共查询到20条相似文献,搜索用时 0 毫秒
1.
G. S. COLLINS T. KENKMANN G. R. OSINSKI K. WÜNNEMANN 《Meteoritics & planetary science》2008,43(12):1955-1977
Abstract— Large impact crater formation is an important geologic process that is not fully understood. The current paradigm for impact crater formation is based on models and observations of impacts in homogeneous targets. Real targets are rarely uniform; for example, the majority of Earth's surface is covered by sedimentary rocks and/or a water layer. The ubiquity of layering across solar system bodies makes it important to understand the effect target properties have on the cratering process. To advance understanding of the mechanics of crater collapse, and the effect of variations in target properties on crater formation, the first “Bridging the Gap” workshop recommended that geological observation and numerical modeling focussed on mid‐sized (15–30 km diameter) craters on Earth. These are large enough to be complex; small enough to be mapped, surveyed and modelled at high resolution; and numerous enough for the effects of target properties to be potentially disentangled from the effects of other variables. In this paper, we compare observations and numerical models of three 18–26 km diameter craters formed in different target lithology: Ries, Germany; Haughton, Canada; and El'gygytgyn, Russia. Based on the first‐order assumption that the impact energy was the same in all three impacts we performed numerical simulations of each crater to construct a simple quantitative model for mid‐sized complex crater formation in a subaerial, mixed crystalline‐sedimentary target. We compared our results with interpreted geological profiles of Ries and Haughton, based on detailed new and published geological mapping and published geophysical surveys. Our combined observational and numerical modeling work suggests that the major structural differences between each crater can be explained by the difference in thickness of the pre‐impact sedimentary cover in each case. We conclude that the presence of an inner ring at Ries, and not at Haughton, is because basement rocks that are stronger than the overlying sediments are sufficiently close to the surface that they are uplifted and overturned during excavation and remain as an uplifted ring after modification and post‐impact erosion. For constant impact energy, transient and final crater diameters increase with increasing sediment thickness. 相似文献
2.
Abstract— The Vredefort structure in South Africa was created by a meteorite impact about two billion years ago. Since that time, the crater has been deeply eroded; so to estimate its original size, researchers have had to rely heavily upon comparison to other terrestrial impact structures. Recent estimates of the original crater diameter range from 160 km to as much as 400 km. In this study, we combined the capabilities of both hydrocode and finite-element modeling, using the former to predict where the pressure of an impact-generated shock wave would have been high enough to form planar deformation features (PDFs) and shatter cones and the latter to follow the subsequent displacement of these shock isobars during the collapse of the crater. We established constraints on the sizes of the projectile and the transient crater (and, thus, on the size of the final crater) by comparing the observed locations of PDFs around Vredefort to the results of our simulations of impacts by projectiles of various sizes. These simulations indicate that a rocky projectile with a diameter of ~10 km, impacting vertically at a velocity of 20 km/s generates shock pressures that are consistent with the distribution of PDFs around Vredefort. These projectile parameters correspond to a transient crater ~80 km in diameter or a final crater ~120–160 km in diameter. Allowing for uncertainties in our modeling procedures, we consider final craters 120 to 200 km in diameter to be consistent with the observed locations of PDFs at Vredefort. The shock pressure contour corresponding to the formation of shatter cones is almost horizontal near the surface, making the locations of these features less useful constraints on the crater size. However, they may provide a constraint on the amount of erosion that has occurred since the impact. 相似文献
3.
The Morasko strewn field located near Poznań, Poland comprises seven impact craters with diameters ranging from 20 to 90 m, all of which were formed in glacial sediments around 5000 yr ago. Numerous iron meteorites have been recovered in the area and their distribution suggests a projectile with the trajectory from NE to SW. Similar impact events producing crater strewn fields on average happen every 500 yr and pose a serious risk for modern civilization, which is why it is of utmost importance to study terrestrial strewn fields in detail. In this work, we investigate the Morasko meteoroid passage through the atmosphere, the distribution of its fragments on the ground, and the process of forming individual craters by means of numerical modeling. By combining atmospheric entry modeling, Pi‐group scaling of transient crater size and hydrocode simulations of impact processes, we constructed a comprehensive model of the Morasko strewn field formation. We determined the preatmospheric parameters of the Morasko meteoroid. The entry mass is between 600 and 1100 tons, the velocity range is between 16 and 18 km s?1, and the trajectory angle is 30–40°. Such entry velocities and trajectory angles do not deviate from typical values for near‐Earth asteroids, although the initial mass we determined can be considered as small. Our studies on velocities and masses of crater‐forming fragments showed that the biggest Morasko crater was formed by a projectile about 1.5 m in diameter with the impact velocity ~10 km s?1. Environmental consequences of the Morasko impact event are very localized. 相似文献
4.
