首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The palaeo-shorelines around the lakes on the Tibetan Plateau can be used to reconstruct water level variations, which serve as sensitive indicators of hydroclimate change. Extensive studies have been carried out to constrain the Holocene lake level fluctuations by dating shorelines with a variety of methods (e.g., luminescence, 14C, 10Be and U–Th series). In comparison, the timing of the lake level variations during the last glacial and subsequent deglaciation periods has been rarely studied. The driving factors of such changes, therefore, remain elusive. In this study, we performed a detailed luminescence dating investigation on six samples taken from a nearshore sedimentary outcrop in the south of Selin Co basin. The post-IR IRSL signals measured at 225 °C (pIRIR225) on sand-sized K-feldspar grains demonstrated a generally good behavior and yielded reliable chronologies, while the optically stimulated luminescence (OSL) signals of quartz showed systematical age underestimation, which was attributed to anomalous fading. Six pIRIR225 ages ranging from 15 to 10 ka suggested that the lake level of Selin Co during the last deglaciation reached up to 40–45 m high above the modern lake level. In view of the regional precipitation and temperature proxy records, we consider that the glacier meltwater supply has likely been the primary contributor to the lake highstands during the last deglaciation.  相似文献   

2.
The applicability of both quartz and feldspar luminescence dating was tested on twenty-five samples from a marine succession now forming a coastal cliff at Oga Peninsula, Honshu Island, Japan. The quartz optically stimulated luminescence (OSL) signal shows thermal instability and linear modulated (LM)-OSL analysis revealed the dominance of a slow component. When compared with independent age control provided by two marker tephras, the quartz OSL ages grossly underestimate the depositional age. In contrast, potassium (K)-rich feldspar is a suitable dosimeter when measured using post-IR infrared stimulated luminescence (IRSL) at 225 °C (pIRIR225). Scanning electron microscope (SEM) analyses on the feldspar extracts revealed that the grains are amorphous with small crystalline inclusions; using standard internal dose rate parameters, this would result in a too large dose rate. Dose rates were calculated using the observed grain size of 40 ± 20 μm with an assumed K concentration of 12.5 ± 0.5%. The fading corrected pIRIR225 ages agree well with independent age control, and the sediments of the Katanishi Formation were deposited between 82 ± 6 and 170 ± 16 ka. This study demonstrates that pIRIR dating of feldspar is a powerful chronological tool for the dating of sediments of volcanic origin.  相似文献   

3.
The numerical dating of megaflood sediments is a worldwide challenge, a fact that has impeded a full understanding of Late Quaternary dam-outburst flood processes that occurred along the river courses of the Tibetan Plateau. Optically stimulated luminescence (OSL) dating has been widely used on such sediments. Due to their short transportation distances prior to deposition, the OSL signals of megaflood sediments are often partially bleached, resulting in age overestimations. Here, we report on a comparison of OSL ages obtained using both quartz (4–11 μm FG; 90–125, 180–250 μm CG) and K-feldspar (180–250 μm CG) extracted from sediments taken from the Binghong-Bingnong Neolithic-Bronze Age site on the second Jinshan River terrace (T2), in Yunnan Province, southwestern China. Contrary to previous experience suggesting that CG fractions are usually better bleached than FG fractions prior to deposition, our results showed that the OSL ages for the FG quartz fraction were generally younger than those for the CG fraction. This would suggest that the two fractions may have come from different sources, and may have been subject to different geomorphological processes prior to deposition. FG quartz fractions may be suitable to define the maximum age of sediments located in alpine gorge regions. CG quartz fractions can be used by applying the minimum age model (MAM) to select relatively well-bleached grains yielded ages close to the ‘true’ burial ages of the sediments. The results showed that the post-IR IRSL225 ages of single grain K-feldspar were overestimated by > 3 ka, suggesting K-feldspar may not be suitable dating material for megaflood sediments <30 ka. The OSL dates suggest that the T2 terrace was formed ∼8.4 ka, that aeolian sediments were deposited during ∼2.6–1.5 ka, and that the megaflood event occurred after ∼1.5 ka.  相似文献   

