首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An unconventional scheme is used to estimate the flexural rigidity, or equivalently the elastic thickness of the lithosphere, given the topography and gravity data. The flexural rigidity is the parameter that governs the flexural response of the lithosphere in the frame of the thin plate flexure model. The scheme is an alternative to the widely used calculation of admittance of topography (sea-floor or continental topography) and gravity, bearing some advantages which are explained in the paper. The scheme involves the inversion of the gravity data in order to formulate a model of the crust-mantle interface (CMI) undulations. In a second step the flexure parameter is then evaluated from the relation between topography and CMI variations. Instead of calculating the admittance function using a spectral analysis, a set of point-load response functions are used in order to retrieve the optimal flexure parameter. This has two main advantages: instabilities of the numerical admittance evaluation at wavenumbers with low spectral energy in the topography are overcome and the analysis can be made over an area which is not necessarily rectangular, as required for the spectral analysis. The proposed method allows a higher space resolution of elastic thickness than any spectral method. For validation, the numerical strategy is applied to the situation of a realistic synthetic model, where all inputs and outputs are known a priori. Finally the spatial variations of the elastic thickness are studied in an area across the Eastern Alps.  相似文献   

2.
3.
本文利用三维有限差分方法,基于EIGEN6C4布格重力异常和SIO V15.1地形数据,计算了青藏高原东南缘岩石圈有效弹性厚度.结果表明:青藏高原东南缘岩石圈有效弹性厚度为0~100 km,四川盆地和喜马拉雅东构造结岩石圈有效弹性厚度最大,达50~100 km;巴颜喀拉块体东部、川滇菱形块体大部、滇西等地区岩石圈强度弱,有效弹性厚度一般小于15 km;羌塘块体东部的玉树—德格附近地区岩石圈有效弹性厚度大于40 km;滇南地区岩石圈有效弹性厚度为10~30 km,大于云南北部地区.研究区域有效弹性厚度分布特征与岩石圈结构关系密切.四川盆地、喜马拉雅东构造结地区内部结构稳定,因而岩石圈强度大.川滇菱形块体等岩石圈有效弹性厚度小的地区与壳内低速、低阻/高导层分布有很好的对应关系,推测壳内岩石的部分熔融软化可能是造成高原东南缘岩石圈强度较弱的重要原因.羌塘块体东部的局部高力学强度岩石圈则可能是高原形成过程中的残留克拉通.根据本文计算的岩石圈有效弹性厚度特征,结合地震学、大地电磁等研究成果,认为青藏高原物质向东南缘挤出后受四川盆地等阻挡,造成下地壳软弱物质在理塘—稻城—丽江一带堆积,少部分物质可能穿过鲜水河断裂带的康定—道孚地区向北运动,但大部分物质向南运动,在受到滇南块体阻挡后一支流向西南的腾冲方向,另一支流向东南的攀枝花—东川方向.  相似文献   

4.
基于SIO(Scripps Institute of Oceanography)最新全球重力和高程模型,计算了巴颜喀拉地块东部及邻区的布格重力异常、均衡重力异常、岩石圈有效弹性厚度及荷载比.结合大地热流、地震速度结构、地震活动和断裂构造分布等,分析了地壳均衡状态和岩石圈有效弹性厚度、地质构造单元间的差异及与地震活动的相关性特征.研究结果表明,该区域布格重力变化范围约为-500~0mGal(1mGal=10~(-5)m·s~(-2),下同),在巴颜喀拉块体东部区域形成弧形重力梯度带,近年来的中强地震活动频发于该梯度带不同部位,应与其应力依次释放有关;均衡重力异常结果表明,其变化范围约为-80~+100mGal,且大部分区域处于±20mGal以内的被认为处于重力均衡的状态,重力非均衡(正或负)多出现于块体边界带附近,地震多发生在靠近块体边界的均衡重力异常(正或负,主要为正)区域内;巴颜喀拉地块东部及邻区岩石圈有效弹性厚度(T_e)为10~65km,不同构造单元之间T_e空间分布差异明显,较低的T_e值出现在龙门山构造带附近,T_e值为20km左右,岩石圈荷载加载比为0.5~0.8,表明现今的岩石圈挠曲状态主要由莫霍面加载形成.进一步分析表明,巴颜喀拉地块东部挤压增生与横向流动同时发生,是造成该区域地震发生与重力均衡异常高值重合、岩石圈有效弹性厚度和大地热流值较低的主要原因.本文获得的地壳均衡特征及岩石圈有效弹性强度结果,加深了对巴颜喀拉东部及邻区岩石圈构造演化过程的认识.  相似文献   

