首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
Electron spin resonance (ESR) dating of optically bleached quartz grains was performed on three sediment samples collected from the Middle Palaeolithic site of Cuesta de la Bajada (Spain). A standard multiple grain and multiple aliquot additive dose procedure was employed, and both the Al and Ti centres were measured as part of the multiple centres approach.ESR age estimates obtained for the three samples indicate that the Al centre provides a maximum possible chronology, as the Ti centres show that the Al signal was likely not systematically reset to its residual level during sediment transport. A direct comparison between ESR ages based on the Ti centres and single grain optically stimulated luminescence (OSL) ages from samples collected nearby shows broadly consistent results. The Ti-H centre also appears to provide suitable chronologies for at least two of the three Middle Pleistocene samples studied here. Surprisingly, the only sample showing consistent ESR ages between the Al and Ti centres appears to be overestimated in comparison with the Ti-centre and OSL ages derived from the other two samples. This indicates either incomplete bleaching of both the Al and Ti centres for this sample, or unexpected impacts of other sources of De uncertainty, such as multi-grain averaging effects. The ESR dating results overall indicate that the archaeological sequence of Cuesta de la Bajada CB-3 is most likely correlated to either MIS 7 or 9.  相似文献   

2.
Multiple-centres electron spin resonance (MC-ESR) dating of quartz grains has been commonly applied to fluvial and lacustrine deposits and can provide a precise chronological framework for depositional histories. However, the reliability of this method for quartz grains obtained from sediments of boreholes, which are usually deposited continuously and record information regarding basin evolution and climate change, has not yet been assessed. In this study, we have initially applied the MC-ESR dating method to borehole sediments from the Zhoulao core (ZLC), located in the depocenter of the Jianghan Basin, middle Yangtze River, China. Dating of quartz grains from the ZLC using MC-ESR yields estimated ages that are generally consistent with the established paleomagnetic chronological framework. For Middle Pleistocene samples (i.e., 0.7–0.3 Ma), the Ti–Li centre provides more accurate ages than those of Al centre, which are overestimated. For Early Pleistocene samples (i.e., 2.3–0.8 Ma), both the Al centre and Ti–Li centre give highly consistent estimate ages, indicating that this is a favorable dating range for MC-ESR. Overall, the Al centre shows promise for dating Pliocene samples, whereas the Ti–Li centre is more suitable for Middle-Early Pleistocene (2.3–0.3 Ma) sediments. In addition, the deposition rate of depth <170 m in the ZLC is greater than those of depth >170 m sediments; however, the specific tectonic, climatic, or geomorphic mechanism for this change in sedimentation rate is still unclear.  相似文献   

3.
The finding of Upper Paleolithic engravings in 2016 triggered a multidisciplinary investigation of the Alkerdi cave system (Urdazubi, N Spain). The study of the speleogenetic processes led to the identification of at least 6 paragenetic cave levels with associated sedimentary infill. In order to unravel the timing of changes in the karst dynamics and to get some insights about sediment origin, two sediment samples were collected from cave levels 4 and 1 for numerical dating purpose, using both Optically Stimulated Luminescence (OSL) and Electron Spin Resonance (ESR) methods. One additional modern-age sample was also taken from the entrance of the karst to evaluate the magnitude of the optical bleaching achieved by the quartz grains before entering the cave system. Last, one sample was collected from a flowstone for U-series dating, providing independent age control.OSL measurements were carried out using small quartz multi-grain (MG) and single-grain (SG) Single Aliquot Regenerative-dose (SAR) protocol. Initial Equivalent Dose (De) results show evidence of saturated OSL signal for the sample of the higher level (with ∼60% of saturated aliquots). Unlike SA data, SG analyses do not meet the usual quality criteria (e.g., relatively high recuperation ratios, only a few grains with useable signal), suggesting that corresponding dating results should be treated with caution.Hence, both MG and SG TT-OSL and MG ESR methods were subsequently employed, as the corresponding signals are known to have higher saturation levels than OSL ones. ESR analyses were based on the Multiple Centre (MC) approach using the standard multi-grain multi-aliquot additive (MAA) dose method, while TT-OSL measurements were performed following Demuro et al. (2020). The latter, however, did not return any useful results for both samples. MC ESR data show the usual De pattern (De(Al)>De(Ti op. D)>De(Ti–H)) indicating that among the three ESR signals analyzed, the Ti–H most likely provides the closest estimate to the true burial age. However, low measurement repeatability and goodness-of-of fit indicate that the reliability of the ESR results may be reasonably questioned.Results derived from this multi-technique dating approach provide the first chronological constraints for the sedimentary infill of the Alkerdi cave system. In particular, they suggest that sediment deposition in Cave Level 4 (ALK-OSL01) occurred around 130 ka, which is in good agreement with the minimum age constraint given by the speleothem (80.5 ± 9.0 ka). In comparison, the young age obtained for sample ALK-OSL02 (5.0 ± 0.9 ka) suggests recent Holocene formation of the lowest cave level 1.Finally, the MG De value obtained for the modern sample is close to zero (<1 Gy), indicating that the OSL signal is almost fully reset at a multi-grain level before entering the cave. Additionally, despite the large De overdispersion measured in this modern sample, the De values are one to two order of magnitude lower than those obtained with the same model in the other two samples. Therefore, the large OSL De overdispersion (OD) values of up to 64% obtained for the two samples from Cave Level 4 and 1 are most likely related to re-sedimentation processes inside the cave system.  相似文献   

