首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract— The proposed Sirente crater field consists of a slightly oblong main structure (main crater) 120 m in width and about 30 smaller structures (satellite craters), all in unconsolidated but stiff carbonate mud. Here we focus on the subsurface structure of the satellite craters and compare the Sirente field with known meteorite crater fields. We present a more complete outline of the crater field than previously reported, information on the subsurface morphology of a satellite crater (C8) 8 m in width, radiocarbon and thermoluminescence (TL) ages of material from this crater, and evidence for heated material in both crater C8 and the rim of the main crater. Crater C8 has a funnel shape terminating downwards, and evidence for soil injection from the surface to a depth of 9 m. The infill contained dispersed charcoal and small, irregular, porous fragments of heated clay with a calibrated age of b.p. 1712 (13C‐corrected radiocarbon age: b.p. 1800 ± 100) and a TL age of b.p. 1825 (calculated error ± 274). Together with previous radiocarbon age (b.p. 1538) of the formation of the main crater (i.e., target surface below rim), a formation is suggested at the beginning of the first millennium a.d. Although projectile vaporization is not expected in Sirente‐sized craters in this type of target material, we used geochemistry in an attempt to detect a meteoritic component. The results gave no unequivocal evidence of meteoritic material. Nevertheless, the outline of the crater field, evidence of heated material within the craters, and subsurface structure are comparable with known meteorite crater fields.  相似文献   

2.
Abstract— In this paper, we review the recent hypothesis, based mostly on geomorphological features, that a ~130 m‐wide sag pond, surrounded by a saddle‐shaped rim from the Sirente plain (Abruzzi, Italy), is the first‐discovered meteoritic crater of Italy. Sub‐circular depressions (hosting ponds), with geomorphological features and size very similar to those exhibited by the main Sirente sag, are exposed in other neighboring intermountain karstic plains from Abruzzi. We have sampled present‐day soils from these sag ponds and from the Sirente sags (both the main “crater” and some smaller ones, recently interpreted as a crater field) and various Abruzzi paleosols from excavated trenches with an age range encompassing the estimated age of the “Sirente crater.” For all samples, we measured the magnetic susceptibility and determined the Ni and Cr contents of selected specimens. The results show that the magnetic susceptibility values and the geochemical composition are similar for all samples (from Sirente and other Abruzzi sags) and are both significantly different from the values reported for soils contaminated by meteoritic dust. No solid evidence pointing at an impact origin exists, besides the circular shape and rim of the main sag. The available observations and data suggest that the “Sirente crater,” together with analogous large sags in the Abruzzi intermountain plains, have to be attributed to the historical phenomenon of “transumanza” (seasonal migration of sheep and shepherds), a custom that for centuries characterized the basic social‐economical system of the Abruzzi region. Such sags were excavated to provide water for millions of sheep, which spent summers in the Abruzzi karstic high pasture lands, on carbonatic massifs deprived of natural superficial fresh water. Conversely, the distribution of the smaller sags from the Sirente plain correlates with the local pattern of the calcareous bedrock and, together with the characteristics of their internal structure, are best interpreted as natural dolines. In fact, reported radiocarbon ages for the formation of the main sag pond and of the smaller sags differ (significantly) by more than two millennia, thus excluding that they were all contemporaneously formed by a meteoritic impact.  相似文献   

3.
Abstract– More craters may be discovered in the future, but as it is currently known, the Campo del Cielo crater field is 18 km long by 4 km at its widest point. Such a distribution of craters suggests that the parent meteoroid entered and traversed the atmosphere at a very low angle relative to horizontal. The crater field contains at least 20 small craters produced by the larger fragments of the parent meteoroid. Four of these are explosion analog craters and the rest are penetration funnels. During four field seasons, we have constructed topographic and magnetic maps of four of the penetration funnels as found, and then dug trenches across them to learn their original structures and recover meteorites preserved within them. Structures of these penetration funnels indicate very low angles of impact, i.e., 9–16° relative to horizontal. This supports the idea that the parent meteoroid traversed the atmosphere at a low angle. Data given here for the four penetration funnels include projectile masses, lengths, widths, depths, and estimates of impact angles and azimuths. One of the penetration funnels described here (No. 6) can almost be classified as an explosion analog crater.  相似文献   