5.
《Journal of Geodynamics》2010,49(3-5):325-330
The network of superconducting gravimeters (SG) of the ‘Global Geodynamics Project’ (GGP) offers the unique opportunity to supplement and validate the gravity field variations derived from the GRACE satellite mission. Because of the different spatial and temporal resolutions of the gravity data a combination of all datasets can be used to retrieve a maximum of information regarding mass transfers especially related to hydrology which is deployable as constraint for hydrological modelling.For a consistent combination of the datasets the gap between terrestrial data of superconducting and absolute gravimeters (AG) and from satellite data has to be bridged. A successful combination of SG and AG data could be realized for several stations which resulted in time series of the highest accuracy and long-term stability.In principle, the same reductions applied to GRACE data have to be taken into account for the terrestrial data. The separation of local hydrological effects in SG observations is crucial for the comparison with satellite-derived gravity data. It is shown that even for stations with a hydrological challenging situation such as Moxa/Germany local hydrology-induced effects can be successfully modelled.Currently, the study focuses on Europe with its dense and long-term observation network. Regarding the consistency of the SG gravity variations they are representative for a larger region. From a comparison with GRACE-derived gravity field changes, and the variations due to hydrological models a principle good agreement emerges.  相似文献   

6.
侍文  陈石  韩建成  李红蕾  卢红艳 《地震》2021,41(1):1-12
研究中国大陆强震区岩石圈力学特性对理解该区强震孕育环境及发生机理具有重要意义.岩石圈有效弹性厚度(Te)及初始载荷比(F)与大陆岩石圈力学特征紧密相关.本文利用导纳和相关函数联合反演方法以及贝叶斯最优参数估计方法,基于全球最新的WGM2012重力异常数据、ETOP01地形数据和CRUST1.0模型的Moho面深度数据,...  相似文献   

7.
陆地重力观测相较于航空和卫星重力观测,距离场源更近,观测精度相对较高,其静态异常和时变数据已广泛应用于研究多种地球动力学问题.21世纪以来,绝对重力观测技术发展迅速,陆地观测网络日益完善,高精度陆地重力观测数据产品逐渐丰富,基于这些产品的大地测量和地球物理研究不断取得新进展.本文总结了近十几年来高精度陆地重力观测数据在大地测量和地球物理领域的应用进展情况,包括基于重力异常数据构建重力场和大地水准面模型、建立地壳物性结构模型、反演Moho界面形态和估计岩石圈有效弹性厚度,以及利用时变重力数据构建时变重力场模型、探测微弱动力学信号、估计地壳构造变形速率和分析与火山、地震过程的可能关联,最后探讨分析了陆地重力测量的未来发展趋势,可为中国大陆重力观测系统建设与发展规划提供参考.  相似文献   

8.
依据EIGEN-6C4重力模型和ETOPO1高程模型数据,围绕新疆精河6.6级地震展开岩石圈均衡与挠曲机理研究,得到如下结论:(1)震中附近的布格与自由空气重力异常分别为-221和-92mGal(10~(-5 )m·s~(-2)),震中位于重力异常高梯度带上;(2)震中周边地区地壳厚度约为50km,密度结构总体变化平缓,东西方向地壳厚度变化较小,但自南向北地壳厚度逐渐变薄,精河6.6级地震初始破裂发生在上中地壳分界面附近;(3)震中附近岩石圈承载的垂向构造应力为20MPa左右,震中位于岩石圈垂向构造应力极大值附近的高梯度带上;(4)地震周边地区岩石圈有效弹性厚度最优解为26km,加载比最优解为F_1=1,F_2=F_3=0,表明该区域岩石圈相对坚硬,且导致岩石圈变形的初始加载全部来自地表.  相似文献   

