首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
An empirical scheme based on the concentrations of uranium and the three alpha-emitting radium isotopes 226Ra, 224Ra and 223Ra is proposed for rating the significance of ground waters with respect to uranium exploration. The scheme has been developed from the results for over 200 water samples from the vicinity of known uranium deposits and radium anomalies in areas of Australia with climates varying from arid to tropical. The scheme uses relative levels of the four factors to rate the potential of a sample as good, possible or poor. An example of the use of the system in ground-water exploration in the Frome Embayment, South Australia, is presented to illustrate the value of the scheme in rejecting falsely anomalous samples with high uranium concentrations whilst detecting nearby uranium mineralization from drill holes not intersecting mineralization.  相似文献   

2.
Water samples from saline seepages in the south-western Yilgarn Block of Western Australia contain high activities of the four naturally-occurring radium isotopes. Activities of up to 310 pCil for 226Ra and 1720 pCil for 228Ra were measured and the 228Ra226Ra ratio averaged 6.1. Activities of the two short-lived radium isotopes were also high. 223Ra activities of up to 94 pCil were found with an average 226Ra223Ra ratio of 3.3, considerably lower than the natural abundance ratio of 21.4. Activities of up to 23 pCil227Ac, the long-lived (t12 = 22 years) grandparent of 223Ra, were also measured. The analysis of surface granite samples, the probable source rocks of the radium, gave ThU activity ratios of around 1.5. The higher 228Ra226Ra ratios of the waters were attributed to readily leached 228Ra in the weathered granites as a result of thorium remaining after weathering. Leach experiments on U-Th ore by NaCl solutions showed that all four radium isotopes were equally leached. Sulphate anions reduced the 226Ra and 228Ra leaching to a greater extent than for 223Ra and 224Ra, suggesting that the latter isotopes were being supported in solution by parent isotopes. In particular this suggested 227Ac was leached into the sulphate solution but this does not fully account for the amount of 227Ac seen in the seepage waters.  相似文献   

3.
Analysis of radioactive (210Pb) and stable lead isotopes in near-surface samples has been tested as a method of uranium exploration in the Pine Creek Geosyncline, Northern Territory, Australia. The lead isotopes were extracted from the samples by a mild leaching agent and were measured by alpha spectrometry for 210Pb and by mass spectrometry for stable lead isotopes. The results are compared with those obtained by conventional methods utilizing measurements of radioactivity and radon (Track Etch) in situ and 226Ra, 228Ra and U contents of soils. The major problems addressed were whether the lead isotopic methods are more sensitive than the conventional methods and whether they can discriminate “real” anomalies from the common barren anomalies found in black soils and swamps which contain radium in excess of the uranium present.Four test areas, representing a range of exploration problems, were chosen in the vicinity of the Koongarra uranium deposits and 25 samples from each area were analyzed. Most samples have more 226Ra than uranium. Radium analyses of several water samples show the source of this radium to be non-uraniferous rocks within the Kombolgie sandstone. The results for soil 226Ra, radon, scintillometry and 219Pb were generally closely correlated, and as a result, the 210Pb method was not considered to have any advantages over the conventional methods.At the Koongarra X prospect, which has a weak surface expression, the ratio gave the strongest indication of the underlying uranium mineralization with an anomaly to background ratio of 12.5. However, this ratio is correlated with uranium content and does not offer any particular advantages over uranium analyses alone. More subtle indications of uranium mineralization were found by relating the radiogenic lead (206Pb) and the thorium-derived lead (208Pb) to the common lead content (204Pb). A plot of versus (horizontal axis) is linear for country rock samples, irrespective of the amount of more recently introduced 226Ra. Samples above uranium mineralization lie off this trend, along a line of near-zero slope. By the use of this plot, indications were found of the Koongarra No. 2 orebody, which is concealed by about 40 m of barren overburden; none of the other techniques detected this mineralization.  相似文献   