4.
Abstract— The recent Carancas meteorite impact event caused a worldwide sensation. An H4–5 chondrite struck the Earth south of Lake Titicaca in Peru on September 15, 2007, and formed a crater 14.2 m across. It is the smallest, youngest, and one of two eye‐witnessed impact crater events on Earth. The impact violated the hitherto existing view that stony meteorites below a size of 100 m undergo major disruption and deceleration during their passage through the atmosphere and are not capable of producing craters. Fragmentation occurs if the strength of the meteoroid is less than the aerodynamic stresses that occur in flight. The small fragments that result from a breakup rain down at terminal velocity and are not capable of producing impact craters. The Carancas cratering event, however, demonstrates that meter‐sized stony meteoroids indeed can survive the atmospheric passage under specific circumstances. We present results of a detailed geologic survey of the crater and its ejecta. To constrain the possible range of impact parameters we carried out numerical models of crater formation with the iSALE hydrocode in two and three dimensions. Depending on the strength properties of the target, the impact energies range between approximately 100–1000 MJ (0.024–0.24 t TNT). By modeling the atmospheric traverse we demonstrate that low cosmic velocities (12–14 kms?1) and shallow entry angles (<20 °) are prerequisites to keep aerodynamic stresses low (<10 MPa) and thus to prevent fragmentation of stony meteoroids with standard strength properties. This scenario results in a strong meteoroid deceleration, a deflection of the trajectory to a steeper impact angle (40–60 °), and an impact velocity of 350–600 ms?1, which is insufficient to produce a shock wave and significant shock effects in target minerals. Aerodynamic and crater modeling are consistent with field data and our microscopic inspection. However, these data are in conflict with trajectories inferred from the analysis of infrasound signals.  相似文献   

5.
Abstract— As of July 2001, 1238 Libyan meteorites have been reported. Most were found in two areas called Dar al Gani and Hamadah al Hamra. Dar al Gani is located on a plateau of marine carbonate rocks with marly components. Eight‐hundred and sixty‐nine meteorites between 6 g and 95 kg totalling 687 kg have been found here but the calculated mean recovery density is comparatively low with one meteorite on 6.5 km2. Dar al Gani is a perfect site for the recognition and preservation of meteorites. The existence of meteorites is the result of a combination of specific geological and geomorphological conditions: there is a bright‐colored, old limestone plateau (<2 Ma), under arid weather conditions over long periods of time, with rapid elimination of surface water if present and low erosion rates. The preservation of meteorites is guaranteed through the absence of quartz sand on the plateau, strongly reducing wind erosion and a basic environment emerging from the carbonate ground retards rusting of metallic meteorite components. A supposed soil cover during pluvial times has probably protected older meteorites and led to a concentration of meteorites of different periods. An evaluation of Dar al Gani meteorites suggests the existence of at least 26 strewnfields and 26 meteorite pairs reducing the number of falls to, at most, 534. Shock and weathering grades as a tool for the recognition of pairings turned out to be problematic, as several strewnfields showed paired meteorites which had been classified to different shock and weathering grades.  相似文献   

6.
The Whitecourt meteorite impact crater, Alberta, Canada is a rare example of a well‐preserved small impact structure, with which thousands of meteorite fragments are associated. As such, this crater represents a unique opportunity to investigate the effect of a low‐energy impact event on an impacting iron bolide. Excellent documentation of meteorite fragment locations and characteristics has generated a detailed distribution map of both shrapnel and regmaglypted meteorite types. The meteorites' distribution, and internal and external characteristics support a low‐altitude breakup of the impactor which caused atmospherically ablated (regmaglypted) meteorites to fall close to the crater and avoid impact‐related deformation. In contrast, shrapnel fragments sustained deformation at macro‐ and microscales resulting from the catastrophic disruption of the impactor. The impactor was significantly fragmented along pre‐existing planes of weakness, including kamacite lamellae and inclusions, resulting in a bias toward low‐mass (<100 g) fragments. Meteorite mineralogy was investigated and the accessory minerals were found to be dominated by sulfides and phosphides with rare carlsbergite, consistent with other low‐Ni IIIAB iron meteorites. Considerations of the total mass of meteoritic material recovered at the site relative to the probable fraction of the impactor that was preserved based on modeling suggests that the crater was formed by a higher velocity, lower mass impactor than previously inferred.  相似文献   

