首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To investigate the low temperature fatigue crack propagation behavior of offshore structuralsteel A131 under random ice loading,three ice failure modes that are commonly present in the Bohai Gulfare simulated according to the vibration stress responses induced by real ice loading.The test data are pro-cessed by a universal software FCPUSL developed on the basis of the theory of fatigue crack propagationand statistics.The fundamental parameter controlling the fatigue crack propagation induced by randomice loading is determined to be the amplitude root mean square stress intensity factor K_(arm).The test resultsare presented on the crack propagation diagram where the crack growth rate da/dN is described as thefunction of K_(arm).It is evident that the ice failure modes have great influence on the fatigue crack propaga-tion behavior of the steel in ice-induced vibration.However,some of the experimental phenomena and testresults are hard to be physically explained at present.The work in this paper is an init  相似文献   

2.
Three types of ice loading, which are most commonly present when ice acts on structures, are chosen and simulated for use of fatigue crack propagation tests on offshore structural steel A131. The three types of ice categorized in accordance with the failure modes when acting on structures called crushing ice, bending ice, and buckling ice, respectively. This paper presents an experimental investigation on the fatigue crack propagation behavior of widely used high strength steel A131 for offshore jackets in the loading environment of ice crushing, bending, and buckling. The test results of fatigue crack propagation in steel A131 under these simulated ice loading at temperature 292K. are presented and analyzed in detail in this paper. The amplitude root mean square stress intensity factor is optimized to be the fundamental parameter of fatigue crack propagation for all types of ice loading histories. The results are also compared with constant amplitude fatigue crack propagation conclusions as in wave loa  相似文献   

3.
张剑波 《海洋通报》2006,25(5):50-56
海洋等工程结构物在服役过程中的受载历程是一个随机过程。研究裂纹在谱载荷作用下的扩展规律对可靠预报平台等结构物的疲劳寿命具有十分重要的意义。提出了一个由应力比和裂纹尖端约束及塑性区尺寸为主要参数计算裂纹张开比,来考查载荷相互作用下疲劳裂纹扩展寿命的计算模型。用该模型对几种谱载荷作用下疲劳实验结果进行了预测,将预测结果与不考虑裂纹闭合的线性损伤模型及疲劳计算程序FASTRAN的预测结果进行了比较,表明本模型能较好地预测谱载荷作用下的疲劳裂纹扩展。  相似文献   

4.
基于EIFS和P-M的海底管道腐蚀疲劳寿命预测   总被引:1,自引:1,他引:0  
鉴于腐蚀疲劳损伤的特殊性,研究了点蚀过程和腐蚀疲劳裂纹扩展过程。基于等效初始缺陷尺寸(EIFS)和线性累积损伤理论(P-M)方法,消除了点蚀形核、蚀坑生长及腐蚀疲劳短裂纹扩展对腐蚀疲劳寿命预测的影响;避免了基于单点蚀坑建立的腐蚀疲劳寿命预测表达式的弊端;合理地简化了随机荷载下腐蚀疲劳寿命的预测流程。利用现有试验数据,对基于EIFS和P-M方法建立的腐蚀疲劳寿命预测表达式进行了模型验证。结果显示,所提模型的有效性和合理性得到了验证,为工程实际中海底管道的腐蚀疲劳寿命预测提供了一种可行方法。  相似文献   

5.
线性断裂力学中研究裂纹的扩展通常用应力强度因子的断裂准则,但是对复合型裂纹,应力强度因子理论就发生了困难。本文用光弹性方法求得裂纹前缘的应力强度因子,然后用应变能密度因子理论研究了船舶大开口舱口角隅处疲劳裂纹和T型管节点热点处表面裂纹的扩展规律和方向,得到较好的结果  相似文献   

6.
—The Monte-Carlo method is used to simulate the surface fatigue crack growth rate foroffshore structural steel E36-Z35,and to determine the distributions and relevance of the parameters in theParis equation.By this method,the time and cost of fatigue crack propagation testing can be reduced.Theapplication of the method is demonstrated by use of four sets of fatigue crack propagation data foroffshore structural steel E36-Z35.A comparison of the test data with the theoretical prediction for surfacecrack growth rate shows the application of the simulation method to the fatigue crack propagation tests issuccessful.  相似文献   

