首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of auroral electrojets on the variations in the low-latitude geomagnetic disturbances and Dst during a strong magnetic storm of November 20–21, 2003, with Dst ≈ ?472 nT has been studied based on the global magnetic observations. It has been indicated that the magnetospheric storm expansive phase with Δt ≈ 1–2 h results in positive low-latitude disturbances (ΔH) of the same duration and with an amplitude of ~ 1–2 h results in positive low-latitude disturbances (ΔH) of the same duration and with an amplitude of ~ 30–100 nT in the premidnight-dawn sector. A growth of negative low-latitude ΔH values and Dst is mainly caused by regular convection electrojets with Δt ≥ 10 h, the centers of which shift to latitudes of ~ 50°–55° during the storm development. It has been established that the maximal low-latitude values of the field ΔH component at 1800–2400 MLT are observed when the auroral luminosity equatorward boundary shifts maximally southward during an increase in the negative values of the IMF B z component. It has been assumed that, during this storm, a magnetic field depression at low latitudes was mainly caused by an enhancement of the partially-ring current which closes through field-aligned currents into the ionosphere at the equatorward boundary of the auroral luminosity zone.  相似文献   

2.
The relationship between the auroral electrojet indices (AE) and the ring current magnetic field (DR) was investigated by observations obtained during the magnetic storm on 1–3 April 1973. During the storm main phase the DR development is accompanied by a shift of the auroral electrojets toward the equator. As a result, the standard AE indices calculated on the basis of data from auroral observatories was substantially lower than the real values (AE’). To determine AE’ during the course of a storm main phase data from subauroral magnetic observatories should be used. It is shown that the intensity of the indices (AE’) which take into account the shift of the electrojets is increased substantially relative to the standard indices during the storm main phase. AE’ values are closely correlated with geoeffective solar wind parameters. A high correlation was obtained between AE’ and the energy flux into the ring current during the storm main phase. Analysis of magnetic field variations during intervals with intense southward IMF components demonstrates a decrease of the saturation effect of auroral electrojet currents if subauroral stations magnetic field variations are taken into account. This applies both to case studies and statistical data. The dynamics of the electrojets in connection with the development of the ring current and of magnetospheric substorms can be described by the presence (absence) of saturation for minimum (maximum) AE index values during a 1-h interval. The ring current magnetic field asymmetry (ASY) was calculated as the difference between the maximum and minimum field values along a parallel of latitude at low latitudes. The ASY value is closely correlated with geoeffective solar wind parameters and simultaneously is a more sensitive indicator of IMF Bz variations than the symmetric ring current. ASY increases (decreases) faster during the main phase (the recovery phase) than DR. The magnetic field decay at low latitudes in the recovery phase occurs faster in the afternoon sector than at dusk.  相似文献   

3.
4.
Summary The atmospheric electrical structure of the earth is postulated to be controlled by a motivating force in the lower ionosphere which is produced by interaction between neutral atmosphere tidal circulations and the ionospheric plasma in the presence of the earth's magnetic field. Associated electric fields power the dynamo currents through the Hall effect with a resulting development of a gross electric potential distribution in the lower ionosphere. Asymmetries in these hemispheric potential distributions result in exospheric current flows in lowL-shells and larger differences in potential produced by dynamo return current flows in high magnetic latitudes result in strong currents through highL-shells between auroral zones. Vertical thunderstorm currents with their associated lightning discharges effectively connect the earth to a low potential region of the dynamo circuit and thus supply the earth with an average negative charge which motivates a leakage tropospheric electrical circuit. In addition, the dynamo currents maintain the magnetic polar regions at different potentials with a resulting electrical exchange with the solar wind through the earth's near space. These considerations indicate that observed electrical and variable magnetic phenomena near the earth are all part of a single comprehensive electrical current system.This paper was read byH. Dolezalek in an abbreviated form supplied by the author.  相似文献   