4.
The adsorption rate constants of Ra and Th were estimated from empirical data from a freshwater lake and its feeding saline springs. We utilized the unique setting of Lake Kinneret (Sea of Galilee, northern Israel) in which most of the Ra and Th nuclides are introduced into the lake by saline springs with high 226Ra activities and a high 224Ra/228Ra ratio of 1.5. The mixing of the Ra enriched saline waters and freshwater in the lake causes the 224Ra/228Ra ratio to drop down to 0.1 in the Kinneret due to preferential adsorption of 228Th. These conditions constitute a “natural experiment” for estimating adsorption rates. We developed a simple mass-balance model for the radionuclides in Lake Kinneret that accurately predicted the Ra isotope ratios and the 226Ra activity in the lake. The model is comprised of simultaneous equations; one for each radionuclide. The equations have one input term: supply of radionuclides from the saline springs; and three output terms: adsorption on particles in the lake, radioactive decay and outflow from the lake. The redundancy in the analytical solutions to the mass balance equations for the relevant nuclides constrained the values of Ra and Th adsorption rate constants to a very narrow range. Our results indicate that the adsorption rate constant for Ra is between 0.005 d−1 and 0.02 d−1. The rate constant for Th is between 0.5 d−1 and 1 d−1, about fifty to a hundred times higher. The estimated desorption rate coefficient for Ra is about 50-100 times larger than its adsorption rate constant. The mass-balance equations show that the residence times of all Ra isotopes (226Ra, 228Ra,223Ra, 224Ra) and of 228Th in the lake are about 95, 92, 14, 6 and 1 d, respectively. These residence times are much shorter than the residence time of water in the lake (about 5.5 y). The steady state activity ratios in Lake Kinneret depend mainly on the adsorption rate constants, decay constants, the outflow rate from the lake and the activity ratios in the saline springs. The activity ratios are independent of the saline springs flow rate.  相似文献   

5.
Radium isotopes were used to determine the crustal residence times of hydrothermal fluids from two geothermal wells (Svartsengi and Reykjanes) from the Reykjanes Peninsula, Iceland. The availability of rock samples from the subsurface (to depths of 2400 m) allowed direct comparison of the radium isotopic characteristics of the fluids with those of the rocks within the high temperature and pressure reaction zone. The 226Ra activity of the Svartsengi fluid was ∼one-fourth of the Reykjanes fluid and the 228Ra/226Ra ratio of the Svartsengi fluid was ∼twice that of Reykjanes. The fluid isotopic characteristics were relatively stable for both sites over the 6 years (2000-2006) of the study. It was determined, using a model that predicts the evolution of the fluid 228Ra/226Ra ratio with time, that both sites had fluid residence times, from the onset of high temperature water-rock reaction, of less than 5 years. Measurement of the short-lived 224Ra and 223Ra allowed estimation of the recoil input parameter used in the model. The derived timescale is consistent with results from similar studies of fluids from submarine systems, and has implications for the use of terrestrial systems in Iceland as an exploited energy resource.  相似文献   

6.
The fate of dissolved material delivered to the coastal ocean depends on its reactivity and the rate at which it is mixed offshore. To measure the rate of exchange of coastal waters, we employ two short-lived radium isotopes,223Ra and224Ra. Along the coast of South Carolina, shore-perpendicular profiles of223Ra and224Ra in surface waters show consistent gradients which may be modeled to yield eddy diffusion coefficients of 350–540 m2s−1. Coupling the exchange rate with offshore concentration gradients yields estimates of offshore fluxes of dissolved materials. For systems in steady state, the offshore fluxes must be balanced by new inputs from rivers, groundwater, sewers or other sources. Two tracers that show promise in evaluating groundwater input are barium and226Ra. These tracers have high relative concentrations in the fluids and low-reactivity in the coastal ocean. Applying the eddy diffusion coefficients to the offshore gradient of226Ra concentration provides an estimate of the offshore flux of226Ra. Measuring the concentrations of226Ra in subsurface fluids provides an estimate of the fluid flux necessary to provide the226Ra. These estimates indicate that the volume of groundwater required to support these fluxes is of the order of 40% of the surface water flow.  相似文献   