4.
When electron spin resonance (ESR) is applied to sedimentary quartz, dealing with the poor bleachability of the signals is particularly challenging. In this study, we used both the single-grain optically stimulated luminescence (OSL) and the single aliquot ESR dating of quartz from deep sand deposits preserving a Stone Age archaeological sequence to combine the advantages of the two methods: good bleaching behaviour and extended age range. Using the youngest samples at each sampling site we were able to calculate the mean ESR residual age from the difference between the OSL ages and the apparent ESR ages. Focusing mainly on the single aliquot regenerative dose (SAR) protocol here, we were able to calculate the mean ESR residual age for the Ti and Al centres, including the non-bleachable signal component for the latter. For the NP site, residual ages of 209 ± 13 ka and 695 ± 23 ka were calculated for the two centres, whereas for the ZS site 268 ± 39 ka and 742 ± 118 ka were determined. These residual ages are significant and cannot be neglected. Thus, the residual age was subtracted from the apparent ESR ages. The validity of the residual subtraction method was tested through a comparison of the oldest OSL age from each site with the residual subtracted ESR age. For both NP and ZS sites, the residual subtracted Ti and Al ages were consistent with the OSL age within 2-σ uncertainty, and therefore confirm the robustness of the subtraction method. Within the NP sequence, we were able to locate the end of the Early Stone Age at 590 ± 86 ka, and this provides a maximum age for the transition to the Middle Stone Age in this part of south-central Africa.  相似文献   

5.
Five Plio-Pleistocene to Holocene aeolian quartz samples from the coastal dune deposits of the Wilderness-Knysna area (South Africa) previously dated by OSL were selected for ESR dating. Samples were processed following the Multiple Centre approach and using the Multiple Aliquot Additive dose method. Aluminium (Al) and Titanium (Ti) signals were systematically measured in all samples.Our study shows that ESR results obtained for Middle Pleistocene to Holocene samples may be strongly impacted by (i) the presence of a significant high frequency noise in the ESR spectra acquired for the Ti signals and (ii) the choice of the fitting function employed. In particular, if not taken into account, very noisy spectra can lead to a significant overestimation of the true ESR intensity measured for the Ti–H signal. These sources of uncertainty are however not sufficient to remove the ESR age overestimations. Consequently, our results indicate that the Al and Ti ESR signals of these quartz samples have not been fully reset during their aeolian transport.While this work contributes to improve our understanding of the ESR method applied to quartz grains, and especially of the potential and limitations of the Ti signals, it also provides additional baseline data to illustrate the existing variability among quartz samples of different origins or sedimentary context. Our results are consistent with previous studies by confirming that the Ti–H signal shows the best potential for the evaluation of low dose values (<100 Gy for these samples), whereas it becomes inappropriate for the higher dose range, and the Ti–Li–H (option D sensu Duval and Guilarte, 2015) should be used instead.Beyond the methodological outcome, this ESR dating study also provides a useful addition to the existing chronology of the aeolian deposits in this region. In particular, new (and possibly) finite numerical age results were obtained for the two oldest samples, constraining the aeolianite landward barrier dune and the coversand formations to the MIS 10-8 and Pliocene, respectively.  相似文献   