9.
Effective elastic thickness of island arc lithosphere under Japan   总被引:1,自引:0,他引:1  
Abstract Using topography and observed gravity anomalies, we have estimated the effective elastic thickness as a measure of strength of Japanese island arc lithosphere. The thickness is found to range from about 3 km to >20 km. The thickness seems to be controlled primarily by the thermal state of the lithosphere. The higher the heat flow, the thinner is the elastic plate. However, several areas show significant deviations. The smaller effective elastic thickness in the northern Ryukyu arc than that inferred from heat flow may be attributed to the stress regime. In Japan, extensional tectonics are going on only in the Ryukyu arc region. Shallow subducting slab under the south-western Japan frontal arc probably increases the effective thickness by several kilometers. The determined effective elastic thickness suggests that when we consider vertical movements in the volcanic arc, we should take account of topographic and subsurface loading over a few hundred kilometers. However, if the dip of the slab is shallow, the flexural responses of the underlying slab, not only that of the island arc lithosphere, should be taken into account for the compensation, as is the case of the south-western Japan frontal arc.  相似文献   

10.
华北地区中东部涵盖北京、天津以及即将建设的雄安新区等大型城市,区内发育了张渤地震带等多条大型活动断裂,地震活动性较强,历史上发生过多次6级以上地震.本文利用Fan小波的布格重力异常一致性方法研究该区的岩石圈有效弹性厚度和均衡调整初始加载比分布,同时基于均衡调整方法计算该区垂向构造应力分布,并将以上结果与历史地震活动进行统计分析.岩石圈挠曲分析表明,华北地区中东部的岩石圈有效弹性厚度为10~65 km,分布特征为自东南向西北逐渐减小.均衡调整初始加载比为0.5~0.8,表明现今的岩石圈挠曲状态主要由莫霍面加载形成.该区地壳承载的垂向构造应力约为-20~20 MPa,中西部地区垂向构造应力向上,东北和西南地区向下.统计分析结果显示,华北地区中东部的地震活动性随着岩石圈有效弹性厚度和均衡调整初始加载比的增加而减弱,垂向构造应力零值区域地震活动性较弱.雄安新区的岩石圈有效弹性厚度大约为15 km,均衡调整初始加载比为0.5~0.6,垂向构造应力为15~20 MPa,岩石圈参数对应的地震活动性较强,相关结果对于新区建设具有一定参考价值.  相似文献   

11.
It is well known that the quality of gravity modelling of the Earth’s lithosphere is heavily dependent on the limited number of available terrestrial gravity data. More recently, however, interest has grown within the geoscientific community to utilise the homogeneously measured satellite gravity and gravity gradient data for lithospheric scale modelling. Here, we present an interdisciplinary approach to determine the state of stress and rate of deformation in the Central Andean subduction system. We employed gravity data from terrestrial, satellite-based and combined sources using multiple methods to constrain stress, strain and gravitational potential energy (GPE). Well-constrained 3D density models, which were partly optimised using the combined regional gravity model IMOSAGA01C (Hosse et al. in Surv Geophys, 2014, this issue), were used as bases for the computation of stress anomalies on the top of the subducting oceanic Nazca plate and GPE relative to the base of the lithosphere. The geometries and physical parameters of the 3D density models were used for the computation of stresses and uplift rates in the dynamic modelling. The stress distributions, as derived from the static and dynamic modelling, reveal distinct positive anomalies of up to 80 MPa along the coastal Jurassic batholith belt. The anomalies correlate well with major seismicity in the shallow parts of the subduction system. Moreover, the pattern of stress distributions in the Andean convergent zone varies both along the north–south and west–east directions, suggesting that the continental fore-arc is highly segmented. Estimates of GPE show that the high Central Andes might be in a state of horizontal deviatoric tension. Models of gravity gradients from the Gravity field and steady-state Ocean Circulation Explorer (GOCE) satellite mission were used to compute Bouguer-like gradient anomalies at 8 km above sea level. The analysis suggests that data from GOCE add significant value to the interpretation of lithospheric structures, given that the appropriate topographic correction is applied.  相似文献   