Abstract— Large impact events like the one that formed the Chicxulub crater deliver significant amounts of heat that subsequently drive hydrothermal activity. We report on numerical modeling of Chicxulub crater cooling with and without the presence of water. The model inputs are constrained by data from borehole samples and seismic, magnetic, and gravity surveys. Model results indicate that initial hydrothermal activity was concentrated beneath the annular trough as well as in the permeable breccias overlying the melt. As the system evolved, the melt gradually cooled and became permeable, shifting the bulk of the hydrothermal activity to the center of the crater. The temperatures and fluxes of fluid and vapor derived from the model are consistent with alteration patterns observed in the available borehole samples. The lifetime of the hydrothermal system ranges from 1.5 to 2.3 Myr depending on assumed permeability. The long lifetimes are due to conduction being the dominant mechanism of heat transport in most of the crater, and significant amounts of heat being delivered to the near‐surface by hydrothermal upwellings. The long duration of the hydrothermal system at Chicxulub should have provided ample time for colonization by thermophiles and/or hyperthermophiles. Because habitable conditions should have persisted for longer time in the central regions of the crater than on the periphery, a search for prospective biomarkers is most likely to be fruitful in samples from that region. 相似文献
5.
Samuel C. Schon James W. Head David M.H. Baker Carolyn M. Ernst Louise M. Prockter Scott L. Murchie Sean C. Solomon 《Planetary and Space Science》2011,59(15):1949-1959
Peak-ring basins represent an impact-crater morphology that is transitional between complex craters with central peaks and large multi-ring basins. Therefore, they can provide insight into the scale dependence of the impact process. Here the transition with increasing crater diameter from complex craters to peak-ring basins on Mercury is assessed through a detailed analysis of Eminescu, a geologically recent and well-preserved peak-ring basin. Eminescu has a diameter (∼125 km) close to the minimum for such crater forms and is thus representative of the transition. Impact crater size-frequency distributions and faint rays indicate that Eminescu is Kuiperian in age, geologically younger than most other basins on Mercury. Geologic mapping of basin interior units indicates a distinction between smooth plains and peak-ring units. Our mapping and crater retention ages favor plains formation by impact melt rather than post-impact volcanism, but a volcanic origin for the plains cannot be excluded if the time interval between basin formation and volcanic emplacement was less than the uncertainty in relative ages. The high-albedo peak ring of Eminescu is composed of bright crater-floor deposits (BCFDs, a distinct crustal unit seen elsewhere on Mercury) exposed by the impact. We use our observations to assess predictions of peak-ring formation models. We interpret the characteristics of Eminescu as consistent with basin formation models in which a melt cavity forms during the impact formation of craters at the transition to peak ring morphologies. We suggest that the smooth plains were emplaced via impact melt expulsion from the central melt cavity during uplift of a peak ring composed of BCFD-type material. In this scenario the ringed cluster of peaks resulted from the early development of the melt cavity, which modified the central uplift zone. 相似文献
6.