6.
The present work reports the first numerical ages obtained for the two highest fluvial terraces (Qt1 and Qt2) of the Alcanadre River system (Northeastern Spain) representing the earliest remnants of Quaternary morphosedimentary fluvial activity in the Ebro basin. ESR dating method was applied to optically bleached quartz grains and both the Al and Ti centers were measured, in accordance with the Multiple Center approach. The results are overall in good agreement with the existing preliminary chronostratigraphic framework and our interpretation indicate that terraces Qt1 and Qt2 have an ESR age of 1276 ± 104 ka and 817 ± 68 ka, respectively. These data provide some chronological insights on the beginning of the fluvial sedimentary processes in a scenario of incision maintained over Quaternary in the Ebro Basin. These are among the first numerical ages obtained for such high terraces in the Iberian Peninsula.Our results demonstrate the interest of using the Multiple Center approach in ESR dating of quartz, since the two centers provide complementary information, i.e. an independent dose control. The overall apparent consistency between the ESR age estimates and the existing preliminary chronostratigraphic framework may be considered as an empirical evidence that the Ti–Li center may actually work for Early Pleistocene deposits, whereas the Ti–H center shows some clear limitations instead. Finally, these results demonstrate the interest of using ESR method to date Early Pleistocene fluvial terraces that are usually beyond the time range covered by the OSL dating method.  相似文献   

7.
The present study aimed to test reliability of luminescence and electron spin resonance (ESR) methods to date tephra. We investigated on three Japanese marker tephras, Ikeda-ko (6.4 ka), Aira-Tn (30 ka) and Aira-Iwato (45–50 ka). A systematic studies were performed using different minerals (quartz and feldspar), different grain fractions (75–250 and 250–500 μm), different luminescence and ESR signals, like optically stimulated luminescence (OSL) of quartz, infrared stimulated luminescence (IRSL) of feldspar, including recently developed least faded post infrared IRSL (pIR-IRSL), and ESR signals from paramagnetic centers Al and Ti–Li of quartz. Ages obtained using pIR-IRSL signal of plagioclase with preheat of 320 °C, 60 s and stimulation at 300 °C are consistent with the reference ages. High dose detection range (up to ∼600 Gy) and accurate age estimation enable pIR-IRSL of feldspar a promising methodology to date quaternary tephra. ESR ages from quartz are grossly correlated with the reference ages but large deviation and large associated errors are observed, possibly due to either low signal to noise ratio or heterogenous dose response of different aliquot in multiple aliquot additive dose (MAAD) approach.  相似文献   

8.
After the Salawusu and Shuidonggou sites, the Wulanmulun site found in 2011 is another important Paleolithic site in Ordos, China, due to its numerous stone artifacts and animal fossils. Here, we carry out a combined luminescence and radiocarbon dating of the site. The luminescence dating was done on coarse-grained quartz from 24 sediment samples using a single-aliquot regenerative-dose (SAR) protocol. The radiocarbon dating was performed on ten charcoal samples and one bone sample using acid-base-acid (ABA) and acid–base-wet oxidation-stepped combustion (ABOx-SC) pretreatments. The results showed that: (i) although some samples show relative large (>20%) overdispersion in De distribution (small aliquots), the quartz grains are considered to be sufficiently bleached before burial; (ii) the quartz OSL ages of ∼4–65 ka obtained for the samples are generally stratigraphically consistent and reliable; (iii) the radiocarbon ages obtained using the ABA pretreatment procedure are much younger than the corresponding OSL ages, and the radiocarbon ages obtained using the ABOx-SC method are beyond or close to the laboratory background. The radiocarbon ages obtained using the ABA treatment were considered to be underestimated. This implication is that caution must be taken for dating Chinese Paleolithic (>25 ka) using the ABA pretreatment procedure on carbon samples. Finally, the cultural layers from the Wulanmulun site are deduced to be between 50 and 65 ka.  相似文献   

