首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于2018—2019年的周年调查,分析了滆湖总悬浮物(TSS)的时空分布特征、组成及其季节变化规律,并探讨了水体悬浮物的影响因素及其与氮、磷的关系.结果表明:(1) TSS浓度的年内变化范围在11.80~105.87 mg/L之间,平均浓度为41.87±18.09 mg/L.(2)滆湖水体TSS时空差异显著.空间上呈现高速公路以南湖区(B区)大于高速公路以北湖区(A区),沿岸高于湖心区的分布趋势;季节变化整体表现为:夏季 > 秋季 > 春季 > 冬季,且夏季显著高于其他季节.(3)滆湖水体中无机悬浮物(ISS)和有机悬浮物所占TSS的比例差异悬殊,分别为75.5%和24.5%,A区和B区均以ISS为主.(4)线性拟合表明,TSS与颗粒态氮、总磷和颗粒态磷具有极显著正相关关系;(5) TSS与叶绿素a浓度相关性极显著.综合结果分析,藻类暴发和泥沙再悬浮是影响滆湖水体悬浮物浓度的重要因素.  相似文献   

2.
Investigating the transport of suspended solids by water sampling usually leads to an underestimation of loads and an unrealistically high sampling frequency is required to properly characterize temporal trends. An alternative method is to use in situ optical turbidimeters to estimate the suspended solids concentration; however, the relationship between turbidity and suspended solids concentration is potentially confounded by variations in particle size, particle composition and water colour. Field measurements, and laboratory measurements using the type of natural material suspended in streamwater, were made to quantify the influences of these factors on nephelometric turbidity (Hach 2100A) and attenuance turbidity (Partech 7000 3RP MKII). The attenuance turbidity was approximately 2.5 times higher than nephelometric turbidity. The turbidity instruments were most sensitive to dispersions with a median diameter of 1.2-1.4γm. Particle size variation can cause the turbidity to vary by a factor of four for the same concentration of suspended solids. However, the numerous close correlations between turbidity and suspended solids concentration reported previously suggests that either the particle size variations are not usually great, or that particle size variations are often associated with variations in suspended solids concentration. For the same concentration and particle size, organic particles gave attenuance turbidity values two to three times higher than mineral particles. However, shortterm temporal variations from purely organic to purely mineral particle loads are rare in nature, so variations in the percentage of organic matter in the paniculate load will not confound turbidity to this extent. Coloured dissolved organic matter is unlikely to alter the turbidity reading by more than 10%. An adequate relationship between turbidity measured in the field and suspended solids concentration should be expected in most situations. Some variance can be tolerated because a continuous estimate of suspended solids concentration overcomes the problem of infrequent sampling, which is the greatest source of error in the estimation of stream sediment loads.  相似文献   

3.
The RUNOFF block of EPA's storm water management model (SWMM) was used to simulate the quantity and quality of urban storm water runoff from four relatively small sites (i.e. 5·97–23·56 ha) in South Florida, each with a specific predominant land use (i.e. low density residential, high density residential, highway and commercial). The objectives of the study were to test the applicability of this model in small subtropical urban catchments and provide modellers with a way to select appropriate input parameters to be used in planning studies. A total of 58 storm events, measured by the US Geological Survey (USGS), provided hyetographs, hydrographs and pollutant loadings for biological oxygen demand (BOD5), total suspended solids (TSS), total Kjeldahl nitrogen (TKN) and lead (Pb), and were used for calibration of the model. Several other catchment characteristics, also measured or estimated by USGS, were used in model input preparation. Application of the model was done using the Green–Ampt equation for infiltration loss computation, a pollutant accumulation equation using a power build-up equation dependent on the number of dry days, and a power wash-off equation dependent on the predicted runoff rate. Calibrated quantity input parameters are presented and compared with suggested values in the literature. The impervious depression storage was generally found to be the most sensitive calibration parameter, followed by the Manning's roughness coefficients of conduit and overland flow, the Green–Ampt infiltration parameters and, finally, the pervious depression storage. Calibrated quality input parameters are presented in the form of regression equations, as a function of rainfall depth and the number of antecedent dry days. A total of 16 independent rainfall events were used for verification of the model, which showed a good comparison with observed data for both hydrographs and pollutant loadings. Average model predictions for the four constituent concentrations from the verification runs also showed good agreement with NURP published values in Florida and US sites. © 1998 John Wiley & Sons, Ltd.  相似文献   