4.
Cobbles can be used as an alternative to the conventionally employed sand-sized mineral luminescence dating. In piedmont environments, cobbles are much more abundant than sand-sized material. The IRSL50 signal has been widely used in previous studies due to its greater sensitivity to exposure events. However, it is well known that the low temperature IRSL signal is more prone to fade than elevated temperature post-IR IRSL signal. In this study, to test the reliability and applicability of cobble sub-surface elevated temperature IRSL luminescence dating, six light-color granite cobbles and two sand-sized samples from silty sand lens were collected from a high terrace of Manas River on the northern piedmont of Chinese Tian Shan. A modified multi-elevated-temperature post-infrared infrared stimulated luminescence (MET-post-IR IRSL) protocol was applied. The age-temperature (A-T) plateau of MET-post-IR IRSL measurement was combined with the conventional age-depth (A-D) plateau in luminescence-depth profile to evaluate the resetting and fading of MET-post-IR IRSL signals. Uncertainties of grain-sizes of K-feldspar within solidified slices were also explored by μ-XRF mapping of potassium content. The A-T plateau was identified between MET-post-IR IRSL170 and MET-post-IR IRSL225 signals of one cobble, which suggested completeness of bleaching before burial and negligible anomalous fading during burial. This cobble yielded MET-post-IR IRSL225 ages of 15.8 ± 2.6 ka and 19.0 ± 3.2 ka for top and bottom side, respectively. These MET-post-IR IRSL225 ages were consistent with independent coarse-grained quartz MAM OSL ages (15.7 ± 3.6 ka and 14.8 ± 2.6 ka) of two sand-sized samples. The MET-post-IR IRSL225 age of 16.0 ± 1.2 ka for the bottom side of another cobble was also consistent with the independent age, even without the A-T plateau. It was inferred to be caused by anomalous fading of MET-post-IR IRSL signals other than that stimulated at 225 °C by refering to the A-D plateau observed. Our results show that MET-post-IR IRSL measurement can be employed to determine the burial ages of cobbles. The A-T plateau, complemented with the A-D plateau, could be used to assess the reliability of burial ages of cobble luminescence dating from the view of bleaching and fading.  相似文献   

5.
Raised beach sand deposits along the southeastern coast of Norway were dated by optical (OSL) and infrared stimulated luminescence (IRSL) and the quartz and K-feldspar luminescence characteristics were described. Due to the poor quartz luminescence characteristics, only a limited number of samples were suitable for OSL dating. More promising are the K-feldspar extracts, with typical K-feldspar luminescence characteristics and no sign of fading. For equivalent dose (De) determination, sand-size quartz and feldspar extracts were used, applying a single aliquot regenerative (SAR) protocol. Both, OSL and IRSL De estimates show a wide distribution, unexpected for beach deposits. The calculated OSL and IRSL age estimates were generally in good agreement and the correctness of the ages was confirmed by independent age control. Because only a limited number of the quartz samples were suitable for OSL dating, IRSL dating of the K-feldspar represents an alternative to OSL quartz dating.  相似文献   

6.
Sediments of river deltas provide valuable records of past coastal environments. Optically-stimulated luminescence (OSL) dating has become an alternative to radiocarbon dating for constraining the sediment chronology in large deltas that allow for sufficient sunlight bleaching of sediments during the fluvial transport. However, its applicability to smaller deltas with mountainous riverine systems has not been confirmed yet. To check this, we examine multiple signals from two Holocene sediment cores in the wave-dominated Thu Bon River delta in central Vietnam. Two cores were collected, respectively, 3.9 km and 1.2 km inland from the present shoreline and both show a >-25-m thick succession of coarsening-upward mud to sand deposits. Coarse grains (180–250 μm in diameter) of quartz and K-feldspar, and fine grains (4–11 μm in diameter) of quartz and polymineral were extracted from the upper and lower parts of the cores for multi-grain measurements of quartz OSL, and of feldspar infrared-stimulated luminescence (IRSL) at 50 °C (IR50) and post-IR IRSL at 175 °C (pIRIR175) to determine burial ages. In addition, facies analysis and radiocarbon dating were conducted. The landward core consists of transgressive to early regressive estuarine and prodelta facies, which is overlain by a sandy beach-shoreface facies. The seaward core consists of a relatively simple shallowing-upward succession from muddy prodelta facies to sandy beach-shoreface facies. All luminescence ages except for pIRIR175 of fine grains are mostly consistent with the radiocarbon ages. Instead, pIRIR175 ages of fine grains are significantly overestimated with variable offsets. OSL and IR50 of fine grains provide reasonable age estimates, as these grains were likely well bleached during the transport even along a short and steep mountainous river. Consistent age estimates of all signals from sand indicate that sand was well-bleached in the beach and shoreface owing to the frequent sediment reworking by waves and currents. These results support the hypothesis that luminescence dating is applicable to Holocene wave-dominated deltas and reiterate that comparing different luminescence signals is an effective way to check reliability of the age estimates in environments where the sunlight bleaching is not ensured.  相似文献   