7.
Naturally-occurring radionuclides (uranium, radium, and radon), major dissolved constituents, and trace elements were investigated in fresh groundwater in 117 wells in fractured crystalline rocks from the Piedmont region (North Carolina, USA). Chemical variations show a general transition between two water types: (1) slightly acidic (pH 5.0–6.0), oxic, low-total dissolved solids (TDS) waters, and (2) near neutral, oxic to anoxic, higher-TDS waters. The uranium, radium, and radon levels in groundwater associated with granite (Rolesville Granite) are systematically higher than other rock types (gneiss, metasedimentary, and metavolcanic rocks). Water chemistry plays a secondary role on radium and radon distributions as the 222Rn/226Ra activity ratio is correlated with redox-sensitive solutes such as dissolved oxygen and Mn concentrations, as well as overall dissolved solids content including major divalent cations and Ba. Since 224Ra/228Ra activity ratios in groundwater are close to 1, we suggest that mobilization of Ra and Rn is controlled by alpha recoil processes from parent nuclides on fracture surfaces, ruling out Ra sources from mineral dissolution or significant long-distance Ra transport. Alpha recoil is balanced by Ra adsorption that is influenced by redox conditions and/or ion concentrations, resulting in an approximately one order of magnitude decrease (~ 20,000 to ~ 2000) in the apparent Ra distribution coefficient between oxygen-saturated and anoxic conditions and also across the range of dissolved ion concentrations (up to ~ 7 mM). Thus, the U and Th content of rocks is the primary control on observed Ra and Rn activities in groundwater in fractured crystalline rocks, and in addition, linked dissolved solids concentrations and redox conditions impart a secondary control.  相似文献   

8.
Factors controlling the groundwater transport of U, Th, Ra, and Rn   总被引:1,自引:0,他引:1  
A model for the groundwater transport of naturally occurring U, Th, Ra, and Rn nuclides in the238U and232Th decay series is discussed. The model developed here takes into account transport by advection and the physico-chemical processes of weathering, decay, α-recoil, and sorption at the water-rock interface. It describes the evolution along a flowline of the activities of the238U and232Th decay series nuclides in groundwater. Simple sets of relationships governing the activities of the various species in solution are derived, and these can be used both to calculate effective retardation factors and to interpret groundwater data. For the activities of each nuclide, a general solution to the transport equation has been obtained, which shows that the activities reach a constant value after a distance ϰi, characteristic of each nuclide. Where ϰi is much longer than the aquifer length, (for238U,234U, and232Th), the activities grow linearly with distance. Where gKi is short compared to the aquifer length, (for234Th,230Th,228Th,228Ra, and224Ra), the activities rapidly reach a constant or quasi-constant activity value. For226Ra and222Rn, the limiting activity is reached after 1 km. High δ234U values (proportional to the ratioɛ234Th/W238U) can be obtained through high recoil fraction and/or low weathering rates. The activity ratios230Th/232Th,228Ra/226Ra and224Ra/226Ra have been considered in the cases where either weathering or recoil is the predominant process of input from the mineral grain. Typical values for weathering rates and recoil fractions for a sandy aquifer indicate that recoil is the dominant process for Th isotopic ratios in the water. Measured data for Ra isotope activity ratios indicate that recoil is the process generally controlling the Ra isotopic composition in water. Higher isotopic ratios can be explained by different desorption kinetics of Ra. However, the model does not provide an explanation for228Ra/226Ra and224Ra/226Ra activity ratios less than unity. From the model, the highest222Rn emanation equals 2ɛ. This is in agreement with the hypothesis that222Rn activity can be used as a first approximation for input by recoil (Krishnaswamiet al 1982). However, high222Rn emanation cannot be explained by production from the surface layer as formulated in the model. Other possibilities involve models including surface precipitation, where the surface layer is not in steady-state.  相似文献   