4.
Since stormwater wash-off of pollutants in urban areas is largely affected by environmental variability, it is very difficult to predict the amount of pollutants transported by stormwater runoff during and after individual rainfall events. We investigated the addition of a random component into an exponential wash-off equation of total suspended solids (TSS) and total nitrogen (TN) to model the variability of runoff pollutant concentrations. The model can be analytically solved to describe the probability distributions of TSS and TN concentrations as a function of increasing runoff depths. TSS data from six Australian catchments and TN data from three of these catchments were used to calibrate the model and evaluate its applicability. Using the results of the model, its potential use to determine the appropriate size of stormwater treatment systems is discussed, stressing how probabilistic considerations should be included in the design of such systems. Specifically, stormwater depths retained by a treatment system should result from a compromise between the recurrence of specific runoff depths and the probability to discharge a target pollutant concentration when such a runoff depth is exceeded.  相似文献   

5.
It is well known that sediment properties, including sediment‐associated chemical constituents and sediment physical properties, can exhibit significant variations within and between storm runoff events. However, the number of samples included in suspended sediment studies is often limited by time‐consuming and expensive laboratory procedures after stream water sampling. This restricts high frequency sampling campaigns to a limited number of events and reduces accuracy when aiming to estimate fluxes and loads of sediment‐associated chemical constituents. In this study, we address the potential of a portable ultraviolet–visible spectrophotometer (220–730 nm) to estimate suspended sediment properties in a resource efficient way. Several field deployable spectrophotometers are currently available for in‐stream measurements of environmental variables at high temporal resolution. These instruments have primarily been developed and used to quantify solute concentrations (e.g. dissolved organic carbon and NO3‐N), total concentrations of dissolved and particulate forms (e.g. total organic carbon) and turbidity. Here we argue that light absorbance values can be calibrated to estimate sediment properties. We present light absorbance data collected at 15‐min intervals in the Weierbach catchment (NW Luxembourg, 0.45 km2) from December 2013 to January 2015. In this proof‐of‐concept study, we performed a local calibration using suspended sediment loss‐on‐ignition (LOI) measurements as an example of suspended sediment property. We assessed the performance of several regression models that relate light absorbance measurements with the percentage weight LOI. The MM‐robust regression method presented the lowest standard error of prediction (0.48%) and was selected for calibration (adjusted r2 = 0.76 between observed and predicted values). The model was then used to predict LOI during a storm runoff event in December 2014. This study demonstrates that spectrophotometers can be used to estimate suspended sediment properties at high temporal resolution and for long‐time spans in a simple, non‐destructive and affordable manner. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
Hourly mapping by a Geostationary Ocean Color Imager was used to reveal the spatial pattern and tidal variation of total suspended solids(TSS) over the Yangtze Bank in the Yellow and East China Seas during the winter. The TSS form a tongueshaped structure, which decreases further offshore in a stepwise manner. The stepwise change is separated by two fronts of TSS,which are located near the 20-m and 50-m isobaths. The tidal variation of TSS concentration during the study period is evident and can be divided into three stages: decay, maintenance, and growth. Compared with the relatively stationary TSS during the maintenance stage, drastic changes exist during the decay and growth stages. In terms of tide-induced mixing, the dynamic analysis shows that both the topography and the tidal currents play an important role in the spatio-temporal variation of TSS during the tidal period. In particular, spatial distribution is primarily determined by the topography, whereas the temporal variations in tidal scale are determined by the tidal currents.  相似文献   