5.
About the relationship between auroral electrojets and ring currents   总被引:1,自引:0,他引:1  
The relationship between the storm-time ring current and the auroral electrojets is investigated using IMAGE magnetometer data, DSt and H-SYM, and solar wind data. Statistical results as well as the investigation of single events show that the auroral electrojets occur also during nonstorm conditions without storm-time ring current development and even during the storm recovery phase of increasing DSt. A close correlation between electrojet intensity and ring current intensity was not found. Though the eastward electrojet moves equatorward during the storm main phase there is no unequivocal relationship between the movement of the westward electrojet and the ring current development. All these results suggest that the auroral electrojets and the ring current develop more or less independently of each other.  相似文献   

6.
We present the results of using the statistical model of field-aligned currents (FACs) based on satellite data and the numerical model of the electric potential distribution in order to detect the asymmetric part in FAC structures and ionospheric plasma convection controlled by the IMF azimuthal (B y ) component at different seasons of the year. These structures can be identified by plotting diagrams, which represent differences in corresponding maps for opposite signs of IMF B y . Circular near-pole current symmetric about the noon meridian and corresponding convection vortices around the pole have been obtained for the summer and equinox periods. It is difficult to detect distinct structures under winter conditions, and the current is most intense on the morning side. A two-cell convection system with the foci in the afternoon and postmid-night sectors is created in the electric potential difference diagrams. Thus, qualitatively different FAC and convection patterns exist during the solstice in opposite hemispheres. The value of the electric potential originating in the near-pole region under the action of the B y component and a change in the potential under the action of additional factors have been estimated.  相似文献   

7.
Magnetic storms and substorms are principalprocesses of energy transition from the solar wind intothe magnetosphere-ionosphere system and dissipationin the system. They are also important events whichthe space physics study and space weather predictionhave been focused on. Magnetic storms are describedby means of the magnetic index Dst, which is calcu-lated using the magnetic disturbances of horizontalcomponent recorded at 5 low-latitudinal stations, rep-resenting approximately the symmetric r…  相似文献   

8.
A few of the difficulties in accurately modelling high-latitude electron densities with a large-scale numerical model of the thermosphere and ionosphere are addressed by comparing electron densities calculated with the Coupled Thermosphere-ionosphere Model (CTIM) to EISCAT data. Two types of simulations are presented. The first set of simulations consists of four diurnally reproducible model runs for a Kp index of 4o which differ only in the placement of the energetic-particle distribution and convection pattern input at high latitudes. These simulations predict varying amounts of agreement with the EISCAT data and illustrate that for a given Kp there is no unique solution at high-latitudes. Small changes in the high-latitude inputs cause dramatic changes in the high-latitude modelled densities. The second type of simulation consists of inputting statistical convection and particle precipitation patterns which shrink or grow as a function of Kp throughout a 3-day period 21–23 February 1990. Comparisons with the EISCAT data for the 3 days indicate that equatorward of the particle precipitation the model accurately simulates the data, while in the auroral zone there is more variability in the data than the model. Changing the high-latitude forcing as a function of Kp allows the CTIM to model the average behavior of the electron densities; however at auroral latitudes model spatial and temporal scales are too large to simulate the detailed variation seen in individual nights of data.  相似文献   

9.
对流电场、场向电流和极光区电集流是磁层一电离层耦合的主要物理过程.它们的演化发展时间分别为几分钟至半小时的量级.本文用100°E和300°E的两个地磁经度链附近各11个台站的1min均值地磁H和Z分量资料,分析了1994年4月16-17日磁暴期间磁层耦合过程对极光区和中低纬区电离层扰动的地磁特征.强磁暴开始时,台站所处的地方时位置不同,则观测到的电离层和地磁响应也完全不同.这是磁层对流和一、二区场向电流共同作用的结果.一般说,扰时极光区的西向电集流变化更为强烈.随着耦合的发展,极光区范围会向南北扩展,电集流中心带则向低纬侧移动.在中低纬区,二区场向电流的建立能屏蔽一区场向电流所产生的扰动,并引起反向的电流及地磁变化.由此,中低纬区夜间有可能出现短时间的东向电场,又可通过EXB的垂直向上漂移作用抬升F层等离子体,并发生同一经度链附近的多站电离层h'F同时突增现象.另一方面,磁赤道附近的台站则更多地受内磁层赤道环电流和电离层赤道电集流的影响.  相似文献   