12.
Syrtis Major is an ancient basaltic shield volcano on Mars with a basal diameter of 1100 km. The free-air gravity anomaly is 126 mGal at spherical harmonic degree 50 and reaches its maximum amplitude over the 2 km deep topographic caldera. The observed gravity anomaly cannot be explained by flexurally supported surface topography and requires the presence of a buried, high-density load. The geologically most reasonable interpretation of this high-density load is that it represents the magma chamber of Syrtis Major, now solidified and filled at least in part by dense igneous cumulates. Pyroxene is likely to be the dominant cumulate mineral in this system, although olivine may also be present. Gravity models presented here define the structure of the buried load and in essence provide a look at the magmatic plumbing system of this volcano. The preferred model involves a buried load that is approximately 300×600 km across, roughly twice as large as the topographic caldera. Both the buried load and the caldera are elongated in the north-south direction. In the center of the buried load, the minimum thickness is 2.8 km for an olivine-dominated cumulate system or 3.9 km for a pyroxene-dominated system. The best terrestrial analog for this structure is the Bushveld Complex, an igneous cumulate body that is similar in size and thickness to the Syrtis Major structure. Assuming that the mean crustal density is 2600 kg m−3 due to impact brecciation, the elastic lithosphere at Syrtis Major was 10-15 km thick at the time when the topographic load was emplaced. This corresponds to a lithospheric thermal gradient of 28-52 K/km and a surface heat flux of 70-130 mW m−2. Higher resolution gravity data, such as that which is planned for the 2005 Mars Reconnaissance Orbiter, will permit further refinement of the dimensions of this structure.  相似文献   

13.
继2008年汶川MS8.0地震之后, 2013年4月20日又发生了芦山MS7.0地震, 两次地震的发震构造同属龙门山断裂带. 根据最新的重力和地形资料, 采用岩石层弹性板模型, 计算了龙门山断裂带及其周边地区的二维岩石层有效弹性厚度分布, 并从岩石层的力学特征分析了穿过两次地震震中位置的重力剖面特征; 结合以往在该地区的研究成果, 分析了岩石层的力学变形问题. 结果表明, 以龙门山为界, 四川盆地所在的扬子板块弹性厚度为33(±4) km, 龙门山西北的松潘—甘孜地块的弹性厚度为13(±4) km, 两侧岩石层存在明显的力学强度差异. 包括两次地震震中范围的龙门山断裂带南部区域的有效弹性厚度值小于北部地区, 说明该区域的岩石层更容易发生变形, 可以解释在构造上具备强震发生的岩石层动力学条件.   相似文献   

14.
南海位于太平洋板块、印澳板块和欧亚板块交汇处,自晚中生代以来历经张裂作用、海底扩张以及印藏碰撞、菲律宾海板块西向运动等构造事件的叠加改造,不仅形成了复杂多样的构造格局,而且堆积了厚薄不均的沉积层.为了考察沉积层密度改正对利用重力资料分析南海不同尺度构造特征的影响,本文利用南海各区域不同深度沉积层的地震波速度及钻孔密度等数据,建立了沉积层与沉积基底密度差随深度变化的二次函数关系式,并基于该关系式,计算了南海沉积层相对基底密度低而产生的重力异常值.结果显示,南海沉积层的重力异常值在海盆区介于-40~-60 mGal,而在堆积巨厚沉积物的莺歌海盆地可达到-135 mGal;相对于空间重力异常、布格重力异常,经沉积层重力异常改正后的地壳布格重力异常更能突出深部不同尺度的密度结构和莫霍面的起伏特征,其总水平导数模更突显了南海西北部红河断裂带的海上延伸;利用谱分析技术估算岩石圈强度时,经沉积层重力异常改正的地壳布格重力异常数据获得的岩石圈有效弹性厚度值更为符合地质实际,特别是在长条形的巨厚沉积区如莺歌海盆地和马来盆地.分析表明,重力异常的沉积层密度改正对揭示南海构造特征具有重要的意义.  相似文献   