7.
Stormwater best management practice (BMP) design must incorporate the expected long‐term performance from both a water quantity and water quality perspective to sustainably mitigate hydrologic and water quality impacts of development. Infiltration trench structures are one of many infiltration BMPs that reduce runoff volume and capture pollutants. Research on the longevity of these structures is sparse, leading to concerns about their long‐term value and impeding implementation. In the present study, an infiltration trench was monitored from its inception to determine its hydrologic performance over time and total suspended solids (TSS) capture efficiency. The infiltration trench was intentionally undersized to accelerate longevity‐related processes. The infiltration trench provided a 36% TSS removal rate and displayed a distinct decrease in its ability to infiltrate stormwater runoff over the first three years of operation. Results indicate that infiltration through the bottom of the BMP became negligible, while infiltration through the sides of the BMP remained active over the 3‐year study period. The results lead to recommendations for BMP design. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
This study aimed to evaluate the importance of physical, chemical and biological factors (e.g., chlorophyll-a, and carbon) in the regulation of the summer epilimnion thickness (Zmix) of the tropical lakes focusing on trends of the current environmental variability. We sampled a set of tropical lakes from the middle Rio Doce lacustrine system (Minas Gerais, Brazil) for two consecutive summers. Besides Zmix, we analyzed the visible light attenuation (KdPAR), dissolved organic carbon (DOC), chlorophyll-a (Chl-a), total suspended solids (TSS), and fetch. We also analyze the quality of the dissolved organic matter (DOM) through colored dissolved organic matter (CDOM), spectral slope (S), DOC-specific absorbance (SUVA) and the ratio between the absorbance at 250 nm and 365 nm (E250:365). Our results showed quite different results during the two years studied. In the summer of 2012, when there was higher rainfall, variations in Zmix were correlated to the optical factors associated with DOM quality, while in the drier summer of 2013 Chl-a, TSS and fetch were the variables that more explained Zmix. It suggests that DOM regulates the Zmix in the rainy periods in the studied tropical lakes and that control is determined by the balance between the DOM input (runoff) and output (such as photodegradation) of the aquatic systems. In reduced rain conditions (summer 2013), the factors responsible by chemistry photodegradation of DOM were predominant, and the organic matter was no longer controlling Zmix, which was driven by internal mixing, productivity, and the wind (Chl-a, TSS and fetch). In this study we showed how changes in precipitation might cause shifts in the factors that regulate the epilimnion thickness in tropical lakes.  相似文献   

9.
Degradation of coastal ecosystems in the Great Barrier Reef (GBR), Australia, has been linked with a decline in water quality from land-based runoff. This paper examines the reduction in current end-of-catchment loads required for total suspended solids (TSS) and dissolved inorganic nitrogen (DIN) to achieve GBR water quality guidelines. Based on first-order estimates of sustainable pollutant loads, current TSS and DIN loads would need to be reduced by approximately 7000ktons/y (41%) and 6000tons/y (38%), respectively. Next, these estimated reductions for TSS and DIN are compared with Reef Plan targets for anthropogenic sediment (-20% by 2020) and nitrogen (-50% by 2013) loads. If successful, these targets will accomplish approximately 40% of TSS and 92% of DIN load reductions required to achieve sustainable loads to the GBR lagoon. These first-order estimates elucidate the need to establish ecologically relevant targets for river pollutant loads to the GBR for management and policy.  相似文献   

10.
Turbidity monitoring and rainfall and runoff simulation experiments were conducted at a newly constructed unsealed road stream crossing to determine the quantity and sources of sediment entering the stream. Continuous measurements of turbidity and estimation of total suspended solids (TSS) concentration upstream and downstream of the stream culvert were taken over a 5 month period. There was a statistically significant difference in turbidity and TSS downstream of the crossing during baseflow conditions, but the quality of the water column remained good during non‐rain periods. Rainfall events comprised around 20% of the observation period and led to decreases in water quality downstream of the crossing. Water quality could be considered as degraded for 10% of the observations. This was during a period when the rainfall was 65% of the long‐term average. Calculated suspended sediment loads were 0·78 t upstream and 2·77 t downstream, an increase of 3·5. It was estimated that at least 2–3 t of bedload material was also added to the stream during the crossing construction and from subsequent erosion. This material is a deposit on the cobble stream bed, and is most likely to degrade aquatic ecosystem values. Rainfall and runoff simulation revealed the principal sediment sources to be a fillslope that contributed coarse bedload material through rill erosion and unprotected toe scour, and the unmetalled road verge that provided fines. Although the quality of water column was good for the majority of the observations, the new Australian and New Zealand Water Quality Guidelines for Fresh and Marine Waters suggest this site exceeded ‘trigger levels’ that would warrant further investigation for both the water column and the bed deposits. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