9.
The electron spin resonance (ESR) dating method has been introduced into the Quaternary chronology for nearly 40 years and has been successfully used for dating of fluvial and lacustrine sediments. In order to evaluate the possible effect of the sediment grain size on the dating estimate, the parallel ESR dating testing was carried out on quartz grains of five different size fractions ranging from 50 to 450 μm extracted from the same fluvial and lacustrine sediment collected close to the M/B boundary at the Donggutuo section, Nihewan Basin, China. The results show that equivalent doses and associated ages vary significantly. However the beta irradiation dose rate of the grains with different sizes accounts for only about 6% of the total deviation of the dating results. At the same time, the sensitivity of quartz Ti–Li center was calculated based on the additional irradiation. It shows that the larger grains are more sensitive than the smaller ones, which can leads to higher saturate ESR intensity and less equivalent dose. The variations of the sensitivity of quartz Ti–Li center of the grains with different sizes are responsible for the primary deviation of the dating results. The results also suggest that 100–150 μm grain size fraction would be priority size for the ESR dating of quartz Ti–Li center on fluvial and lacustrine sediments.  相似文献   

10.
Dating of Japanese Quaternary tephras by ESR and luminescence methods   总被引:1,自引:0,他引:1  
Electron spin resonance (ESR) and red thermoluminescence (RTL) methods were applied to quartz of eight Japanese Quaternary tephras ranging from 30 to 900 kyr, which have independent ages from other dating methods. The ESR ages were consistent for younger samples, while those from the Ti–Li center are older than those for the Al center for older samples. RTL ages are consistent with the age references and are roughly consistent with Al center ages. The dose response of the Ti–Li center after heating at 260 °C for 15 min implies that thermally unstable component is created in Ti–Li center by irradiation, leading to possible overestimations in the dose values.  相似文献   

11.
In this study, fine-grain quartz was used for luminescence dating for lava baked samples from different sites in Datong. Optical stimulated luminescence (OSL), thermal transferred OSL (TT-OSL)/recuperated OSL (Re-OSL) and thermoluminescence (TL) dating protocols were applied. For these samples, the OSL signals saturate at about 300–400 Gy, which limits their age to less than 100 ka based on their ambient dose rates. The TT-OSL/Re-OSL method has poor dose recovery. TL dating gives reliable results, and multiple-aliquot regenerative-dose TL method with sensitivity change correction based on the 325 °C TL peak of a test dose can be applied for samples up to 400 ka. The results indicate that the ages of the volcanoes in Datong are from 380 ka to 84 ka. The volcanic activity started earlier in the southeast area than those in the northwest part, which is consist with the literature data.  相似文献   

12.
This study applies single-grain optically stimulated luminescence (SG OSL) dating of quartz sand temper to Intermountain Ware ceramics recovered from four archaeological sites in northwestern Wyoming, USA. We show that SG OSL dating can strengthen and further refines existing archaeological site chronologies in certain settings. The SG OSL results are compared to multi-grain infrared stimulated luminescence (IRSL) dating of the polymineral (feldspar and quartz) silt fraction in the ceramic paste of the same sherds. Results from the two methods are statistically indistinguishable, although coarse-grained quartz SG OSL ages have consistently lower standard error terms due to higher relative sensitivity and avoidance of anomalous fading calculations. Moreover, the SG OSL results produced precision at two-sigma standard error greater than or equal to associated calibrated radiocarbon ages. SG OSL dating of quartz temper from Intermountain Ware ceramics provides more reliable site occupation timing than radiocarbon dating, which can be conditioned by incorporation of old wood and contamination from young soil carbon. This study highlights the importance of SG OSL dating on sherds from buried contexts when exposure to wildfires may have occurred, as ceramics recovered from the ground surface of one site after a high-intensity fire produced near-modern apparent ages, suggesting they were thermally reset during the fire. We suggest SG OSL should be applied to date similar ceramics with quartz temper to determine site age and bolster regional chronologies.  相似文献   