9.
《Chemical Geology》2002,182(2-4):409-421
An improved method was developed to measure 226Ra, 228Ra and 224Ra in freshwaters by gamma spectrometry. Radium was selectively extracted from acidified samples using specific filters (3M EMPORE™ Radium Rad disks). The latter was subsequently analysed by gamma spectrometry. Simultaneous and direct determination of the activities of the three isotopes was performed by comparison of gamma rays of the Radium Rad disks with those of a calibrated standard disk. This efficient and reliable method allowed a reduction of sample processing to a few hours.This technique was applied to analyse the Ra isotope compositions of several CO2-rich hydrothermal springs of the western border of the Limagne graben (French Massif Central). The studied springs emerge from a succession of granitic outcrops lined up along a major fault. Their chemical compositions evolve from calcic and magnesian chloro-bicarbonated to sodic bicarbonated. All the springs display high Ra activities, probably linked to high CO2 content and/or high cation content of these waters, with various Ra isotope ratios. 226Ra activity ranges from 588 to 2287 mBq/l and 228Ra activity from 260 to 1590 mBq/l, whereas 224Ra displays an activity between 245 and 1808 mBq/l. Four of the six analysed springs have (228Ra/226Ra) activity ratios lower than 0.7, thus, significantly lower than the ratio expected from an interaction with a calc-alkaline granitoid (typically having (232Th/238U) activity ratio between 1 and 2). Low (228Ra/226Ra) ratio (0.27) of the northern water (Montpensier) suggests the existence in this area of a zone of U concentration, possibly resulting from U mobilization and accumulation induced by previous hydrothermal events. The (224Ra/228Ra) ratios display smaller variations. They suggest short transit times from the zone of Ra leaching to the surface (a few days) or a very shallow addition of 224Ra (e.g., from a localised zone where 228Th could be preferentially adsorbed on the mineral surfaces). In some cases, these ratios might be used to infer differences in transit times of waters between neighboring springs.  相似文献   

10.
A decade of studies of metal and nutrient inputs to the back-barrier area of Spiekeroog Island, NW German Wadden Sea, have concluded that pore water discharge provides a significant source of the enrichments of many components measured in the tidal channels during low tide. In this paper we add studies of radium isotopes to help quantify fluxes into and out of this system. Activities of radium isotopes in surface water from tidal channels in the back-barrier area exhibit pronounced changes in concert with the tide, with highest activities occurring near low tide. Other dissolved components: silica, total alkalinity (TA), manganese, and dissolved organic carbon (DOC) exhibit similar changes, with patterns matching the Ra isotopes. Uranium follows a reverse pattern with highest concentrations at high tide. Here we use radium isotope measurements in water column and pore water samples to estimate the fluxes of pore waters that enter the tidal channels during low tide. Using a flushing time of 4 days and the average activities of 224Ra, 223Ra, and 228Ra measured in the back-barrier surface and pore waters, we construct a balance of these isotopes, which is sustained by a deep pore water flux of (2-4) × 108 L per tidal cycle. This flux transports Ra and the other enriched components to the tidal channels and causes the observed low tide enrichments. An independent estimate of pore water recharge is based on the depletion of U in the tidal channels. The U-based recharge is about two times greater than the Ra-based discharge; however, other sinks of U could reduce the recharge estimate. The pore waters have wide ranges of enrichment in silica, alkalinity, manganese, DOC, and depletion of U with depth. We estimate concentrations of these components in pore water from the depth expected to contribute the majority of the pore water flux, 3.5 m, to determine fluxes of these components to the tidal channels. Samples from this depth have minimum concentrations of silica, alkalinity, manganese, and DOC. We also estimate the exports of these components (and import of U) due to mixing based on average measured concentrations in the tidal creeks and the 4-day flushing time. A comparison of these estimates reveals that the exports (negative in the case of U) equal or exceed the pore water fluxes. By using values slightly higher than the minimum concentrations at 3.5 m to calculate inputs, the two estimates could be forced to match. We conclude that pore water drainage is the major factor regulating fluxes of Ra isotopes, silica, alkalinity, manganese, DOC, and uranium in this system.  相似文献   

11.
Activity ratios (AR) of radium isotopes have been used with success to constrain estimates of water ages and to approximate residence times in coastal waters. We compared two common radium sampling methods (grab sampling and stationary moorings) to estimate water ages and the residence time of St. Andrew Bay waters in northwest Florida, USA. Both sampling methods utilize manganese dioxide fibers (“Mn fibers”) to adsorb dissolved radium from the water column. Grab samples capture radium activities at a discrete time while moorings integrate radium activities over longer deployments. The two methods yielded similar results in this study and thus both approaches are useful for water age comparisons and residence time approximations. However, since radium often varies as a function of tidal stage, deploying moorings over a complete tidal cycle is the preferred approach. An estimated residence time for North Bay and West Bay of 8–11 days was approximated using ARs for both ex224Ra/223Ra and ex224Ra/228Ra. Some complications were introduced as St. Andrew Bay is a tidally dominated, rather than a river-dominated bay system where this method has previously been applied. The largest freshwater source to this bay system is from a man-made reservoir, with an average freshwater flow of only 20 m3 s?1. The activity concentrations and ARs measured by both sampling methods suggest that while the reservoir is the prominent radium source, it is not the only radium source. Nonetheless, a tidal mixing model applied to the western half of the system yielded an approximate flushing time of 10–12 days, similar to that derived from our radium-based water age approach.  相似文献   