11.
The spatial and temporal patterns of water quality in Kuwait Bay have been investigated using data from six stations between 2009 and 2011. The results showed that most of water quality parameters such as phosphorus (PO4), nitrate (NO3), dissolved oxygen (DO), and Total Suspended Solids (TSS) fluctuated over time and space. Based on Water Quality Index (WQI) data, six stations were significantly clustered into two main classes using cluster analysis, one group located in western side of the Bay, and other in eastern side. Three principal components are responsible for water quality variations in the Bay. The first component included DO and pH. The second included PO4, TSS and NO3, and the last component contained seawater temperature and turbidity. The spatial and temporal patterns of water quality in Kuwait Bay are mainly controlled by seasonal variations and discharges from point sources of pollution along Kuwait Bay’s coast as well as from Shatt Al-Arab River.  相似文献   

12.
The hydroclimatic conditions of water runoff formation and the hydrography of Parana and Uruguay river basins in the South America are considered. A survey of the recent studies of the hydrological regime of these rivers is given. Observation data are used to evaluate the long-term average values of water runoff and suspended sediment yield in the Parana and Uruguay and their variations along the rivers. Characteristics of many-year runoff variations in the rivers were evaluated. A climate-induced increase was identified in the Parana and Uruguay water runoff, and the corresponding present-day trends in river runoff variations in both rivers were evaluated. The total water runoff and suspended sediment yield of the Parana and Uruguay into La Plata estuary were calculated. Water balance of the drainage basin of La Plata estuary was characterized.  相似文献   

13.
14.
《Journal of Hydrology》1999,214(1-4):165-178
Karst aquifers are capable of transporting and discharging large quantities of suspended sediment, which can have an important impact on water quality. Here we present the results of intensive monitoring of sediment discharging from a karst spring in response to two storm events, one following a wet season and the other following a dry season; we describe temporal changes in total suspended solids (TSS), mineralogy, and particle size distribution. Peak concentrations of suspended sediment coincided with changes in aqueous chemistry indicating arrival of surface water, suggesting that much of the discharging sediment had an allochthonous origin. Concentrations of suspended sediment peaked 14–16 h after rainfall, and the bulk of the sediment (approximately 1 metric ton in response to each storm) discharged within 24 h after rainfall. Filtered material included brightly colored fibers and organic matter. Suspended sediments consisted of dolomite, calcite, quartz, and clay. Proportions of each mineral constituent changed as the aquifer response to the storm progressed, indicating varying input from different sediment sources. The hydraulic response of the aquifer to precipitation was well described by changes in parameters obtained from the particle size distribution function, and corresponded to changes seen in TSS and mineralogy. Differences between storms in the quantity and mineralogy of sediment transported suggest that seasonal effects on surface sediment supply may be important. The quantity of sediment discharging and its potential to sorb and transport contaminants indicates that a mobile solid phase should be included in contaminant monitoring and contaminant transport models of karst. Temporal changes in sediment quantity and characteristics and differences between responses to the two storms, however, demonstrate that the process is not easily generalized.  相似文献   

15.
Data are presented to describe the at-a-station variations and downstream patterns of change, of flow and water quality during the passage of a controlled reservoir release along a short 10 km reach, immediatly below the dam. By removing the effects of runoff from diverse catchment sources, which characterise natural flow variations, reservoir releases are used to focus attention on the effects of channel characteristics. At each of four main sites, measurements were made at 4 min intervals for at least 4 h. The data illustrate the dominant effect of initial flow conditions, especially channel roughness, upon wave movement, suspended solids transport, and hydrochemical lags. Variations in the patterns of change appear to relate to spatially variable in-channel sources which can be particularly influential within such short study reaches.  相似文献   