13.
Loess and fluvial sand are important materials for dating river terraces and alluvial fans. This study focuses on the methodological aspects of dating loess and fluvial deposits from the northern flank of the Tian Shan range, China, using sand-sized quartz and potassium (K) feldspar. Luminescence characteristics of quartz and K-feldspar were studied for searching suitable dating procedures. Our results indicate that 1) most quartz aliquots were contaminated by feldspar, and were dated using a post-infrared optically stimulated luminescence (post-IR OSL) procedure. A Fast ratio acceptance threshold of 15 can be applied to select these aliquots with post-IR OSL signals dominated by quartz OSL; 2) the multi-elevated-temperature post-IR IR stimulated luminescence (MET-pIRIR) procedures are applicable for K-feldspar. A test dose of ∼30% of the natural dose is appropriate for dating of older (>10 ka) samples. An Age (T, t) plateau test can be used to evaluate the dating results; 3) for the loess samples, both quartz and K-feldspar were well bleached and are suitable for dating. Dating using K-feldspar is preferred for its higher efficiency; 4) for the fluvial sand samples, only the quartz grains were fully bleached. Single-aliquot dating of quartz gives reliable ages.  相似文献   

14.
The Three Gorges and Western Hubei area in the geographic central part of China was a potential migration corridor for early hominin and mammals linking South and North China during the Pleistocene period. Some key early hominin sites are known in this region where limestone cave and fissure sites are numerous but difficult to date as beyond the dating range of OSL and mass spectrometry U-series method. Here, we report radiometric dating study for such a hominin site, Meipu (Hubei Province), by coupled ESR and U-series dating of nine fossil teeth and cosmogenic 26Al/10Be burial dating of one quartz sediment. The burial age calculated by simple burial model (573 ± 266 ka) gives a minimum age constraint of the sediment. The fossil dating provided two main age groups at 541 ± 48 ka and 849 ± 39 ka, the older age group is in agreement with the U-series age (>630 ka) of the flowstone overlying the fossil layer and the paleomagnetic data which placed the Brunhes-Matuyama boundary in the fossil layer. The reason of this age difference is probably caused by the U-content discrepancy in the enamel of the dated fossil samples. This study exhibits the limitation of ESR/U-series fossil dating and the importance of using multiple dating approach when it is possible in order to identify the problematic ages.  相似文献   

15.
Relatively little is known about the long-term sediment accumulation dynamics of Naracoorte Cave Complex (NCC) solution pipe cavities, and many of the megafauna-bearing infill deposits at this globally significant Australian Pleistocene fossil locality remain partially dated or lack any numerical age control. In this study, we assess the suitability of three different luminescence dating signals for improving existing chronologies at six Late and Middle Pleistocene NCC sites (n = 22 samples), and we undertake multi-site examinations of NCC sediment infill dynamics spanning the last 550 thousand years (ka). Modern analogue samples collected from above and beneath two active cave entrances confirm that single-grain OSL, single-grain TT-OSL and multi-grain pIR-IRSL signals can be reset down to insignificant residual levels (<10−1–100 Gy) when compared with the natural dose ranges of interest for most NCC palaeontological applications. Replicate luminescence dating comparisons performed at six NCC fossil sites (n = 15 samples) reveal consistent ages for twenty-eight out of thirty-one paired OSL–TT-OSL, OSL–pIR-IRSL and TT-OSL–pIR-IRSL datasets. Nineteen of the twenty Middle to Late Pleistocene samples analysed from the NCC sites produce homogeneous OSL, TT-OSL and pIR-IRSL De datasets suggesting that the NCC solution pipe deposits considered here are generally not affected by syn-depositional mixing complications that can take place within closed karst cavities (i.e., the remobilisation of unbleached grains from pre-existing cave floor sediments, and their subsequent translocation and incorporation into deposits within deeper parts of the cavity along with externally bleached, allochthonous grain populations). Detailed examination of solution pipe dynamics at Smoke Tortoise Cave (SMT) reveals a complex accumulation history focused on the marine isotope stage (MIS) 9 and MIS 7 interglacial complexes, as well as the MIS 8e interstadial. The SMT case study highlights that NCC solution pipes are not simply associated with short-lived opening and sediment accumulation events, but may involve multiple, discontinuous deposition episodes and reactivation events. An initial multi-site examination of all published NCC infill chronologies (n = 70) appears to suggest statistically significant, preferential solution pipe development during the relatively wet parts of interglacial or interstadial cycles. The non-uniform infill age distribution implies that NCC solution pipe dynamics may have exerted taphonomic biases on fossil accumulation, which should be taken into consideration when reconstructing long-term palaeoecological histories from NCC solution pipe cavities.  相似文献   