7.
Luminescence dating has long been used for chronological constraints on marine sediments due to the ubiquitous dating materials (quartz and feldspar grains) and its applicability over a relatively long time range. However, one of the main difficulties in luminescence dating on marine sediments is partial bleaching, which causes age overestimations. Especially, partial bleaching is typically difficult to be detected in the fine grain fraction (FG) of marine sediments. The recently developed feldspar post-IR IRSL (pIRIR) protocol can detect non-fading signals and thus avoid feldspar signal instability. In the current study, fine grains were extracted from a gravity core in the northern Sea of Japan, and the aim is to test the feasibility of using different luminescence signals with various bleaching rates to explore the bleaching conditions of fine grain fraction in marine sediments. The results suggest that the quartz OSL signal and polymineral pIRIR signals at stimulation temperatures of 150 °C and 225 °C (pIRIR150 and pIRIR225) of FG were well bleached prior to deposition. The OSL ages were used to establish a chronology for this sedimentary core and the resulting age-depth relationship is self-consistent and comparable with radiocarbon dates. We conclude that different luminescence signals with various bleaching rates can be used to test the bleaching conditions of fine grain fraction in marine sediments; and the luminescence dating can be applied to marine sediments with great potential.  相似文献   

8.
Coastal plain of Hangzhou Bay, to the south of the present Yangtze Estuary, is closely linked to the evolution of the Yangtze River delta. However, absolute age of Pre-Holocene sediments is limited, which hinders the understanding of this area's environmental evolution. In this study, using optically stimulated luminescence (OSL), single aliquots and single grains of quartz and K-feldspar were used to date the late Quaternary sediments in coastal plain on the southern Hangzhou Bay. The vertical difference in particle size composition render either silt- or sand-sized quartz for dating. Cross-checking of multiple OSL dating methods indicated that the upper ∼65 m recorded the Holocene part of the succession; sediment from a depth of 136.6 m was dated to ∼180 ka. It was found that the single-grain method was more reliable in comparison to single-aliquot age, the former minimized the effect of signal components. Single-grain quartz and K-feldspar luminescence yielded consistent ages at sample depth of 136.6 m (∼160–180 ka), while the latter gave robust age at depth of 115.5 m (∼150 ka). This chronology is in general in accordance with neighbouring cores and can constrain paleomagnetic dating results in those cores. Taking together, the study site has thickest Holocene deposits in comparison to the highland centered around Taihu Lake on the southern Yangtze delta. Moreover, the luminescence characteristics of quartz from different sample depths, behaved differently with respect to luminescence sensitivity, signal components and saturation level, perhaps reflecting varied provenance and weathering characteristics caused by climate change.  相似文献   

9.
Loess deposits surrounding the high mountainous regions of arid central Asia (ACA) play an important role in understanding environmental changes in Eurasia on orbital and sub-orbital time scales. However, problems with dating loess in ACA have limited the interpretation of climatic and environmental data, especially Holocene data. We selected a typical loess/paleosol sequence (LJW10) on the northern slope of the Tianshan Mountains in ACA consisting of 280 cm of loess with multiple paleosols formed in the upper 170 cm of the section. We applied quartz OSL dating to coarse-grained (63–90 μm) fractions, and newly developed K-feldspar pIRIR dating protocols to both coarse-grained and medium-grained (38–63 μm) fractions of the samples from LJW10 section. Internal checks of the quartz OSL dating indicate that the single-aliquot regenerative-dose protocol on large aliquots (5 mm) is appropriate for equivalent dose (De) determinations and that the quartz ages of the loess samples are likely to be reliable. Luminescence characteristics and internal checks of the pIRIR dating indicate the pIRIR signal at a 170 °C stimulation temperature with a 200 °C preheat can be used for both coarse-grained and medium-grained De determinations. Anomalous fading tests for the pIRIR 170 °C signal indicate the pIRIR signals are stable and the anomalous fading of the pIRIR 170 °C signal can be ignored. Sunlight bleaching tests of the loess indicate the residual dose for the pIRIR 170 °C signal can also be ignored as it corresponds to only ∼9 years for the medium-grained K-feldspar and ∼85 years for the coarse-grained K-feldspar. The pIRIR ages of five medium-grained and coarse-grained K-feldspar samples are consistent with coarse-grained quartz OSL ages, and both the medium-grained and coarse-grained ages increase uniformly with depth, indicating these pIRIR ages are reliable. Based on the coarse-grained quartz OSL ages, and on coarse-grained and medium-grained K-feldspar pIRIR ages, an age-depth model for the paleosol-loess sequence was established by using a Bacon age-depth model. This model suggests eolian loess deposition began by at least ∼16 ka ago and that paleosol development on these eolian loess deposits began ∼5.5 ka, continuing to the present, with periods of high effective moisture at 5.5–4.9, 4.6–4.1, and 3.4–3.1 ka. This sequence suggests overall relative aridity during the early Holocene and an increase in effective moisture beginning ∼5.5 ka during the mid-late Holocene in ACA.  相似文献   