7.
采用侧壁开槽型CT试样,分别在空气和3.5%NaCl溶液中进行腐蚀疲劳裂纹扩展试验,研究海底管道用钢X65在海水腐蚀环境下的腐蚀疲劳裂纹扩展特性。为保证试样既能满足腐蚀疲劳试验机的夹具要求,又可控制裂纹沿直线方向扩展,采用侧壁开槽技术对CT试样进行改进;利用有限元软件ABAQUS,建立三维模型,验证了对于侧壁开槽型CT试样,可以采用ASTM标准推荐的应力强度因子表达式对改进后CT试样开展数值计算。利用YYF-50腐蚀疲劳试验装置开展试验,试验结果表明:和惰性环境相比,腐蚀环境不仅会加速X65钢的裂纹扩展速率,还会降低腐蚀疲劳体系下裂纹扩展的门槛值;在腐蚀体系下存在裂纹扩展的稳定阶段,可采用Paris公式对其腐蚀疲劳裂纹扩展速率进行预测。  相似文献   

8.
ZHU  Jin-song 《中国海洋工程》2003,17(4):617-630
The effects of different lateral confinement stress on the fatigue behavior of and cumulative damage to plain concrete are investigated experimentally. Eighty 100 mm x 100 mm x 100 mm specimens of ordinary strength concrete are tested under constant- or variable-amplitude fatigue loading and lateral confinement pressure in two orthogonal directions. A fatigue equation is developed by modifying the classical Aas-Jakobsen S-N equation for taking into account the effect of the confined stress on fatigue strength of plain concrete. The results of variable-amplitude fatigue tests indicate that the linear damage theory proposed by Palmgren and Miner is unreasonable in the biaxial stress state. A nonlinear cumulative damage model that could model the effects of the magnitude and sequence of variable-amplitude fatigue loading and lateral confinement pressure is proposed on the basis of the evolution laws of the residual strains in the longitudinal direction during fatigue tests. The residual fatigue life predic  相似文献   

9.
Corrosion and fatigue cracks are major threats to the structural integrity of aging offshore platforms.For the rational estimation of the safety levels of aging platforms,a global reliability assessment approach for aging offshore platforms with corrosion and fatigue cracks is presented in this paper.The base shear capacity is taken as the global ultimate strength of the offshore plaffoms,it is modeled as a random process that decreases with time in the presence of corrosion and fatigue crack propagation.And the corrosion and fatigue crack growth rates in the main members and key joints are modeled as random variables.A simulation method of the extreme wave loads which are applied to the structures of offshore platforms is proposed too.Furthermore,the statistics of global base shear capacity and extreme wave loads are obtained by Monte Carlo simulation method.On the basis of the limit state equation of global failure mode,the instantaneous reliability and time dependent reliability assessment methods are both presented in this paper.Finally the instantaueous reliability index and time dependent failure probability of a jacket platform are estimated with different ages in the demonstration example.  相似文献   

10.
A study on fatigue behavior of unbonded partially prestressed concrete beams is presented.Model tests have been carried out in static loading and cyclic compressive loading on 15 beams withflexure.The ratios of the lower limit to the upper limit of fatigue load are 0.5 and 0.3 respectively,and thefrequencies of cyclic loading are 8 Hz and 4.5 Hz respectively.The experimental results of the strains of theconcrete and steel bars,the deflection of test beams,and the crack width of normal section are analyzed.According to statistics and analysis of test results,the corresponding calculation models are developed andpresented.  相似文献   

11.
Non-linear analysis of undrained cyclic strength of soft marine clay   总被引:2,自引:0,他引:2  
Iwan models are used to simulate the non-linear and hysteretic behaviour of soils under cyclic loading conditions. However, the model in its original form cannot take into account the stiffness degradation which is observed during cyclic loading of soft clays. Studies show that the stiffness reduction (expressed as degradation index) can be represented as a function of the number of cycles and of a degradation parameter depending on the strain amplitude in the case of strain controlled cyclic loading tests. This degradation index has been incorporated into Iwan's series–parallel model as a single fatigue parameter to account for the degradation during cyclic loading. The comparisons made with the existing results of two marine clays tested under undrained cyclic triaxial and simple shear conditions provided an opportunity to understand the capability of the one dimensional model.  相似文献   