Combining shock barometry with numerical modeling: Insights into complex crater formation—The example of the Siljan impact structure (Sweden) 下载免费PDF全文
Sanna Holm‐Alwmark Auriol S. P. Rae Ludovic Ferrière Carl Alwmark Gareth S. Collins 《Meteoritics & planetary science》2017,52(12):2521-2549
Siljan, central Sweden, is the largest known impact structure in Europe. It was formed at about 380 Ma, in the late Devonian period. The structure has been heavily eroded to a level originally located underneath the crater floor, and to date, important questions about the original size and morphology of Siljan remain unanswered. Here we present the results of a shock barometry study of quartz‐bearing surface and drill core samples combined with numerical modeling using iSALE. The investigated 13 bedrock granitoid samples show that the recorded shock pressure decreases with increasing depth from 15 to 20 GPa near the (present) surface, to 10–15 GPa at 600 m depth. A best‐fit model that is consistent with observational constraints relating to the present size of the structure, the location of the downfaulted sediments, and the observed surface and vertical shock barometry profiles is presented. The best‐fit model results in a final crater (rim‐to‐rim) diameter of ~65 km. According to our simulations, the original Siljan impact structure would have been a peak‐ring crater. Siljan was formed in a mixed target of Paleozoic sedimentary rocks overlaying crystalline basement. Our modeling suggests that, at the time of impact, the sedimentary sequence was approximately 3 km thick. Since then, there has been around 4 km of erosion of the structure. 相似文献
7.
Complex crater formation: Insights from combining observations of shock pressure distribution with numerical models at the West Clearwater Lake impact structure 下载免费PDF全文
A. S. P. Rae G. S. Collins R. A. F. Grieve G. R. Osinski J. V. Morgan 《Meteoritics & planetary science》2017,52(7):1330-1350
Large impact structures have complex morphologies, with zones of structural uplift that can be expressed topographically as central peaks and/or peak rings internal to the crater rim. The formation of these structures requires transient strength reduction in the target material and one of the proposed mechanisms to explain this behavior is acoustic fluidization. Here, samples of shock‐metamorphosed quartz‐bearing lithologies at the West Clearwater Lake impact structure, Canada, are used to estimate the maximum recorded shock pressures in three dimensions across the crater. These measurements demonstrate that the currently observed distribution of shock metamorphism is strongly controlled by the formation of the structural uplift. The distribution of peak shock pressures, together with apparent crater morphology and geological observations, is compared with numerical impact simulations to constrain parameters used in the block‐model implementation of acoustic fluidization. The numerical simulations produce craters that are consistent with morphological and geological observations. The results show that the regeneration of acoustic energy must be an important feature of acoustic fluidization in crater collapse, and should be included in future implementations. Based on the comparison between observational data and impact simulations, we conclude that the West Clearwater Lake structure had an original rim (final crater) diameter of 35–40 km and has since experienced up to ~2 km of differential erosion. 相似文献
8.
T. KENKMANN N. A. ARTEMIEVA K. WÜNNEMANN M. H. POELCHAU D. ELBESHAUSEN H. NÚÑEZ del PRADO 《Meteoritics & planetary science》2009,44(7):985-1000
Abstract— The recent Carancas meteorite impact event caused a worldwide sensation. An H4–5 chondrite struck the Earth south of Lake Titicaca in Peru on September 15, 2007, and formed a crater 14.2 m across. It is the smallest, youngest, and one of two eye‐witnessed impact crater events on Earth. The impact violated the hitherto existing view that stony meteorites below a size of 100 m undergo major disruption and deceleration during their passage through the atmosphere and are not capable of producing craters. Fragmentation occurs if the strength of the meteoroid is less than the aerodynamic stresses that occur in flight. The small fragments that result from a breakup rain down at terminal velocity and are not capable of producing impact craters. The Carancas cratering event, however, demonstrates that meter‐sized stony meteoroids indeed can survive the atmospheric passage under specific circumstances. We present results of a detailed geologic survey of the crater and its ejecta. To constrain the possible range of impact parameters we carried out numerical models of crater formation with the iSALE hydrocode in two and three dimensions. Depending on the strength properties of the target, the impact energies range between approximately 100–1000 MJ (0.024–0.24 t TNT). By modeling the atmospheric traverse we demonstrate that low cosmic velocities (12–14 kms?1) and shallow entry angles (<20 °) are prerequisites to keep aerodynamic stresses low (<10 MPa) and thus to prevent fragmentation of stony meteoroids with standard strength properties. This scenario results in a strong meteoroid deceleration, a deflection of the trajectory to a steeper impact angle (40–60 °), and an impact velocity of 350–600 ms?1, which is insufficient to produce a shock wave and significant shock effects in target minerals. Aerodynamic and crater modeling are consistent with field data and our microscopic inspection. However, these data are in conflict with trajectories inferred from the analysis of infrasound signals. 相似文献
9.