15.
王勇  许厚泽 《地球物理学报》1996,39(Z1):105-113
利用中国大陆以及最近与俄罗斯拼接的中亚地区的布格重力和地形数据,采用响应函数和互相关函数技术,结合弹性板挠曲理论,研究了中国大陆及其邻近地区(25°N-70°N,50°E-140°E)的岩石层强度,用现代均衡的观点探讨了研究区的均衡补偿机制.研究结果表明,整个中国大陆及其邻近地区的有效弹性厚度Te值为35km.其中,青藏地区Te值为85km.西伯利亚西部至乌拉尔Te值为75km,天山、塔里木盆地Te值为40km,帕米尔高原Te值为25km左右,西伯利亚中部、蒙古以及中国东北北部Te值为40km,华北Te值为25km,华南Te值为40km.均衡补偿对于波长大于几千米的地形负荷为局部补偿,对几百公里到1100km的地形负荷为局部补偿和岩石层强度所支持,短波长地形负荷基本上由岩石层强度所支持.  相似文献   

16.
In this paper we are proposing an alternative method for determination of density variations of the crust from constrained inversion of the terrestrial gravity data. The main features of the method can be summarized as follows: (i) Constructing a band-pass filter to remove the long and short wavelength signals from the terrestrial gravity data. (ii) Using an iterative method for stabilization and solution of the inverse problem. The mentioned regularization method is first validated by simulated gravity data and next the methodology is used for development of a new regional density variation model of the crust in three layers based on real gravity data in geographical area of Iran. Application of the band-pass filter to the latter data resulted the residual gravitation variations in the range of − 300 to 50 (mGal) which next based on the iterative method resulted following ranges for residual densities: −120 to 40 (kg/m3) in first layer, −40 to 40 (kg/m3) in second layer, and − 40 to 40 (kg/m3) in third layer.  相似文献   

17.
We used a wavelet formulation of the classical spectral isostatic analysis to invert satellite-derived gravity and topography/bathymetry for elastic thickness (Te) over South America and its surrounding plates. To provide a homogeneous representation of the gravity field for this vast region, we corrected free-air anomalies derived from a combination of terrestrial/marine gravity data with data from the GRACE and CHAMP satellite missions (model EIGEN-CG03C) by a simple Bouguer slab using a smoothed representation of surface relief (wavelengths > 125 km). The resulting Bouguer anomaly compares well with terrestrial data acquired in the Central Andes and allows Te to be confidently estimated for values greater than 10 km. The Te map resolves regional-scale features that are well-correlated with known surface structures and shows maximum values of 100 ± 15 km over the Archean–Neoproterozoic core of the continent, decreasing to less than 30 km around continental margins. Several regions of the oceanic plates and continental margins have an elastic thickness less than 10 km. We performed a quantitative analysis by comparing the elastic thickness with the thermal structure predicted from the age of oceanic crust and igneous–metamorphic rocks. This demonstrates that oceanic plates have been weakened by thermal interaction with hotspots and locally by fracturing and hydration near the trench. We observe that only the nucleus of the continent has resisted the thermomechanical weakening induced by the rifting of Africa and South America along the passive margin and the Andean orogeny along the active margin. This latter region shows along-strike variations in Te that correlate with the geotectonic segmentation of the margin and with the pattern of crustal seismicity. Our results reveal that the rigidity structure follows the segmentation of the seismogenic zone along the subduction fault, suggesting a causal relationship that should be investigated in order to improve the understanding and predictability of great earthquakes and tsunamis.  相似文献   