16.
《水文科学杂志》2013,58(5):886-898
Abstract

Temporal resolution of rainfall plays an important role in determining the hydrological response of river basins. Rainfall temporal variability can be considered as one of the most critical elements when dealing with input data of rainfall—runoff models. In this paper, a typical lumped rainfall—runoff model is applied to long- and short-term runoff prediction using rainfall data sets with different temporal resolution, including daily, hourly and 10-min interval data, and the dependency of model performance on the time interval of the rainfall data is discussed. Furthermore, the effect of temporal resolution on model parameter values is analysed. As results, rainfall data with shorter temporal resolution provide better performance in short-term river discharge estimation, especially for storm discharge estimation. The most accurate results are obtained on the peak discharge and recession part of the hydrograph by using 10-min interval rainfall data. It is concluded that model parameter values are influenced not only by the temporal resolution of calculation but also by the rainfall intensity—duration relationship. This study provides useful information about determination of hydrological model parameters using data of different temporal resolutions.  相似文献   

17.
In this paper, we analyse how the performance and calibration of a distributed event‐based soil erosion model at the hillslope scale is affected by different simplifications on the parameterizations used to compute the production of suspended sediment by rainfall and runoff. Six modelling scenarios of different complexity are used to evaluate the temporal variability of the sedimentograph at the outlet of a 60 m long cultivated hillslope. The six scenarios are calibrated within the generalized likelihood uncertainty estimation framework in order to account for parameter uncertainty, and their performance is evaluated against experimental data registered during five storm events. The Nash–Sutcliffe efficiency, percent bias and coverage performance ratios show that the sedimentary response of the hillslope in terms of mass flux of eroded soil can be efficiently captured by a model structure including only two soil erodibility parameters, which control the rainfall and runoff production of suspended sediment. Increasing the number of parameters makes the calibration process more complex without increasing in a noticeable manner the predictive capability of the model. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
Previously unpublished water quality data are used to explore the potassium chemistry of a small upland stream following the 1976 drought in England. The behaviour of potassium is a complex response to several factors: hydrological pathways operating during periods of storm runoff; sediment inputs; and the chemical properties of the transporting water. Analyses of ‘hysteresis loops’ for a series of storms show that the relationship between suspended sediment and potassium concentrations is not simple; spatial and temporal variations in surface and subsurface stormflow add complexity. In addition to the specific discussion of potassium, data are presented to show the recovery of stream discharge, and of sediment and solute concentrations during the immediate post-drought period. © 1997 by John Wiley & Sons Ltd.  相似文献   

19.
湖北浮桥河水库悬浮物的季节变化   总被引:1,自引:1,他引:0  
1998-1999年按季度对湖北浮桥河水库悬浮物进行采样和分析.浮桥河水库悬浮物现存量干重平均为9.991mg/L,有机碎屑是水库悬浮物的主要组成部分,占93.22%,浮游生物仅占6.78%.悬浮物的无灰重为3.45mg/L,其中有机碎屑无灰重的比例占85.54%,浮游生物无灰重占14.46%.悬浮物碳为1.539mg/L,其中有机碎屑碳占81.46%,浮游生物碳占18.54%.浮桥河水库悬浮物氮、磷含量分别为0.257mg/L和0.0143mg/L,其中有机碎屑氮、磷分别为0.200mg/L和0.0072mg/L;浮游生物氮、磷分别为0.057mg/L和0.0071mg/L.悬浮物可作为判断水库营养类型的指标,同时也可用来估算水库滤食性鱼类的鱼产潜力.  相似文献   

20.
为掌握滇池流域花卉大棚种植区的非点源污染特征,提高和改善滇池水环境质量,本研究选取呈贡县斗南村花卉大棚种植区作为研究对象,在实测降雨径流数据的基础上,通过建立Storm Water Management Model模型分别对全年连续降雨条件下和典型设计降雨条件下的降雨径流水质、水量进行了模拟.研究结果表明:1)模型的流量、化学需氧量(COD_(Cr))、悬浮物(SS)、总氮(TN)和总磷(TP)的Nash-Sutcliffe效率系数分别为0.858、0.835、0.803、0.712和0.752,能够较好地模拟研究区域的水质、水量变化.2)研究区域的平均径流系数为0.59,CODCr、SS、TN和TP的单位面积负荷率分别为118.34、82.90、54.64和5.46 kg/(hm~2·a),TN和TP是主要控制的污染物.3)各污染物浓度峰值的出现时间均早于流量峰值出现的时间,因此对滇池东岸花卉大棚种植区应进行污染物尤其是TP、TN浓度与流量错峰控制.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号