10.
Loess deposits distributed in southeastern China play an important role for paleoclimate reconstruction of the subtropical regions. These loess-paleosol deposits are mainly spread within the middle and lower reaches of the Yangtze River as well as in the drainage area of the Huai River. The ages of loess paleosol sequences that are distributed along the Huai River are not well constrained. In this study, the standard single-aliquot regenerative dose (SAR) optically stimulated luminescence (OSL) protocol and two elevated temperature post infrared-infrared stimulated luminescence SAR protocols (pIRIR225 and pIRIR290) were applied on 4–11 μm quartz and polymineral fine grains, respectively, in order to obtain the first numerical luminescence chronology for a loess-paleosol sequence in northern Jiangsu Province. Our results show a good agreement between quartz SAR-OSL and polymineral pIRIR ages up to ~70 ka. These findings confirm that Xiashu loess accumulated during the Last Glaciation. For samples older than this, the ages increasingly deviate with depth. Fine quartz ages beyond 70 ka are interpreted as underestimates, as previous studies reported that quartz ages >70 ka from various sedimentary origins worldwide may underestimate even if they pass rejection criteria and dose recovery tests. On the other hand, the pIRIR ages are most likely overestimating the true depositional ages as indicated by the results of dose recovery tests, where a 30–60% overestimation of the recovered dose is reported for values larger than ~400 Gy. The overestimation of pIRIR protocols was also confirmed by the results obtained when large beta doses were added on top of the natural accrued dose. Moreover, our dating results suggest that L1/S1 transition (corresponding to MIS 5/4 boundary) occurred much higher in the stratigraphic sequence than may have been interpreted from the magnetic susceptibility enhancement. This inconsistency can be assigned to invalidity of magnetic susceptibility as a chronostratigraphical proxy due to ferrimagnetic minerals dissolution or transformation during paedogenesis processes in this humid subtropical region in the southeastern China.  相似文献   

11.
We present a detailed luminescence chronology of the loess-palaeosol sequences in the Lower Volga region of Russia at the Leninsk site – an important palaeogeographic archive describing the climate and environmental conditions of regressive stages of the Caspian Sea. The chronology of these sediments has received very little attention compared to the under- and overlying marine deposits. The degree of bleaching was addressed by making use of the differential resetting rates of quartz and feldspar. Our results show that the quartz OSL and feldspar pIRIR50,290 signals were sufficiently bleached before deposition and uncertainties in bleaching have a negligible impact on the reliability of the luminescence ages. The combined quartz OSL and K-feldspar pIRIR50,290 chronology constrains the main stages of the Northern Caspian Lowland evolution during the Late Quaternary. During early MIS 5 (130–120 ka), the northern part of the Lower Volga was covered by a shallow brackish water estuary of the warm Late Khazarian Caspian Sea transgression. After ∼122 ka, the Volga incised the Northern Caspian Lowland surface following sea-level decrease and the start of subaerial conditions at Leninsk. Loess accumulation rate increased towards the end of MIS 5 and two palaeosols of presumably MIS 5с and MIS 5a age formed, exhibiting features evidencing a dry, cold climate, influenced by long seasonal flooding by the Volga River. Cryogenesis affecting the MIS 5a soil is a regional phenomenon and is dated to between ∼70 and 90 ka. The overlying thick Atelian loess unit formed during the cold periods of MIS 4 and MIS 3. Clear erosional features at the top of the Atelian loess are constrained by luminescence to ∼35 to ∼24 ka, allowing reconstruction of erosion of 150–200 cm of loess.  相似文献   