7.
Abstract— The concentrations of cosmogenic radionuclides and noble gases in Pitts (IAB) and Horse Creek (ungrouped) provide unambiguous evidence that both irons have a complex exposure history with a first‐stage irradiation of 100–600 Myr under high shielding, followed by a second‐stage exposure of ?1 Myr as small objects. The first‐stage exposure ages of ?100 Myr for Horse Creek and ?600 Myr for Pitts are similar to cosmic‐ray exposure ages of other iron meteorites, and most likely represent the Yarkovsky orbital drift times of irons from their parent bodies in the main asteroid belt to one of the nearby chaotic resonance zones. The short second‐stage exposure ages indicate that collisional debris from recent impact events on their precursor objects was quickly delivered to Earth. The short delivery times suggests that the recent collision events occurred while the precursor objects of Horse Creek and Pitts were either very close to the chaotic resonance zones or already in Earth‐crossing orbits. Since the cosmogenic noble gas records of Horse Creek and Pitts indicate a minimum radius of a few meters for the precursor objects, but do not exclude km‐sized objects, we conclude that these irons may represent fragments of two near‐Earth asteroids, 3103 Eger and 1986 DA, respectively. Finally, we used the cosmogenic nuclide concentrations in Horse Creek, which contains 2.5 wt% Si, to test current model calculations for the production of cosmogenic 10Be, 26Al, and neonisotopes from iron, nickel, and silicon.  相似文献   

8.
Abstract The pattern of radial and concentric offset dikes at Sudbury strongly resembles fracture patterns in certain volcanically modified craters on the Moon. Since the Sudbury dikes apparently formed shortly after the impact event, this resemblance suggests that early endogenic modification at Sudbury was comparable to deformation in lunar floor-fractured craters. Although regional deformation has obscured many details of the Sudbury Structure, such a comparison of Sudbury with lunar floor-fractured craters provides two alternative models for the original size and surface structures of the Sudbury basin. First, the Sudbury date pattern can be correlated with fractures in the central peak crater Haldane (36 km in diameter). This comparison indicates an initial Sudbury diameter of between 100 and 140 km but requires loss of a central peak complex for which there is little evidence. Alternatively, comparison of the Sudbury dikes with fractures in the two-ring basin Schrödinger indicates an initial Sudbury diameter of at least ~ 180 km, which is in agreement with other recent estimates for the size of the Sudbury Structure. In addition to constraining the size and structure of the original Sudbury crater, these comparisons also suggest that crater modification may reflect different deformation mechanisms at different sizes. Most lunar floor-fractured craters are attributed to deformation over a shallow, crater-centered intrusion; however, there is no evidence for such an intrusion at Sudbury. Instead, melts from the evolving impact melt sheet probably entered fractures formed by isostatically-induced flexure of the crater floor. Since most of the lunar floor-fractured craters are too small (<100-km diameter) to induce significant isostatic adjustment, crater modification by isostatic uplift apparently is limited to only the largest of craters, whereas deformation over igneous intrusions dominates the modification of smaller craters.  相似文献   

9.
Abstract— On September 15th, 2007, around 11:45 local time in Peru, near the Bolivian border, the atmospheric entry of a meteoroid produced bright lights in the sky and intense detonations. Soon after, a crater was discovered south of Lake Titicaca. These events have been detected by the Bolivian seismic network and two infrasound arrays operating for the Comprehensive Nuclear‐Test‐Ban Treaty Organization, situated at about 80 and 1620 km from the crater. The localization and origin time computed with the seismic records are consistent with the reported impact. The entry elevation and azimuthal angles of the trajectory are estimated from the observed signal time sequences and back‐azimuths. From the crater diameter and the airwave amplitudes, the kinetic energy, mass and explosive energy are calculated. Using the estimated velocity of the meteoroid and similarity criteria between orbital elements, an association with possible parent asteroids is attempted. The favorable setting of this event provides a unique opportunity to evaluate physical and kinematic parameters of the object that generated the first actual terrestrial meteorite impact seismically recorded.  相似文献   