18.
EGM2008地球重力模型数据在中国大陆地区的精度分析   总被引:9,自引:1,他引:8  
本文介绍了5′×5 ′的EGM2008地球重力模型及其在全球的精度评价.按照地形变化规律,将中国大陆大致分为7个区域,在10 km网度上,将EGM2008地球重力模型数据与中国地面实测空间重力网格数据进行了对比.由于数据源的问题,中国大陆的模型数据精度普遍低于北美和欧洲.二种数据在地形平坦的东部地区差别较小,向西随着地形复杂程度的增加,二种数据之间的标准差从小于10 mGal增大到50多mGal.畸变点分析表明精度极低的网格点均分布在地形起伏大的地区.总体而言,5′×5′的EGM2008地球重力模型数据在中国大陆将近80%的面积上的精度可达10 mGal之内,可用于小比例尺重力编图和构造研究.在地形起伏较大的中国西部以青藏高原为例进一步比较了EGM2008重力模型和重力测点数据,结果表明在重力点分布稀疏不均匀的地区,平面网格数据难以准确表达重力场信息.由于缺少地面重力数据控制,EGM2008重力模型数据在中国西部精度较低,但模型数据依然在很大程度上提高了空间重力异常信息的丰富程度.将中国区域重力调查成果数据应用于地球模型的构建是一项有意义的工作.  相似文献   

19.
The study of mantle lithosphere plays a key role to reveal predominant tectonic setting process of a region. The current geological and tectonic setting of Iran is due to the ongoing continental–continental collision of the Arabian and Eurasian plates. We applied a combined P and S receiver function analysis to the teleseismic data of nine permanent broadband seismic stations of the International Institute of Earthquake Engineering and Seismology located in different tectonic zones of Iranian plateau. More than 4 years of data were used to estimate the thickness of the crust and mantle lithosphere. According to our results, the crust is 50 km thick beneath the Zagros fold and thrust belt (ZFTB). We found the maximum Moho depth of approximately 70 km under the Sanandaj-Sirjan zone (SSZ) indicating the overthrusting of the crust of Central Iran onto the Zagros crust along the main Zagros thrust (MZT). Below the northeasternmost part of the Urumieh–Dokhtar Magmatic Arc (UDMA) and Central Iran, the Moho becomes shallower and lies at 40 km depth. Towards northeast, beneath the Alborz zone, the crust is 55 km thick. Based on S receiver functions, we provided new insights into the thickness of the Arabian and Eurasian lithospheres. The location of the boundary between these plates was estimated to be beneath the SSZ, which is slightly shifted northeastward relative to the surficial expression of the MZT. Furthermore, the Arabian plate is characterized by the relatively thick lithosphere of about 130 km beneath the ZFTB reaching 150 km beneath the SSZ, where the thickest crust was also observed. This may imply that the shortening across the Zagros is accommodated by lithospheric thickening. In contrast, UDMA and Central Iran are recognized by the thin lithosphere of about 80–85 km. This thin lithosphere may be associated with the asthenospheric upwelling caused by either lithospheric delamination or Neo-Tethys slab detachment beneath the Zagros collision zone.  相似文献   

20.
Long period Rayleigh wave and Love wave dispersion data, particularly for oceanic areas, have not been simultaneously satisfied by an isotropic structure. In this paper available phase and group velocity data are inverted by a procedure which includes the effects of transverse anisotropy, anelastic dispersion, sphericity, and gravity. We assume that the surface wave data represents an azimuthal average of actual velocities. Thus, we can treat the mantle as transversely isotropic. The resulting models for average Earth, average ocean, and oceanic regions divided according to the age of the ocean floor, are quite different from previous results which ignore the above effects. The models show a low-velocity zone with age dependent anisotropy and velocities higher than derived in previous surface wave studies. The correspondence between the anisotropy variation with age and a physical model based on flow aligned olivine is suggestive. For most of the Earth SH > SV in the vicinity of the low-velocity zone. Neat the East Pacific Rise, however, SV > SH at depth, consistent with ascending flow. Anisotropy is as important as temperature in causing radial and lateral variations in velocity. The models have a high velocity nearly isotropic layer at the top of the mantle that thickens with age. This layer defines the LID, or seismic lithosphere. In the Pacific, the LID thickens with age to a maximum thickness of ~50 km. This thickness is comparable to the thickness of the elastic lithosphere. The LID thickness is thinner than derived using isotropic or pseudo-isotropic procedures. A new model for average Earth is obtained which includes a thin LID. This model extends the fit of a PREM, type model to shorter period surface waves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号