12.
厦门火烧屿裸露岩石的铀放射系不平衡   总被引:2,自引:1,他引:2  
用HPGeγ谱方法测定了厦门火烧屿裸露岩石天然放射性核素^40K、^228Ra、^228Th、^238U、^226Ra和^210Pb含量,对其铀系不平衡关系进行了讨论,发现钍系核素^228Ra和^228Th基本上是平衡的,而大部分样品^226Ra相对于^228U、^210Pb相对于^226Ra亏损。由此推论,水体作用下岸边岩石中^226Ra直接进入水体,可以是海水中^226Ra的一个来源;岸边岩石中^222Rn逸出后,衰变^210Pb再进入水体,可以是海水中^210Pb的一个来源。  相似文献   

13.
Simultaneous in situ immobilisation of uranium (U) and radium (226Ra) by injectible amounts of grey cast iron (gcFe), nano-scale iron (naFe) and a gcFe/MnO2 mixture (1:1) was studied in batch and column tests. Both 0.5 g/L naFe and gcFe are effective in 226Ra and U removal from mine water, whereas MnO2 addition clearly increased the efficiency of gcFe for 226Ra and U immobilisation. In a column test with 0.6 wt% gcFe/MnO2 mixture (1:1), neither 226Ra nor U was detected in the effluent after replacement of 45 pore volumes. A sequential extraction under flow condition revealed 226Ra to be mostly occluded in manganese oxides. Uranium was mostly sorbed onto poorly crystalline iron hydroxides, but a significant part was found to be occluded in manganese oxides also. The results of this study suggest that MnO2 promotes iron hydroxide formation under slightly reducing environmental conditions resulting in an increased pollutant retention capacity.  相似文献   

14.
The “Water-Sediment Regulation Scheme” (WSRS) is critically important to the hydrologic evaluation of the Yellow River estuary since a huge pulse of water and sediment are delivered into the sea during a short period. We used the natural geochemical tracers radium (223Ra, 224Ra, 226Ra) and radon (222Rn) isotopes as well as other hydrological parameters to investigate the mixing variations and submarine groundwater discharge (SGD) in the Yellow River estuary under the influence of the 2013 WSRS. Dramatically elevated radium and radon isotopic activities were observed during this WSRS compared with activities measured during a non-WSRS period. Radium “water ages” indicated that the offshore transport rate nearly tripled when the river discharge increased from 400 to 3400 m3/s. We calculated the SGD flux in the Yellow River estuary based on a radium mass balance model as well as radium and radon time-series models. The SGD flux was estimated at 0.02~0.20 m/day during a non-WSRS period and 0.67~1.22 m/day during the 2013 WSRS period. The results also indicate that large river discharge tends to lead more intense SGD along the river channel direction with a large amount of fresh SGD.  相似文献   

15.
Measurements were made of the 226Ra/223Ra activity ratio in ground waters obtained from drill holes in the vicinity of uranium mineralization in northern Saskatchewan where certain hydrologic parameters, specifically ground-water velocity and direction, had been determined. The results show that it is possible to approximate the distance from a ground-water sampling point to the area of mineralization owing to differences in the half lives of the two radium nuclides.The theoretical basis for the determination of the distances is explained.  相似文献   

16.
用镭同位素评价海水滞留时间及海底地下水排泄   总被引:3,自引:0,他引:3  
海底地下水排泄(submarine groundwater discharge, SGD)难以直接测量, 镭同位素和氡-222等天然示踪剂使得间接评价SGD通量成为可能.为了评价五缘湾的水体滞留时间和SGD通量, 实测了湾内海水、湾外海水和地下水中224Ra和226Ra的活度, 利用224Ra和226Ra半衰期的差异, 采用224Ra与226Ra的活度比值计算湾内水团的年龄和平均滞留时间, 利用224Ra和226Ra的质量平衡模型计算SGD通量.五缘湾13个站位的水团年龄在0.6~2.4 d之间, 湾顶水团年龄相对较大, 平均海水滞留时间1.4 d.地下水输入五缘湾的224Ra和226Ra通量分别为5.17×106 Bq/d和5.28×106 Bq/d, 将该通量用地下水端元的活度转换成为SGD通量分别是0.21 m3/m2/d(224Ra平衡模型)和0.23 m3/m2/d(226Ra平衡模型), 两种模型的结果较接近, 其平均值0.22 m3/m2/d可作为五缘湾的海底地下水排泄通量.   相似文献   