10.
We investigate the elevated crater rims of lunar craters. The two main contributors to this elevation are a structural uplift of the preimpact bedrock and the emplacement of ejecta on top of the crater rim. Here, we focus on five lunar complex mare craters with diameters ranging between 16 and 45 km: Bessel, Euler, Kepler, Harpalus, and Bürg. We performed 5281 measurements to calculate precise values for the structural rim uplift and the ejecta thickness at the elevated crater rim. The average structural rim uplift for these five craters amounts to SRU = 70.6 ± 1.8%, whereas the ejecta thickness amounts to ET = 29.4 ± 1.8% of the total crater rim elevation. Erosion is capable of modifying the ratio of ejecta thickness to structural rim uplift. However, to minimize the impact of erosion, the five investigated craters are young, pristine craters with mostly preserved ejecta blankets. To quantify how strongly craters were enlarged by crater modification processes, we reconstructed the dimensions of the transient crater. The difference between the transient crater diameter and the final crater diameter can extend up to 11 km. We propose reverse faulting and thrusting at the final crater rim to be one of the main contributing factors of forming the elevated crater rim.  相似文献   

11.
Abstract— Natural and induced thermoluminescence (TL) data are reported for 12 meteorites recovered from the Allan Hills region of Antarctica by the European field party during the 1988/89 field season. The samples include one with extremely high natural TL, ALH88035, suggestive of exposure to unusually high radiation doses (i.e., low degrees of shielding), and one, ALH88034, whose low natural TL suggests reheating within the last 105 years. The remainder have natural TL values suggestive of terrestrial ages similar to those of other meteorites from Allan Hills. ALH88015 (L6) has induced TL data suggestive of intense shock. TL sensitivities of these meteorites are generally lower than observed falls of their petrologic types, as is also observed for Antarctic meteorites in general. Acid-washing experiments indicate that this is solely the result of terrestrial weathering rather than a nonterrestrial Antarctic—non-Antarctic difference. However, other TL parameters, such as natural TL and induced peak temperature-width, are unchanged by acid washing and are sensitive indicators of a meteorite's metamorphic and recent radiation history.  相似文献   

12.
《Icarus》1987,69(1):1-13
If chondritic meteorites were internally heated after accretion had ended, then the hottest material would have been buried the deepest and should have cooled the slowest. If this is correct, there ought to be a correlation between cooling rate and petrographic type, a measure of the extent to which chondrites were metamorphosed (i.e., heated). Published and new cooling rates derived from the compositions of metallic iron-nickel grains do not display this correlation, implying either that chondrite parent asteroids never had onion-shell structures or that bodies with onion-shell structures were broken up and reassembled prior to cooling to below 500°C, the temperature at which cooling-rate information is recorded in metallic iron-nickel. Chondritic regolith breccias formed from materials that resided on the surfaces of their parent asteroids. Metallic iron-nickel grains in H- and L-chondrite regolith breccias indicate that the breccia constituents cooled at rates ranging from 1 to > 1000°K/myr. Based on thermal calculations, these cooling rates suggest that the materials spread out on the surfaces of H- and L-chondrite parent asteroids originated at depths ranging from about one kilometer to several tens of kilometers. Craters deep enough to excavate tens of kilometers cannot form on typical asteroidal bodies only 100 to 300 km in diameter without disrupting them. Therefore, it appears that at least some asteroids, namely, the parent bodies of H and L chondrites, were disrupted after cooling to below 300°C, and then reassembled to create surfaces containing rocks that originated at a wide range of depths. These results support theoretical calculations suggesting that many asteroids were broken up and subsequently reassembled into gravitationally bound rubble piles.  相似文献   

13.
Abstract— Four of the SNC meteorites of putative Martian origin are falls. Two of these fell on October 3: Chassigny in 1815 and Zagami in 1962. The probability of this coincidence arising from random fall days is approximately 1 in 60. If this coincidence is not the result of chance, it suggests that some of the SNC meteorites are derived from a meteoroid stream. In that Chassigny and Zagami span nearly the full range of SNC lithologies and histories, the coincidence of fall days is consistent with suggestions that all of the SNCs came from a single site (impact crater) on their parent planet.  相似文献   