12.
Northeastern China is located in the East Asian monsoon region; it is sensitive to both high and low latitude global climate systems. Loess deposits in the region have considerable potential as sensitive archives of past climate changes. However, research into loess deposition and climate change in this region is restricted by the lack of independent age control. In this study, coarse-grained quartz SAR OSL and K-feldspar post-IR infrared (IR) stimulated luminescence (post-IR IRSL; pIRIR290) methods have been used to date the Sanbahuo loess site in northeastern China. The quartz OSL characteristics are satisfactory. The measured pIRIR290 De's do not vary significantly with IR stimulation temperatures between 50 °C and 260 °C; a first IR stimulation temperature of 200 °C was adopted. Dose recovery tests were performed by adding different laboratory doses to both laboratory bleached (300 h SOL2) samples and natural samples; the results are satisfactory up to ∼800 Gy. Resulting quartz OSL and feldspar pIRIR290 ages are in good agreement at least back to ∼44 ka; beyond this feldspar pIRIR290 ages are older. The feldspar ages are consistent with the expected age of the S1 palaeosol (MIS 5). There appears to have been a period of fast loess deposition at ∼62 ka, perhaps indicative of winter monsoon intensification with a very cold and dry climate that lead to a serious desertification of dunefields in northeastern China.  相似文献   

13.
Reliable chronology is critical for reconstructing estuarine delta process. In this study, detailed chronological framework has been performed on a core HPQK01 (52 m in depth) from the central Pearl River delta (PRD) of China. Both quartz OSL and feldspar post-IR IRSL (pIRIR) methods for late Pleistocene sediments, as well as radiocarbon dating for Holocene sediments, were applied to date the core. Results show that quartz OSL ages range from 125 ± 18 ka to 58 ± 6 ka, and that all of them were minimum ages due to the OSL signal saturation. Feldspar pIR200IR290 protocol shows some overestimation in dose recovery test, with the recovered to the given ratio of 1.2, while a ratio of around 1 was obtained for feldspar pIR50IR250 signals. Robust ages have been obtained from feldspar fading corrected pIR50IR250 dating with ages ranging from 150 ± 17 ka to 98 ± 12 ka. AMS 14C results suggest that subtidal-intertidal zone was deposited during the middle Holocene from 8.21 ± 0.19 cal ka BP to 4.99 ± 0.25 cal ka BP. The sedimentology of core HPQK01 record two marine transgressive-regressive cycles. Based on the dating results, the lower fluvial sediment unit (T2) could be correlated to marine isotope stage (MIS) 6, and the lower marine unit (M2) was deposited during MIS 5. A sedimentary hiatus occurred with age range of from MIS 4 to MIS 2. Since middle Holocene, another marine stratum (M1) has been accumulated. Overall, our findings suggest that feldspar pIRIR dating method has the potential to establish the Quaternary chronostratigraphic framework of the PRD for samples with ages within 150 ka.  相似文献   

14.
Loess and fluvial sand are important materials for dating river terraces and alluvial fans. This study focuses on the methodological aspects of dating loess and fluvial deposits from the northern flank of the Tian Shan range, China, using sand-sized quartz and potassium (K) feldspar. Luminescence characteristics of quartz and K-feldspar were studied for searching suitable dating procedures. Our results indicate that 1) most quartz aliquots were contaminated by feldspar, and were dated using a post-infrared optically stimulated luminescence (post-IR OSL) procedure. A Fast ratio acceptance threshold of 15 can be applied to select these aliquots with post-IR OSL signals dominated by quartz OSL; 2) the multi-elevated-temperature post-IR IR stimulated luminescence (MET-pIRIR) procedures are applicable for K-feldspar. A test dose of ∼30% of the natural dose is appropriate for dating of older (>10 ka) samples. An Age (T, t) plateau test can be used to evaluate the dating results; 3) for the loess samples, both quartz and K-feldspar were well bleached and are suitable for dating. Dating using K-feldspar is preferred for its higher efficiency; 4) for the fluvial sand samples, only the quartz grains were fully bleached. Single-aliquot dating of quartz gives reliable ages.  相似文献   

