate for equivalent dose (De) determination. The effect of thermal transfer is small for all samples and the recycling ratio for each individual sample is close to unity. The symmetry in the De distributions indicates that quartz grains were well-bleached prior to burial. OSL ages show good agreement with geomorphological and field investigations, and are also concordant with an independent ESR age. It is concluded that: (a) the morainic deposits in Zhuqing were well-bleached and suitable for OSL dating; (b) SAR protocol can be applied to morainic deposits for samples under study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号