14.
Abstract— Nakhla contains crystallized melt inclusions that were trapped in augite and olivine when these phases originally formed on Mars. Our study involved rehomogenization (slow‐heating and fast‐heating) experiments on multiphase melt inclusions in Nakhla augite. We studied melt inclusions trapped in augite because this phase re‐equilibrated with the external melt to a lesser extent than olivine and results could be directly compared with previous Nakhla melt inclusion studies. Following heating and homogenization of encapsulated melt inclusions, single mineral grains were mounted and polished to expose inclusions. Major element chemistry was determined by electron microprobe. The most primitive melt inclusion analyzed in Nakhla NA03 is basaltic and closely matches previously reported nakhlite parent melt compositions. MELTS equilibrium and fractional crystallization models calculated for NA03 and previous Nakhla parent melt estimates at QFM and QFM‐1 produced phase assemblages and compositions that can be compared to Nakhla. Of these models, equilibrium crystallization of NA03 at QFM‐1 produced the best match to mineral phases and compositions in Nakhla. In all models, olivine and augite co‐crystallize, consistent with the hypothesis that olivine is not xenocrystic but has undergone subsolidus re‐equilibration. In addition, measured melt inclusion compositions plot along the MELTS‐calculated liquid line of descent and may represent pockets of melt trapped at various stages during crystallization. We attempt to resolve discrepancies between previous estimates of the Nakhla parental melt composition and to reinterpret the results of a previous study of rehomogenized melt inclusions in Nakhla. Melt inclusions demonstrate that Nakhla is an igneous rock whose parent melt composition and crystallization history reflect planetary igneous processes.  相似文献   

15.
The Ries crater is a well‐preserved, complex impact crater that has been extensively used in the study of impact crater formation processes across the solar system. However, its geologic structure, especially the megablock zone, still poses questions regarding crater formation mechanics. The megablock zone, located between the inner crystalline ring and outer, morphologic crater rim, consists of allochthonous crystalline and sedimentary blocks, Bunte Breccia deposits, patches of suevite, and parautochthonous sedimentary blocks that slumped into the crater during crater modification. Our remote sensing detection method in combination with a shallow drilling campaign and geoelectric measurements at two selected megablocks proved successful in finding new megablock structures (>25 m mean diameter) within the upper approximately 1.5 m of the subsurface in the megablock zone. We analyzed 1777 megablocks of the megablock zone, 81 of which are new discoveries. In our statistical analysis, we also included 2318 ejecta blocks >25 m beyond the crater rim. Parautochthonous megablocks show an increase in total area and size toward the final crater rim. The sizes of allochthonous megablocks generally decrease with increasing radial range, but inside the megablock zone, the coverage with postimpact sediments obscures this trend. The size‐frequency distribution of all megablocks obeys a power‐law distribution with an exponent between approximately ?1.7 and ?2.3. We estimated a total volume of 95 km3 of Bunte Breccia and 47 km3 of megablocks. Ejecta volume calculations and a palinspastic restoration of the extension within the megablock zone indicate that the transient cavity diameter was probably 14–15 km.  相似文献   

16.
Abstract— Impact craters that in plan view are distinctly polygonal rather than circular or elliptical are common on Mars and other planets (Öhman et al. 2005). Their actual formation mechanism, however, is somewhat debatable. We studied the polygonal craters of different degradational stages in the region of the Argyre impact basin, Mars. The results show that in the same areas, heavily degraded, moderately degraded, and fresh polygonal craters display statistically similar strike distributions of the straight rim segments. The fact that the strike distributions are not dependent on lighting conditions was verified by using two data sets (Viking and MOC‐WA) having different illumination geometries but similar resolutions. In addition, there are no significant differences in the amount of polygonality of craters in different degradational stages. These results clearly imply that large‐scale polygonality is not caused by degradation, but originates from the cratering process itself, concurring with the findings regarding lunar craters by Eppler et al. (1983). The straight rims of polygonal craters apparently reflect areal fracture patterns that prevail for a geologically long time.  相似文献   

17.
Gareth A. Morgan 《Icarus》2009,202(1):39-59
The majority of martian valley networks are found on Noachian-aged terrain and are attributed to be the result of a ‘warm and wet’ climate that prevailed early in Mars' history. Younger valleys have been identified, though these are largely interpreted to be the result of localized conditions associated with the melting of ice from endogenic heat sources. Sinton crater, a 60 km diameter impact basin in the Deuteronilus Mensae region of the dichotomy boundary, is characterized by small anastomosing valley networks that are located radial to the crater rim. Large scale deposits, interpreted to be the remains of debris covered glaciers, have been identified in the area surrounding Sinton, and our observations have revealed the occurrence of an ice rich fill deposit within the crater itself. We have conducted a detailed investigated into the Sinton valley networks with all the available remote data sets and have dated their formation to the Amazonian/Hesperian boundary. The spatial and temporal association between Sinton crater and the valley networks suggest that the impact was responsible for their formation. We find that the energy provided by an asteroid impact into surficial deposits of snow/ice is sufficient to generate the required volumes of melt water needed for the valley formation. We therefore interpret these valleys to represent a distinct class of martian valley networks. This example demonstrates the potential for impacts to cause the onset of fluvial erosion on Mars. Our results also suggest that periods of glacial activity occurred throughout the Amazonian and into the Hesperian in association with variations in spin orbital parameters.  相似文献   