10.
Intense quasimonchromatic geomagnetic pulsations with a period of ~15 min, observed on the Earth’s surface in the near-noon sector at the beginning of the recovery phase of a very strong (Dst min = ?260 nT) magnetic storm of May 15, 2005, are analyzed. The variations were registered at auroral latitudes only in the X field component, and wave activity shifted into the postnoon sector of the polar cap an hour later; in this case pulsations were observed in the X and Y field components. Within the magnetosphere the source of magnetic pulsations could be the surface waves on the magnetopause caused by the pulse of the solar wind magnetic pressure. Geomagnetic pulsations in the polar cap, observed in phase at different latitudes, could apparently reflect quasiperiodic variations in the NBZ system of field-aligned currents. Such variations can originate due to the series of pulsed reconnections in the postnoon outer cusp at large (~20 nT) positive B z values and large (about ?40 nT) negative values of IMF B x .  相似文献   

11.
High-resolution measurements by the double probe electric field instrument on the Freja satellite are presented. The observations show that extremely intense (up to 1 V m−1) and fine-structured (<1 km) electric fields exist at auroral latitudes within the altitude regime explored by Freja (up to 1700 km). The intense field events typically occur within the early morning sector of the auroral oval (01-07 MLT) during times of geomagnetic activity. In contrast to the observations within the auroral acceleration region characterized by intense converging electric fields associated with electron precipitation, upward ion beams and upward field-aligned currents, the intense electric fields observed by Freja are often found to be diverging and located within regions of downward field-aligned currents outside the electron aurora. Moreover, the intense fields are observed in conjunction with precipitating and transversely energized ions of energies 0.5-1 keV and may play an important role in the ion heating. The observations suggest that the intense electric field events are associated with small-scale low-conductivity ionospheric regions void of auroral emissions such as east-west aligned dark filaments or vortex streets of black auroral curls located between or adjacent to auroral arcs within the morningside diffuse auroral region. We suggest that these intense fields also exist at ionospheric altitudes although no such observations have yet been made. This is possible since the height-integrated conductivity associated with the dark filaments may be as low as 0.1 S or less. In addition, Freja electric field data collected outside the auroral region are discussed with particular emphasis on subauroral electric fields which are observed within the 19–01 MLT sector between the equatorward edge of the auroral oval and the inner edge of the ring current.  相似文献   

12.
Structures controlled by the IMF By sign and season of the year have been detected based on the decomposition of field-aligned current maps constructed using magnetic field measurements on polar low-orbiting satellites. It has been indicated that field-aligned currents have identical structures, composed of the main polar circular current and the return current at the polar cap dayside boundary, at any By sign in the summer hemisphere. Two different types of structures are implemented under winter conditions depending on the By sign. For the northern winter, it is the polar circular current and the return current at the polar cap nightside boundary at By < 0; current sheets are strongly stretched along latitudes below 80° MLat, and only small part of the current is in the noon sector of the polar cap. For the summer winter, the corresponding structures are implemented at opposite By signs. The intensities of the field-aligned currents, originating as a result of the interhemispheric asymmetry and flowing along closed geomagnetic field lines near the polar cap boundary, have been estimated. The maximum of the interhemispheric current density is 0.25 μA m−2 in the summer and 0.1 μA m−2 in the winter; the total current is 5 × 105 and 5 × 104 A, respectively.  相似文献   

13.
We investigate the dayside auroral dynamics and ionospheric convection during an interval when the interplanetary magnetic field (IMF) had predominantly a positive Bz component (northward IMF) but varying By. Polar UVI observations of the Northern Hemisphere auroral emission indicate the existence of a region of luminosity near local noon at latitudes poleward of the dayside auroral oval, which we interpret as the ionospheric footprint of a high-latitude reconnection site. The large field-of-view afforded by the satellite-borne imager allows an unprecedented determination of the dynamics of this region, which has not previously been possible with ground-based observations. The location of the emission in latitude and magnetic local time varies in response to changes in the orientation of the IMF; the cusp MLT and the IMF By component are especially well correlated, the emission being located in the pre- or post-noon sectors for By < 0 nT or By > 0 nT, respectively. Simultaneous ground-based observations of the ionospheric plasma drift are provided by the CUTLASS Finland HF coherent radar. For an interval of IMF By 0 nT, these convection flow measurements suggest the presence of a clockwise-rotating lobe cell contained within the pre-noon dayside polar cap, with a flow reversal closely co-located with the high-latitude luminosity region. This pattern is largely consistent with recent theoretical predictions of the convection flow during northward IMF. We believe that this represents the first direct measurement of the convection flow at the imaged location of the footprint of the high-latitude reconnection site.  相似文献   