Abstract— The Lockne impact event took place in a Middle Ordovician (455 Ma) epicontinental sea. The impact resulted in an at least 13.5 km wide, concentric crater in the sea floor. Lockne is one of very few locations where parts of an ejecta layer have been preserved outside the crater structure. The ejecta from the Lockne impact rests on progressively higher stratigraphic levels with increasing distance from the crater, hence forming a slightly inclined discontinuity surface in the pre‐impact strata. We report on a ~30 cm thick sandy layer at Hallen, 45 km south of the crater centre. This layer has a fining upward sequence in its lower part, followed by low‐angle cross‐laminations indicating two opposite current directions. It is rich in quartz grains with planar deformation features and contains numerous, up to 15 cm large, granite clasts from the crystalline basement at the Lockne impact site. The layer is within a sequence dated to the Baltoniodus gerdae conodont subzone. The dating is corroborated by chitinozoans indicating the latest Kukruse time below and the late Idavere above the impact layer. According to the chitinozoans biostratigraphy, some erosion may have occurred because of deposition of the impact layer. The Hallen outcrop, today 45 km from the centre of the Lockne crater, is at present the most distant accessible occurrence of ejecta from the Lockne impact. It is also the most distant location so far found where the resurge of water towards the crater has affected the bottom sediments. A greater crater diameter than hitherto assumed, thus representing greater impact energy, might explain the extent of the ejecta blanket. Fluidisation of ejecta, to be expected at a marine‐target impact, might furthermore have facilitated the wide distribution of ejecta. 相似文献
10.
Argo J
ELEHT Kalle KIRSIME Jüri PLADO Evelin VERSH Boris IVANOV 《Meteoritics & planetary science》2005,40(1):21-33
Abstract— Impact and geothermal modeling was performed to explain hydrothermal alteration in a 4 km marine complex crater at Kärdla, Estonia. The impact modeling was used to simulate the formation of the crater and the post‐impact temperature distribution in crater environment. The geothermal modeling accounted for coupled heat transfer and multi‐phase fluid flow in a variably saturated medium. The modeling results suggest that strong convective fluid flow was initiated. During the first stage, the cooling was rapid due to the effect of the latent heat of vaporization, which efficiently decreased the temperature to the boiling point. The modeling results are consistent with geological observations. 相似文献
11.
The formation environment of potassic‐chloro‐hastingsite in the nakhlites MIL 03346 and pairs and NWA 5790: Insights from terrestrial chloro‐amphibole 下载免费PDF全文
Potassic‐chloro‐hastingsite has been found in melt inclusions in MIL 03346, its paired stones, and NWA 5790. It is some of the most chlorine‐rich amphibole ever analyzed. In this article, we evaluate what crystal chemistry, terrestrial analogs, and experiments have shown about how chlorine‐dominant amphibole (chloro‐amphibole) forms and apply these insights to the nakhlites. Chloro‐amphibole is rare, with about a dozen identified localities on Earth. It is always rich in potassium and iron and poor in titanium. In terrestrial settings, its presence has been interpreted to result from medium to high‐grade alteration (>400 °C) of a protolith by an alkali and/or iron chloride‐rich aqueous fluid. Ferrous chloride fluids exsolved from mafic magmas can cause such alteration, as can crustal fluids that have reacted with rock and lost H2O in preference to chloride, resulting in concentrated alkali chloride fluids. In the case of the nakhlites, an aqueous alkali‐ferrous chloride fluid was exsolved from the parental melt as it crystallized. This aqueous chloride fluid itself likely unmixed into chloride‐dominant and water‐dominant fluids. Chloride‐dominant fluid was trapped in some melt inclusions and reacted with the silicate contents of the inclusion to form potassic‐chloro‐hastingsite. 相似文献
12.