18.
Laura Kerber  James W. Head 《Icarus》2010,206(2):669-684
The Medusae Fossae Formation (MFF), covering about 2.1 × 106 km2 (with an estimated volume of 1.4 × 106 km3) and straddling the equatorial region of Mars east of Tharsis, has historically been mapped and dated as Amazonian in age. Analysis of the MFF using a range of new observations from recent mission data at multiple resolutions reveals evidence that the formation is older than previously hypothesized, with parts of the MFF having formed in the Hesperian and parts having been reworked and reformed throughout the Amazonian, up to the present. Ancient outcroppings of the MFF, edged with jagged yardangs, became a “mold” for embaying Hesperian-aged lavas. The erosion of the MFF left solidified lava “casts” in the embaying lava unit. This lava edge morphology permits the identification of ancient contacts between the MFF and Hesperian-aged lava terrain. Additionally, the flanking fan of the Hesperian-aged Apollinaris Patera volcano embays the formation at its foot, indicating that parts of the MFF were formed in the Hesperian. Erosion has erased and inverted many of the superposed craters in the region, showing that very young Amazonian ages derived from impact crater size-frequency distributions are resurfacing ages, and not emplacement ages. We find abundant evidence that the formation is extremely mobile and continuously reworked. We conclude that a significant part of the MFF may have originally been emplaced in the Hesperian. These observations place new constraints on the mode of origin of the MFF.  相似文献   

19.
Abstract Research on meteorite finds, especially those from the Antarctic and from desert regions in Australia, Africa, and America, has become increasingly important, notably in studies of possible changes in the nature of the meteorite flux in the past. One important piece of information needed in the study of such meteorites is their terrestrial age which can be determined using a variety of methods, including 14C, 36Cl, and 81Kr. Natural thermoluminescence (TL) levels in meteorites can also be used as an indicator of terrestrial age. In this paper, we compare 14C-determined terrestrial ages with natural TL levels in finds from the Prairie States (central United States), a group of finds from Roosevelt County (New Mexico, USA), and a group from the Sahara Desert. We find that, in general, the natural TL data are compatible with the 14C-derived terrestrial ages using a 20 °C TL decay curve for the Prairie States and Roosevelt County and a 30 °C decay curve for the Saharan meteorites. We also present TL data for a group of meteorites from the Sahara desert which has not been studied using cosmogenic radionuclides. Within these data there are distinct terrestrial age clusters which probably reflect changes in meteorite preservation efficiency over ~ 15, 000 years in the region.  相似文献   

20.
Abstract— Olivine from Martian meteorite Allan Hills (ALH) 84001 occurs as clusters within orthopyroxene adjacent to fractures containing disrupted carbonate globules and feldspathic shock glass. The inclusions are irregular in shape and range in size from ~40 μm to submicrometer. Some of the inclusions are elongate and boudinage-like. The olivine grains are in sharp contact with the enclosing orthopyroxene and often contain small inclusions of chromite. The olivine exhibits a very limited range of composition from Fo65 to Fo66 (n = 25). The δ18O values of the olivine and orthopyroxene analyzed by ion microprobe range from +4.3 to +5.3‰ and are indistinguishable from each other within analytical uncertainty. The mineral chemistries, O-isotopic data, and textural relationships indicate that the olivine inclusions were produced at a temperature >800 °C. It is unlikely that the olivines formed during the same event that gave rise to the carbonates in ALH 84001, which have more elevated and variable δ18O values, and were probably formed from fluids that were not in isotopic equilibrium with the orthopyroxene or olivine. The reactions most likely instrumental in the formation of olivine could be either the dehydration of hydrous silicates that formed during carbonate precipitation or the reduction of orthopyroxene and spinel. If the olivine was formed by either reaction during a postcarbonate heating event, the implications are profound with regards to the interpretations of McKay et al. (1996). Due to the low diffusion rates in carbonates, this rapid, high-temperature event would have resulted in the preservation of the fine-scale carbonate zoning, while partially devolatilizing select carbonate compositions on a submicrometer scale (Brearley, 1998a). This may have resulted in the formation of the minute magnetite grains that McKay et al. (1996) attributed to biogenic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号