14.
We compare the SuperDARN convection patterns with the predictions of a new numerical model of the global distribution of ionospheric electric potentials. The model utilizes high-precision statistical maps of field-aligned currents (FAC) derived from measurements made by polar-orbiting low-altitude satellites. Both the solar and auroral precipitation contributions are included in order to derive the ionospheric conductance. Taking into account the electrodynamic coupling of the opposite hemispheres, the model allows one to obtain the convection patterns developed simultaneously in both hemispheres for given input parameters. SuperDARN, with its database containing global northern and southern convection maps, provides the unique opportunity to compare the model predictions of electric fields with observations. In the present study we focus on the effect of significant interhemispheric asymmetry governed by the IMF clock angle and solar zenith angle. We calculate the convection patterns for specific cases caused by the sign of BY and season and demonstrate the capability of the FAC-based model reproduce the radar observations. The simulation confirms that the solar zenith angle should be linked to the IMF clock angle to fully characterize the convection patterns. The model predicts that the cross-polar cap potential drop is regularly larger in the winter hemisphere than in the summer hemisphere.  相似文献   

15.
本文采用的是有二区场向电流但无电导率时角变化的简单模式。文章通过模式计算,系统讨论了在恒稳条件下二区场向电流强度及位相和Hall与Pederson电导率在极光带升高等因素对高纬电场分布的影响。模式说明,二区场向电流的存在使二区电流圈以内电场加强,其外电场大大削弱。这种加强与削弱作用与二区电流的强度与位相均有关。Hall电导率在极光区升高会加强上述作用,Pederson电导率的升高则对其有所削弱。一般说来,极盖区外电场分布的位相与极盖区边界的驱动势不同,一、二区场向电流的位相与驱动势也有差异。这些现象都是场向电流与电导率共同影响的结果。以下结果初步解释了近年来的某些观测现象。最后,本文对简单模式法的应用及今后的某些方向作了探讨。  相似文献   

16.
We present the ground signatures of dynamic substorm features with particular emphasis on the event interpretation capabilities provided by the IMAGE magnetometer network. This array covers the high latitudes from the sub-auroral to the cusp/cleft region. An isolated substorm on 11 Oct. 1993 during the late evening hours exhibited many of well-known features such as the Harang discontinuity, westward travelling surge and poleward leap, but also discrete auroral forms, known as auroral streamers, appeared propagating westward along the centre of the electrojet. Besides the magnetic field measurements, there were auroral observations and plasma flow and conductivity measurements obtained by EISCAT. The data of all three sets of instruments are consistent with the notion of upward field-aligned currents associated with the moving auroral patches. A detailed analysis of the electro-dynamic parameters in the ionosphere, however, reveals that they do not agree with the expectations resulting from commonly used simplifying approximations. For example, the westward moving auroral streamers which are associated with field-aligned current filaments, are not collocated with the centres of equivalent current vortices. Furthermore, there is a clear discrepancy between the measured plasma flow direction and the obtained equivalent current direction. All this suggests that steep conductivity gradients are associated with the transient auroral forms. Also self-induction effects in the ionosphere may play a role for the orientation of the plasma flows. This study stresses the importance of multi-instrument observation for a reliable interpretation of dynamic auroral processes.  相似文献   