12.
This paper introduces the process and result of fatigue test of steel (Z direction steel) welded T tubular joints used in offshore engineering. Detailed measurement of stress concentration factor, stress distribution, fatigue life and crack development has been performed. Through analysis, an empirical formula of stress concentration factor for T tubular joints, fatigue S-N curve and crack propagation rule are obtained.  相似文献   

13.
Slender marine structures such as mooring lines and risers are susceptible to failures due to stress variations coming from environmental actions. Wave, wind and current are random phenomena, and consequently the most adequate methodology to estimate the fatigue damage accumulation on these structures is the probabilistic fatigue analysis. In practice, the estimation of fatigue life requires the numerical simulation of a huge number of loading cases to compute the multi-dimensional integral of the total fatigue damage.This paper presents an efficient approach to compute the long-term fatigue damage of marine structures. The proposed method needs only a few number of numerical simulations to estimate the structure fatigue life. It uses a parametric interpolation procedure to evaluate the fatigue damage for any individual short-term condition (sea state) required in the calculation of the multi-dimensional integral. In this way, the total number of short-term structural analyzes is considerably reduced.The effectiveness and accuracy of the proposed method is compared to the full direct integration by means of two comprehensive examples. The first studied case is an idealized theoretical model of a single-degree-of-freedom (SDOF) system under wave loading, and the second one is a Steel Catenary Riser (SCR) connected to a FPSO (Floating, Production, Storage and Offloading floating unit).  相似文献   

14.
An important aspect of deepwater well integrity assurance is conductor fatigue analysis under environmental loads acting on the riser system during drilling operation. Fatigue damage arises from stress changes in a structure due to cyclic loading. In practice, the lateral cyclic soil response is typically modelled using Winkler py springs. An appropriate soil model for conductor–soil interaction analysis is the one based on which the absolute magnitudes of stresses and their changes can accurately be predicted for well integrity evaluation. The API recommendations for py curves, which are often used for conductor–soil interaction analysis, have originally been developed for piled foundation and are inappropriate for well fatigue analysis. To that end, an extensive study involving four series of centrifuge model tests and FE numerical analyses was conducted to fundamentally study conductor–soil interaction under a wide spectrum of loading conditions. The tests simulated conductor installations in normally to over consolidated clays, and medium-dense clean sands. Soil models were developed specifically for conductor fatigue analysis for each of the soil types. The test results and soil models are presented in two papers. The first paper, Part I, presents an overview of the study and first series tests in normally to lightly over-consolidated kaolin clay and discusses the observations made with regards to monotonic and cyclic soil resistances and their relationship to conductor fatigue modelling. The second paper, Part II, presents centrifuge test results in normally to lightly over-consolidated Golf of Mexico (GoM) clay, over-consolidated natural clay and medium-dense clean sands along with the respective soil models developed for conductor fatigue damage prediction. Overall, the accuracy of fatigue life predictions using these novel soil models is very high – generally within about a few percentage of the measured values.  相似文献   

15.
When studying the low-cycle fatigue crack initiation life of notched plates, the effects of fatigue short crack and accumulative plastic damage in the vicinity of the notch should be considered. The low-cycle fatigue crack initiation life of notched plates has been revised in the analysis process by considering the short crack initiation and expansion of notch stress concentration area. By determining the accumulative plastic deformation in the vicinity of a notch under low-cycle fatigue loads, a predictive model of low-cycle fatigue crack initiation life was presented for notched plates, and the relative influence factors were quantitatively analyzed. A comparison study verified that the results obtained from the presented calculation model correlate quite well with those from the existing experiments. Some important conclusions were drawn from the study on considering the effects of short crack and accumulative plastic damage. The presented method may be used for predicting the low-cycle fatigue crack initiation life of ship plate.  相似文献   