15.
Multiple-aliquot regenerative-dose violet stimulated luminescence (MAR-VSL) dating studies of the Chinese loess-palaeosol sequence in Luochuan using sand- and silt-sized quartz have previously produced inconsistent results; the VSL ages were in agreement with their independent ages up to ∼900 ka for sand-sized quartz, whereas the silt-sized VSL ages underestimated the independent chronology beyond ∼100 ka. Here we therefore evaluate the VSL dose response pattern of sand- (63–100 μm) and silt-sized (4–11 μm) quartz grains from the loess-palaeosol sequence in southern Germany in high resolution but with a limited age range up to ∼160 ka. All the samples studied benefit from good age control provided by reliable quartz optically stimulated luminescence (OSL) ages and fading corrected feldspar post-infrared infrared stimulated luminescence at 225 °C (pIRIR225) ages, which can be used for assessing the validity of the estimated VSL ages. The comparison of the MAR standardised dose response curve (DRC) using regeneration doses up to ∼1000 Gy for both grain size fractions demonstrates that they are almost similar in shape with comparable characteristic saturation doses. The comparison of the natural and laboratory generated DRCs of each grain size reveals that they broadly overlap in the low dose range for both fractions, while in the high dose range the deviation between natural and laboratory DRCs is higher for the silt-sized quartz fraction. It is also shown that the magnitude of the characteristic saturation dose is dependent upon the size of the maximum given dose, especially for the silt-sized quartz. The constructed laboratory standardised DRCs to very high doses (up to ∼6000 Gy) showed continuous signal growth at high doses, particularly in the case of silt-sized quartz grains, thereby confirming our previous observation. The sand-sized quartz has a much less pronounced linear growth component and can therefore be considered more suitable for dating samples with equivalent doses falling on the high dose region of the DRC.  相似文献   

16.
Luminescence dating of late Quaternary sediments in Peru is challenging, especially on the Peruvian coast. Earlier studies have shown that quartz grains often exhibit a thermally unstable, medium signal that caused the underestimation of Optically Stimulated Luminescence (OSL) ages. InfraRed Stimulated Luminescence (IRSL) dating has shown to produce more reliable ages, depending, amongst other factors, on the age model (Central or Minimum Age Model), and the IRSL signal. IRSL dating of geoarchaeological sediments has, however, hardly been carried out, let along validated, against an independent age dataset. This dating approach is, nonetheless, the only promising way to date the geological substrate in which many of Peru's archaeological sites are buried. Peru contains some of the oldest and most important archaeological heritage sites, yet not much is known of the environmental context in which many of its early civilizations prospered. A better understanding of which luminescence method works best could therefore help in a better understanding of the geological-stratigraphical context of many of Peru's sites.To investigate this matter more fully, we compared the luminescence dating results of seven sediment samples from the top layer of the Lima alluvial fan and from geoarchaeological layers of the Maranga Complex (San Miguel, Lima), with an independent dataset of sixteen 14C ages. Our results showed that the quartz OSL ages always underestimated the expected ages due to a signal dominated by medium and slow components, and that the post-IR IRSL225 (pIR IRSL225) and IRSL50 ages of K-feldspars, on basis of the Central Age Model (CAM), always overestimated the expected ages. The Minimum Age Model (MAM) on the other hand, correctly predicted the expected ages for the early Holocene, Lima alluvial fan sediments using the pIR IRSL225 signal of K-feldspars, and the late Holocene, geoarchaeological ages using the IRSL50 signal.  相似文献   

17.
The Wulanmulun site found in 2010 is an important Paleolithic site in Ordos (China), from which lots of stone and bone artifacts and mammalian fossils have been recovered. It was previously dated by radiocarbon and optically stimulated luminescence (OSL) techniques on quartz. To further confirm the reliability of the chronology constructed based on OSL ages and test the applicability of the recently developed pIRIR procedure on sediments from northern China, twenty-four sediment samples (including eolian, lacustrine and fluvio-eolian sands) from the site were determined using the multi-elevated-temperature post-IR IRSL (MET-pIRIR or pIRIR) procedure on potassium feldspar. The results show that the studied samples have two MET-pIRIR De preheat plateaus (280–320 and 340–360 °C), and the bleaching rates of the luminescence signals are associated with sample ages and stimulation temperatures. All the pIRIR ages (7–155 ka) corrected for anomalous fading and residual dose obtained after solar bleaching for 15 h are larger than the corresponding quartz OSL ages (4–66 ka) previously determined, even for the young eolian samples (<10 ka). But the corrected IRSL(50 °C) ages (6–85 ka) are broadly consistent with the quartz ages. It appears that the IRSL(50 °C) ages are more reliable, although this contradicts the previously results obtained by other people. On the other hand, we also obtained an extended age plateau between the stimulation temperatures of 50 and 290 °C in the plot of age versus stimulation temperature (A-T plot) by subtracting different residual doses obtained after different bleaching times. The reliability of the plateau ages requires further investigation. For the sediment samples from this site, quartz should be more suitable for dating than K-feldspar, and the quartz OSL ages of 50–65 ka for its cultural layer should be reliable.  相似文献   