16.
Infrared-stimulated luminescence (IRSL) dating of feldspars has the potential to date deposits beyond the age range of quartz optical (OSL) dating. Successful application of feldspar IRSL dating is, however, often precluded due to anomalous-fading, the tunnelling of electrons from one defect site to another. In this paper we test procedures proposed for anomalous-fading correction by comparing feldspar IRSL and quartz OSL dating results on a suite of samples from continental deposits from the southeastern Netherlands. We find that even after anomalous-fading correction IRSL ages underestimate the burial age of the deposits and argue that this may be a consequence of a dependency of anomalous fading rate on the dose rate and on the absorbed dose.  相似文献   

17.
We present the results of a combined Electron Spin Resonance (ESR) and Luminescence dating study for the lowermost stratigraphic unit (TD1) of the palaeoanthropological site of Atapuerca Gran Dolina, Spain. Ten samples collected through the Main Section were dated using either the Multiple Centre (MC) ESR approach or the single-grain thermally transferred optically stimulated luminescence (SG TT-OSL) technique, both of which were applied to quartz grains. The two methods yield consistent ages, providing a robust chronostratigraphic framework for the TD1 deposits and enabling improved correlation of the magnetostratigraphic succession (comprising three intervals of normal polarity; N1 to N3, from bottom to top) with the Geomagnetic Polarity Time Scale. Specifically, the results provide a late Early Pleistocene chronology for TD1, and clearly position the deposits in the post-Olduvai time range (<1.77 Ma). The final age estimates range from 1.30 ± 0.14 Ma (TT-OSL) close to the bottom of the section to a mean ESR age of 1.05 ± 0.12 Ma (1 s.d.) for three samples from the N3 interval towards the top. Consequently, the N3 interval may confidently be correlated to the Jaramillo Subchron, while we propose a correlation of N1 and N2 with the Cobb Mountain subchron and Punaruu excursion, respectively; although we cannot exclude that these two normal intervals may correspond to other, unknown, geomagnetic events given the existing uncertainties associated with the ESR and luminescence ages.From a methodological point of view, the ESR MC approach shows that the Titanium signal provides the most reliable burial ages for TD1. In contrast, the Aluminium centre yields systematically overestimated age estimates, as a result of incomplete resetting of the signal before sediment deposition. The SG TT-OSL ages presented here are amongst the oldest published so far, and highlight the potential of the high temperature SG TT-OSL290 approach for obtaining finite ages exceeding 1 Ma at Atapuerca.Finally, these new dating results provide key insights into the rates and nature of sedimentary processes at Gran Dolina, modifying long-standing interpretations of the cave formation and infilling dynamics. An age of at least 1.4 Ma may be inferred for the base of the sedimentary infill at the Main Section, providing minimum age constraint for the formation of the cavity and, by extension, for the intermediate level of the Atapuerca karst. The opening of the cave, which pre-dates human occupation, most likely occurred close to or slightly after 0.9 Ma. This suggests that both TD4 and TD6 archaeological levels were deposited within a relatively short time range of <100 kyr. The so-called autochthonous fluvial deposits from TD1 unit, or at least those dated in the present study, were also clearly primarily derived from outside the karst system, and were not reworked from older deposits within the karst. They experienced sufficient daylight exposure and minimum transport times within the karst system to enable consistency between the ESR and TT-OSL burial ages and the independent magnetostratigraphic evidence. Our results highlight the need to reconsider the terminology traditionally employed to differentiate the two main phases of Gran Dolina's sedimentary infill.  相似文献   