17.
Using the method of characteristics to invert ground-based data of the ground magnetic field disturbance and of the ionospheric electric field, we obtain spatial distributions of ionospheric conductances, currents, and field-aligned currents (FACs) associated with a north-south auroral form that drifts westwards over northern Scandinavia around 2200 UT on December 2, 1977. This auroral form is one in a sequence of such north-south structures observed by all-sky cameras, and appears 14 min after the last of several breakups during that extremely disturbed night. Our analysis shows that the ionospheric Hall conductance reaches values above 200 S in the center of the form, and upward flowing FACs of up to 25 μA/m2 are concentrated near its westward and equatorward edge. The strong upward flowing FACs are fed by an area of more distributed, but still very strong downward-flowing FACs northeastward of the auroral form. In contrast to the conductances, the electric field is only slightly affected by the passage of the form. We point out similarities and differences of our observations and results to previously reported observations and models of ‘auroral fingers’, ‘north-south aurora’, and ‘auroral streamers’ which are suggested to be ionospheric manifestations of bursty bulk flows in the plasma sheet.  相似文献   

18.
We present an analysis of phenomena observed by HF distance-diagnostic tools located in St. Petersburg combined with multi-instrument observation at Tromsø in the HF modified ionosphere during a magnetospheric substorm. The observed phenomena that occurred during the Tromsø heating experiment in the nightside auroral Es region of the ionosphere depend on the phase of substorm. The heating excited small-scale field-aligned irregularities in the E region responsible for field-aligned scattering of diagnostic HF waves. The equipment used in the experiment was sensitive to electron density irregularities with wavelengths 12–15 m across the geomagnetic field lines. Analysis of the Doppler measurement data shows the appearance of quasiperiodic variations with a Doppler frequency shift, fd and periods about 100–120 s during the heating cycle coinciding in time with the first substorm activation and initiation of the upward field-aligned currents. A relationship between wave variations in fd and magnetic pulsations in the Y-component of the geomagnetic field at Tromsø was detected. The analysis of the magnetic field variations from the IMAGE magnetometer stations shows that ULF waves occurred, not only at Tromsø, but in the adjacent area bounded by geographical latitudes from 70.5° to 68° and longitudes from 16° to 27°. It is suggested that the ULF observed can result from superposition of the natural and heater-induced ULF waves. During the substorm expansion a strong stimulated electromagnetic emission (SEE) at the third harmonic of the downshifted maximum frequency was found. It is believed that SEE is accompanied by excitation of the VLF waves penetrating into magneto-sphere and stimulating the precipitation of the energetic electrons (10–40 keV) of about 1-min duration. This is due to a cyclotron resonant interaction of natural precipitating electrons (1–10 keV) with heater-induced whistler waves in the magnetosphere. It is reasonable to suppose that a new substorm activation, exactly above Tromsø, was closely connected with the heater-induced precipitation of energetic electrons.  相似文献   

19.
In this paper we study an instability of the plasma moving towards the Earth near the inner plasma sheet boundary. We include both the interchange instability of the plasma sheet and the magnetosphere-ionosphere interaction instability caused by an effect of field-aligned currents (connected with electron precipitation) on ionospheric conductivity. The instability leads to the separation of steady-state magnetospheric convection into parallel layers. This instability may be responsible for the appearance of quiet auroral arcs inside region 2 of field-aligned currents flowing out of the ionosphere. This instability allows us to explain also the existence of crossing auroral arcs.  相似文献   

20.
Using the auroral boundary index derived from DMSP electron precipitation data and the Dst index, changes in the size of the auroral belt during magnetic storms are studied. It is found that the equatorward boundary of the belt at midnight expands equatorward, reaching its lowest latitude about one hour before Dst peaks. This time lag depends very little on storm intensity. It is also shown that during magnetic storms, the energy of the ring current quantified with Dst increases in proportion to Le–3, where Le is the L-value corresponding to the equatorward boundary of the auroral belt designated by the auroral boundary index. This means that the ring current energy is proportional to the ion energy obtained from the earthward shift of the plasma sheet under the conservation of the first adiabatic invariant. The ring current energy is also pronortional to Emag, the total magnetic field energy contained in the spherical shell bounded by Le and Leq, where Leq corresponds to the quiet-time location of the auroral precipitation boundary. The ratio of the ring current energy ER to the dipole energy Emag is typically 10%. The ring current leads to magnetosphere inflation as a result of an increase in the equivalent dipole moment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号