18.
Dust depositions are critical archives for understanding interior aridification and westerly climatic changes in Central Asia. Accurate and reliable dating of loess is very important for interpreting and correlating environmental records. There remains a disparity between luminescence ages and radiocarbon dating of late Quaternary loess from the Ili Basin in Central Asia. In this study, we establish a closely spaced quartz optically stimulated luminescence (OSL) chronology for the 20.5-m-thick Nilka loess section in the Ili Basin. Based on OSL ages, two intervals of higher mass accumulation rate occurred at 49–43 ka and 24–14 ka. We further compare these OSL ages with 23 accelerator mass spectrometry (AMS) 14C ages of bulk organic matter. The results indicate that the OSL and radiocarbon ages agree well for ages younger than ca. 25 14C cal ka BP. However, beyond 30 cal ka BP, there is no consistent increase in AMS 14C age with depth, while the OSL ages continue to increase. These differences confirm the observation that the AMS 14C ages obtained using conventional acid–base–acid (ABA) pretreatment are severely underestimated in other terrestrial deposits in Central Asia, which could be due to 2–4% modern carbon contamination. However, OSL dating is applicable for constructing an accurate chronology beyond 30 cal ka BP. We suggest caution when interpreting paleoenvironmental changes based on radiocarbon ages older than 25 cal ka BP.  相似文献   

19.
Some of the largest catastrophic outbursts of periglacial lakes known in the geological history of the Earth have been identified in the Altai Mountains. Traces of these events are recorded in the form of large terraces, predominantly composed of gravel material with numerous horizons of large boulders and blocks. Determining the age of these large-scale events is difficult due to the lack of suitable material (e.g. organics, well-bleached sand) and the specific genesis of these sediments. The results of cosmogenic radionuclide dating suggest a post-LGM age both for the source of the flood water and for different elements of the catafluvial terraces in the Chuya and Katun river valleys. Nevertheless, the age(s) of catastrophic breakthrough remains controversial. On the basis of a few IRSL ages, and geological and other evidence, some view the event as occurring around MIS 5. In this study, we investigate loess-like loams overlying the catafluvial sediments on the surface of the highest level terrace, ∼200 m above present river level. A total of 24 samples for luminescence dating were obtained, for which the OSL, IR50, and pIRIR50,290 signals were measured to control the degree of signal zeroing and the dating reliability. The age of the loess in all three pits was from 0.5 ka at the top to 23 ka at the base of the loess strata. From a sand layer in the top of the catafluvial deposits, two ages of ∼85–90 ka were obtained from feldspar pIRIR50,290. These results provide a minimum pre-LGM age for the geomorphological surface of a major catafluvial terrace in the Altai Mountains.  相似文献   

20.
In this study we test, for the first time, the potential of an elevated temperature post-IR IR (pIRIR290) SAR protocol for the dating of young heated artefacts. Seven heated stones and seven potshards were collected from three different archaeological sites in Denmark: one site from the early Pre-Roman Iron Age 200 BC to AD 100, and two from the Viking period between AD 800 and 1200.We first derive quartz OSL ages for these samples, to support the archaeological age control. The luminescence characteristics of the pIRIR290 signal are then investigated; in particular the dose recovery ratios are shown to be close to unity. The performance of the feldspar pIRIR290 protocol is then examined by comparing the pIRIR290 ages with those based on the quartz OSL signal; the average ratio of pIRIR290 to OSL ages is 1.14 ± 0.05 (n = 14) and there is some suggestion that the possible overestimation of the feldspar ages compared to quartz is only of significance for the heated stone samples. Nevertheless, there is no indication of incomplete heating of the stones; the ratios of De derived from the IR50 and pIRIR290 signals are independent of sample type, and consistent with complete resetting by heating. Comparison with the archaeological age control is not able to identify whether quartz or feldspar provides the most reliable dating signal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号