Winfried H. Schwarz Michael Hanel Mario Trieloff 《Meteoritics & planetary science》2020,55(2):312-325
In situ U‐Pb measurements on zircons of the Ries impact crater are presented for three samples from the quarry at Polsingen. The U‐Pb data of most zircons plot along a discordia line, leading to an upper intercept of Carboniferous age (331 ± 32 Ma [2σ]). Four zircons define a concordia age of 313.2 ± 4.4 Ma (2σ). This age most probably represents the age of a granite from the basement target rocks. From granular textured zircon grains (including baddeleyite and anatase/Fe‐rich phases, first identified in the Ries crater), most probably recrystallized after impact (13 analyses, 4 grains), a concordia age of 14.89 ± 0.34 Ma (2σ) and an error weighted mean 206Pb*/238U age of Ma 14.63 ± 0.43 (2σ) is derived. Including the youngest concordant ages of five porous textured zircon grains (24 spot analyses), a concordia age of 14.75 ± 0.22 Ma (2σ) and a mean 206Pb*/238U age of 14.71 ± 0.26 Ma (2σ) can be calculated. These results are consistent with previously published 40Ar/39Ar ages of impact glasses and feldspar. Our results demonstrate that even for relatively young impact craters, reliable U‐Pb ages can be obtained using in situ zircon dating by SIMS. Frequently the texture of impact shocked zircon grains is explained by decomposition at high temperatures and recrystallization to a granular texture. This is most probably the case for the observed granular zircon grains having baddeleyite/anatase/Fe‐rich phases. We also observe non‐baddeleyite/anatase/Fe‐rich phase bearing zircons. For these domains, reset to crater age is more frequently for high U,Th contents. We tentatively explain the higher susceptibility to impact resetting of high U,Th domains by enhanced Pb loss and mobilization due to higher diffusivity within former metamict domains that were impact metamorphosed more easily into porous as well as granular textures during decomposition and recrystallization, possibly supported by Pb loss during postimpact cooling and/or hydrothermal activity. 相似文献
13.
An energy balance model has been developed to investigate how the Martian atmospheric environment could influence a community of photosynthetic microorganisms with properties similar to those of a cyanophyte (blue-green algal mat) and a lichen. Surface moisture and soil nutrients are assumed to be available. The model was developed to approximate equatorial equinox conditions and includes parameters for solar and thermal radiation, convective and conductive energy transport, and evaporative cooling. Calculations include the diurnal variation of organism temperature and transpiration and photosynthetic rates. The influences of different wind speeds and organism size and resistivity are also studied. The temperature of organisms in mats less than a few millimeters thick will not differ from the ground temperature by more than 10°K. Water loss is actually retarded at higher wind speeds, since the organism temperature is lowered, thus reducing the saturation vapor pressure. Typical photosynthetic rates lead to the production of 10?6 to 10?7 mole O2 cm?2 day?1. 相似文献
14.
Although we can observe current activity on Saturn's satellite Enceladus with Cassini, insight into past activity is best achieved (for now) through studying the impact crater distributions. Furthermore, approximation of terrain ages can only be attained through calculations using crater densities and estimations of impact rates in the saturnian system. Here we focus on what the impact crater distribution in Enceladus' heavily cratered plains can tell us about Enceladus' geologic history. We use Cassini ISS images to count craters in the heavily cratered plains on Enceladus, along with Rhea, Dione, Tethys and Mimas as references, to develop and compare their size-frequency distributions. Comparisons of our counts show that Enceladus' cratered plains distribution is unique in that it appears to have a relative deficiency of craters for diameters ?2 km and ?6 km compared to the other satellites' heavily cratered plains. Our data also indicates that the impact crater density within the cratered plains changes with latitude. Specifically, both the north and south mid-latitude regions have approximately three times higher density than the equatorial region. We hypothesize that the “missing” small and large craters in Enceladus' cratered plains is due to a combination of viscous relaxation of the larger craters, and burial of the relaxed large craters and small craters by south polar plume and possibly E-ring material. We also conclude that the spatial density distribution is not consistent with recent polar wander. 相似文献
15.