16.
胡康  杨平  刘清超 《海洋工程》2023,41(3):85-95
旨在了解箱型梁在极端循环载荷下的极限强度特性。利用非线性有限元方法来研究裂纹箱型梁的极限弯矩,分析了5种裂纹模型,探讨了裂纹类型、裂纹位置和裂纹长度的影响。考虑了两种载荷形式应用生死单元法对双向循环弯曲下裂纹扩展进行了模拟;并将由循环载荷引起的累积塑性损伤和疲劳裂纹损伤均考虑在内。无论单向循环还是双向循环,单裂纹模型的极限弯矩均小于双裂纹模型的极限弯矩;单边裂纹是最危险的裂纹类型。进一步分析了极端循环载荷下裂纹箱型梁的极限强度折减机理,得出了极限强度折减归因于这两种损伤的耦合作用的结论,并通过其他箱型梁验证了其适用性。  相似文献   

17.
Corrosion and fatigue cracks are major threats to the structural integrity of aging offshore platforms. For the rational estimation of the safety levels of aging platforms, a global reliability assessment approach for aging offshore platforms with corrosion and fatigue cracks is presented in this paper. The base shear capacity is taken as the global ultimate strength of the offshore platforms. It is modeled as a random process that decreases with time in the presence of corrosion and fatigue crack propagati...  相似文献   

18.
First,Wirsching's model,which is widely employed in fatigue reliability anlysis of marine andoffshore structures,is analysed systematically.It is found that the very important random variable △ inWirsching's model can not be directly determined from fatigue experiment because of the irreversibility offatigue test,and in fact,what Wirsching studied from testing results is not △ but α of the statistical Miner'srule.Second,by use of the statistical Miner's rule,a modified Wirsching's model is proposed.Thirdly andmore importantly,based on the two-dimensional probabilistic Miner's rule,a new model is established forfatigue reliability analysis of structural components subjected to specified cyclic loading of variableamplitude or stochastic time history.In the end,an example is presented,from which it will be seen thatthis new model is very convenient to use and feasible to engineering practice.  相似文献   

19.
Optimal Design of TMD Under Long-Term Nonstationary Wave Loading   总被引:3,自引:0,他引:3  
—Traditionally,the use of a tuned mass damper(TMD)is to improve the surviability of the pri-mary structure under extraordinary loading environment while the design loading condition is describedby either a harmonic function or a stationary random process that can be fully characterized by a powerspectral density(PSD)function.Aiming at prolonging the fatigue life of an offshore platform,this studyconsiders an optimal design of TMD for the platform under long-term nonstationary loading due tolong-term random sea waves characterized by a probabilistic power spectral density(PPSD)function.Inprinciple,a PPSD could be derived based on numerous ordinary PSD functions;and each of them is treat-ed as realization of the corresponding PPSD.This study provides a theoretical development for theoptimal TMD design by minimizing the cost function to be the mean square value of the expectedlong-term response.A numerical example is presented to illustrate the developed design procedure.  相似文献   

20.
This paper, Part II, presents two soil modelling approaches developed specifically for fatigue analysis of well conductors. The first approach uses Winkler springs and can account for soil damping. The second approach is based on continuum soil mechanics and uses the kinematic hardening principles. They focus on cyclic soil behaviour at the steady-state condition. The paper demonstrates appropriateness of the approaches in predicting fatigue damage through comparisons with the centrifuge fatigue lives measured from the Series 1 tests in NC to lightly OC kaolin clay. It also presents and discusses the analyzed data and the fatigue lives measured from the Series 2 (medium-dense sand), Series 3 (NC to lightly OC GoM clay), and Series 4 (OC natural clay) tests. Finally, soil models (based on the first approach) are presented for fatigue analysis of well conductors installed in NC to lightly OC clays, over-consolidated (OC) clays and medium-dense sands, and their ability to predict conductor fatigue damage under wide range of loading conditions is demonstrated. Overall, the accuracy of fatigue life predictions using these novel soil models is very high – generally within about a few percentages of the measured values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号