17.
《Applied Geochemistry》2001,16(1):109-122
The purpose of this study was to elucidate the processes controlling the distribution and behavior of the longer-lived Ra isotopes in continuous Paleozoic carbonate aquifers of parts of Missouri, Kansas, and Oklahoma. Activities of (228Ra) and (226Ra) were analyzed in fresh and saline ground waters, brines, and rocks. The fluids have a wide salinity range (200–250,000 mg l−1 total dissolved solids). The (226Ra) activity ranges from 0.66–7660 dpm kg−1 and correlates with salinity and other alkaline earth element (Ca, Sr, and Ba) concentrations. The range of (228Ra:226Ra) ratios in the fluids (0.06–1.48) is similar to that in the aquifer rocks (0.21–1.53). The relatively low mean fluid (228Ra:226Ra) ratio (0.30) reflects the low Th:U ratio of the predominant carbonate aquifer rock. Radium occurs mostly (≥77%) as Ra2+ species in the fluids. Salinity-dependent sorption–desorption processes (with log K values from 100–104 and negatively correlated with salinity), involving Th-enriched surface coatings on aquifer flow channels, can explain the rapid solid–fluid transfer of Ra isotopes in the system and the correlation of Ra with salinity.  相似文献   

18.
A total of 1270 raw-water samples (before treatment) were collected from 15 principal and other major aquifer systems (PAs) used for drinking water in 45 states in all major physiographic provinces of the USA and analyzed for concentrations of the Ra isotopes 224Ra, 226Ra and 228Ra establishing the framework for evaluating Ra occurrence. The US Environmental Protection Agency Maximum Contaminant Level (MCL) of 0.185 Bq/L (5 pCi/L) for combined Ra (226Ra plus 228Ra) for drinking water was exceeded in 4.02% (39 of 971) of samples for which both 226Ra and 228Ra were determined, or in 3.15% (40 of 1266) of the samples in which at least one isotope concentration (226Ra or 228Ra) was determined. The maximum concentration of combined Ra was 0.755 Bq/L (20.4 pCi/L) in water from the North Atlantic Coastal Plain quartzose sand aquifer system. All the exceedences of the MCL for combined Ra occurred in water samples from the following 7 PAs (in order of decreasing relative frequency of occurrence): the Midcontinent and Ozark Plateau Cambro-Ordovician dolomites and sandstones, the North Atlantic Coastal Plain, the Floridan, the crystalline rocks (granitic, metamorphic) of New England, the Mesozoic basins of the Appalachian Piedmont, the Gulf Coastal Plain, and the glacial sands and gravels (highest concentrations in New England).  相似文献   

19.
The activities of the most common, naturally occurring radionuclides 238U, 226Ra, 210Pb, 228Ra, 228Th, and 40K were measured by gamma-ray spectrometry in samples from reservoir rocks, geothermal fluids, and mineral precipitates at the geothermal research site Groß Schönebeck (North German Basin). Results demonstrated that the specific activity of the reservoir rock is within the range of the mean concentration in the upper earth crust of <800 Bq/kg for 40K and <60 Bq/kg for radionuclides of the 238U and 232Th series, respectively. The geothermal fluid showed elevated activity concentrations (up to 100 Bq/l) for 226Ra, 210Pb, and 228Ra, as compared to concentrations found in natural groundwater. Their concentration in filter residues even increased up to 100 Bq/g. These residues contain predominantly two different mineral phases: a Sr-rich barite (Sr, BaSO4) and laurionite (PbOHCl), which both precipitate upon cooling from the geothermal fluid. Thereby they presumably enrich the radionuclides of Ra (by substitution of Ba) and Pb. Analysis of these precipitates further showed an increased 226Ra/228Ra ratio from around 1–1.7 during the initial months of fluid production indicating a change in fluid composition over time which can be explained by different contributions of stimulated reservoir rock areas to the overall produced fluid.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号