Y. Popov R. Romushkevich I. Bayuk D. Korobkov S. Mayr H. Burkhardt H. Wilhelm 《Meteoritics & planetary science》2004,39(6):799-812
Abstract— Physical properties were determined in a first step on post‐impact tertiary limestones from the depth interval of 404–666 m of the Yaxcopoil‐1 (Yax‐1) scientific well, drilled in the Chicxulub impact crater (Mexico). Thermal conductivity, thermal diffusivity, density, and porosity were measured on 120 dry and water‐saturated rocks with a core sampling interval of 2–2.5 m. Nondestructive, non‐contact optical scanning technology was used for thermal property measurements including thermal anisotropy and inhomogeneity. Supplementary petrophysical properties (acoustic velocities, formation resisitivity factor, internal surface, and hydraulic permeability) were determined on a selected subgroup of representative samples to derive correlations with the densely measured parameters, establishing estimated depth logs to provide calibration values for the interpretation of geophysical data. Significant short‐ and long‐scale variations of porosity (1–37%) turned out to be the dominant factor influencing thermal, acoustic, and hydraulic properties of this post impact limestone formation. Correspondingly, large variations of thermal conductivity, thermal diffusivity, acoustic velocities, and hydraulic permeability were found. These variations of physical properties allow us to subdivide the formation into several zones. A combination of experimental data on thermal conductivity for dry and water‐saturated rocks and a theoretical model of effective thermal conductivity for heterogeneous media have been used to calculate thermal conductivity of mineral skeleton and pore aspect ratio for every core under study. The results on thermal parameters are the necessary basis for the determination of heat flow density, demonstrating the necessity of dense sampling in the case of inhomogeneous rock formations. 相似文献
16.
Manfred Gottwald Thomas Fritz Helko Breit Birgit Schättler Alan Harris 《Meteoritics & planetary science》2017,52(7):1412-1427
With the TanDEM‐X digital elevation model (DEM), the terrestrial solid surface is globally mapped with unprecedented accuracy. TanDEM‐X is a German X‐band radar mission whose two identical satellites have been operated in single‐pass interferometer configuration over several years. The acquired data are processed to yield a global DEM with 12 m independent posting and relative vertical accuracies of better than 2 m and 4 m in moderate and mountainous terrain, respectively. This DEM provides new opportunities for space‐borne remote‐sensing studies of the entire sample of terrestrial impact craters. In addition, it represents an interesting repository to aid in the search for new impact crater candidates. We have used the TanDEM‐X DEM to investigate the current set of confirmed impact structures. For a subsample of the craters, including small, midsized, and large structures, we compared the results with those from other DEMs. This quantitative analysis demonstrates the excellent quality of the TanDEM‐X elevation data. Our findings help to estimate what can be gained by using the TanDEM‐X DEM in impact crater studies. They may also be beneficial in identifying the regions and morphologies where the search for currently unknown impact structures might be most promising. 相似文献
17.
Abstract— The lake Lappajärvi impact crater lies in Paleoproterozoic Svecofennian metasedimentary rocks, on the western side of the Central Finland granitoid complex (~1.9 Ga). Two conflicting ages have been reported for the meteorite impact: an age of 77.3 ± 0.4 Ma on the basis of Ar‐Ar whole‐rock data from impact melt samples and a paleomagnetic age of 195 Ma. During studies on impact crater indicator minerals at Lappajärvi, zircons with an atypical appearance were found in suevite boulders. These zircons seemed to have been affected by impact shock metamorphism and it was considered that they would be good candidates for ion microprobe U‐Pb dating, allowing a new and independent age estimate for the impact event at Lappajärvi. Four spot analyses on two black‐coated zircons plotted close to the upper intercept end of the concordia curve giving an approximate age of 1.8 Ga for the source rock. Seventeen analyses were done on three dull zircon grains showing patchy impact‐related partial recrystallization. Most of these data fell fairly well on a single discordia line with intercept ages of 73.3 ± 5.3 Ma and 1854 ± 51 Ma. However, five of the data spots near the lower intercept end fell on the younger side of the line. This was interpreted to indicate post‐impact loss of lead. Importantly, the new ion microprobe U‐Pb age of 73.3 ± 5.3 Ma is in a very good agreement with the previously reported Ar‐Ar age. 相似文献
18.