18.
Lakes over the inner Tibetan Plateau (TP) are very sensitive to the regional environmental transformations and climate changes. Well-preserved lake sediments around these lakes provide critical geomorphological and sedimentary evidence that can be used to infer the past hydroclimate changes. In this study, a lacustrine section from a sandy shoreline (∼74 m above the modern lake) situated to the northwest of modern Dawa Co in the inner TP was investigated using both luminescence and radiocarbon dating methods. Our results demonstrated: (1) the quartz optically simulated luminescence (OSL) dating yielded much younger ages (∼4 ka) than that of the post-infrared IRSL (pIRIR) dating of the K-feldspar fraction; (2) fading test showed g-values ranging between 1.34 and 4.46%/decade for quartz OSL signals, which is considered to be responsible for the underestimation of the corresponding ages; (3) the AMS 14C age of the charcoal sample from the section is in line with the K-feldspar pIRIR225 ages, confirming the reliability of the pIRIR225 dates and the underestimation of the quartz OSL ages. The anomalous fading of quartz OSL signals and the consequent age underestimation have been reported in several other lakes on the TP, we presented here for the first time firm evidence of the phenomenon with the help of a robust independent control of AMS 14C age of the charcoal. Based on the pIRIR225 and AMS 14C ages, we conclude that Dawa Co underwent a prominent highstand during the early Holocene (∼9–7 ka), which was probably controlled by the large amounts of glacial meltwater input and the increased monsoonal precipitation.  相似文献   

19.
A chronology based on optically stimulated luminescence (OSL) dating is presented for the late- and post-glacial evolution of the southern Baltic Sea (15 ka to present). During this period, large water level and salinity changes occurred in the Baltic Basin due to opening and closing of connections to the North Atlantic. Previous attempts to establish a chronology for these palaeoenvironmental changes have mainly been conducted in coastal settings where organic material for 14C dating is abundant. Many of these records are, however, discontinuous due to the large water level fluctuations. In contrast, in the relatively deep water of the Arkona Basin, the sediment record is expected to be more or less continuous. The single aliquot regenerative dose (SAR) procedure was used to date 32 samples of fine quartz sand from a 10.86 m long sediment core from the centre of this basin (45 m water depth). Tests of luminescence characteristics confirmed the suitability of the material for OSL dating and the ages agree well with the available AMS 14C ages on shells. The Baltic Ice Lake drainage to the North Atlantic appears to occur 11.6 ka, agreeing with other published evidence. However, we suggest that the main marine Littorina transgression appears in the Arkona Basin at about 6.5 ka, rather than at 8.5 ka, as previously thought.  相似文献   

20.
The paleogeography of Amazonia lowlands during the Pleistocene remains hampered by the lack of reliable absolute ages to constrain sediment deposition in the hundred thousand to few million years timescales. Optically stimulated luminescence (OSL) dating applied to quartz has provided important chronological control for late Quaternary sediments, but the method is limited to the last ∼150 ka. In order to extend the age range of luminescence dating, new signals from quartz have been investigated. This study tested the application of isothermal thermoluminescence (ITL) and thermally transferred optically stimulated luminescence (TT-OSL) signals of quartz for dating of fluvial terraces from eastern Amazonia. ITL and TT-OSL signals measured in a modern fluvial sediment sample have shown small residual doses (4 and 16 Gy), suggesting adequate bleached sediments for the target dose range (>150 Gy). This sample responded well to dose recovery test, which showed that the ITL and TT-OSL signals grow to higher doses compared to the doses estimated by the conventional OSL signal. The ITL signal saturated for doses significantly lower than doses reported in the literature. Most dating samples were beyond the ITL saturation doses and only TT-OSL signals were suitable to estimate equivalent doses. Burial ages ranging from 107 to 340 ka were estimated for the fluvial terraces in the lower Xingu River. The main ages uncertainties are related to dose rate changes through time. Despite the uncertainties, these ages should indicate a higher channel base level during the Middle Pleistocene followed by channel incision, possibly due to episodes of increased precipitation in the Xingu watershed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号