Megan E. Elwood Madden David A. Kring Robert J. Bodnar 《Meteoritics & planetary science》2006,41(2):247-262
Abstract— This study examines the effects of shock metamorphism on fluid inclusions in crystalline basement target rocks from the Ries crater, Germany. The occurrence of two‐phase fluid inclusions decreases from shock stage 0 to shock stage 1, while single‐phase inclusions increase, likely as a result of re‐equilibration. In shock stages 2 and 3, both two‐phase and single‐phase inclusions decrease with increasing shock stage, indicating that fluid inclusion vesicles are destroyed due to plastic deformation and phase changes in the host minerals. However, quartz clasts entrained in shock stage 4 melts contain both single‐phase and two‐phase inclusions, demonstrating the rapid quenching of the melt and the heterogeneous nature of impact deformation. Inclusions in naturally shocked polycrystalline samples survive at higher shock pressures than those in single crystal shock experiments. However, fluid inclusions in both experimental and natural samples follow a similar trend in re‐equilibration at low to moderate shock pressures leading to destruction of inclusion vesicles in higher shock stages. This suggests that shock processing may lead to the destruction of fluid inclusions in many planetary materials and likely contributed to shock devolatilization of early planetesimals. 相似文献
19.
Veronica J. BRAY Gareth S. COLLINS Joanna V. MORGAN Paul M. SCHENK 《Meteoritics & planetary science》2008,43(12):1979-1992
Abstract— We examine the morphology of central peak craters on the Moon and Ganymede in order to investigate differences in the near‐surface properties of these bodies. We have extracted topographic profiles across craters on Ganymede using Galileo images, and use these data to compile scaling trends. Comparisons between lunar and Ganymede craters show that crater depth, wall slope and amount of central uplift are all affected by material properties. We observe no major differences between similar‐sized craters in the dark and bright terrain of Ganymede, suggesting that dark terrain does not contain enough silicate material to significantly increase the strength of the surface ice. Below crater diameters of ?12 km, central peak craters on Ganymede and simple craters on the Moon have similar rim heights, indicating comparable amounts of rim collapse. This suggests that the formation of central peaks at smaller crater diameters on Ganymede than the Moon is dominated by enhanced central floor uplift rather than rim collapse. Crater wall slope trends are similar on the Moon and Ganymede, indicating that there is a similar trend in material weakening with increasing crater size, and possibly that the mechanism of weakening during impact is analogous in icy and rocky targets. We have run a suite of numerical models to simulate the formation of central peak craters on Ganymede and the Moon. Our modeling shows that the same styles of strength model can be applied to ice and rock, and that the strength model parameters do not differ significantly between materials. 相似文献
20.
Abstract— The chemical composition of suevites, displaced Cretaceous target rocks, and impact‐generated dikes within these rocks from the Yaxcopoil‐1 (Yax‐1) drill core, Chicxulub impact crater, Mexico, is reported and compared with the data from the Yucatán 6 (Y6) samples. Within the six suevite subunits of Yax‐1, four units with different chemical compositions can be distinguished: a) upper/lower sorted and upper suevite (depth of 795–846 m); b) middle suevite (depth of 846–861 m); c) brecciated impact melt rock (depth of 861–885 m); and d) lower suevite (depth of 885–895 m). The suevite sequence (a), (b), and (d) display an increase of the CaO content and a decrease of the silicate basement component from top to bottom. In contrast, the suevite of Y6 shows an inverse trend. The different distances of the Yax‐1 and Y6 drilling sites from the crater center (~60, and ~47 km, respectively) lead to different suevite sequences. Within the Cretaceous rocks of Yax‐1, a suevitic dike (depth of ~916 m) does not display chemical differences when compared with the suevite, while an impact melt rock dike (depth of ~1348 m) is significantly enriched in immobile elements. A clastic breccia dike (depth of ~1316 m) is dominated by material derived locally from the host rock, while the silicate‐rich component is similar to that found in the suevite. Significant enrichments of the K2O content were observed in the Yax‐1 suevite and the impact‐generated dikes. All impactites of Yax‐1 and Y6 are mixtures of a crystalline basement and a carbonate component from the sedimentary cover. An anhydrite component in the impactites is missing (Yax‐1) or negligible (Y6). 相似文献